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 The Rayleigh distribution was proposed in the fields of acoustics and optics 

by lord Rayleigh. It has wide applications in communication theory, such as 

description of instantaneous peak power of received radio signals, i.e. study 

of vibrations and waves. It has also been used for modeling of wave 

propagation, radiation, synthetic aperture radar images, and lifetime data in 

engineering and clinical studies. This work proposes two new extensions of 

the Rayleigh distribution, namely the Rayleigh inverted-Weibull (RIW) and 

the Rayleigh Weibull (RW) distributions. Several fundamental properties are 

derived in this study, these include reliability and hazard functions, moments, 

quantile function, random number generation, skewness, and kurtosis. The 

maximum likelihood estimators for the model parameters of the two 

proposed models are also derived along with the asymptotic confidence 

intervals. Two real data sets in communication systems and clinical trials are 

analyzed to illustrate the concept of the proposed extensions. The results 

demonstrated that the proposed extensions showed better fitting than other 

extensions and competing models. 
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1. INTRODUCTION  

Probability distributions have been popularly used as models to describe and predict real world 

phenomena in different fields such as engineering, medical sciences, and biological studies. The statistical 

analysis depends heavily on the assumed model. In recent years, there have been many interests among 

statisticians on proposing generalizations and extensions of some well-known probability distributions to 

provide more flexibility in modeling data. These extensions are based on transformations and compounding 

by introducing one or more additional parameter (s) to the baseline distribution. Different generated families 

of distributions are proposed in the literature. Some of these generated families include exponentiated 

distributions [1]-[3], Kumaraswamy generalized family of distributions [4], Marshall and Olkin family 

distributions [5], quadratic transmutation map method to generate new probability distributions [6], 

transformed-transmuter method [7], alpha power transformation method [8], the type I half-logistic family of 

distributions [9], type II half logistic family of distributions with applications [10], generalized beta-

generated distributions [11], and Weibull-G family of probability distributions [12].  

The Rayleigh distribution is one of the most popular distributions in analyzing skewed data. It has 

wide applications in communication systems and modeling lifetime data. To add flexibility to the Rayleigh 

distribution to get the best model fitting, various generalizations of the distribution have been derived and 
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studied. Surles and Padgett [13] considered the two parameter burr type X distribution by introducing a shape 

parameter and correctly naming it as the generalized Rayleigh (GR) distribution. Gomesa et al. [14] proposed 

a new distribution called Kumaraswamy generalized Rayleigh distribution. Kadim and Mohammed [15] 

proposed and studied a new generalization called Rayleigh Pareto distribution. Kundu and Raqab [16] 

proposed generalized Rayleigh (GR) distribution. Saudi and Sohail [17] proposed modified Rayleigh 

distribution (MR). Abdulhakim [18] studied a new extended Rayleigh distribution. This paper proposes and 

considers two generalizations of Rayleigh distribution known as Rayleigh inverted-Weibull (RIW) and 

Rayleigh Weibull (RW) distributions based on transformed transformer method by Alzaatreh et al. [7]. Such 

fundamental properties as reliability and hazard functions, moments, quantile function, random number 

generation, skewness and kurtosis, maximum likelihood estimators were studied with applications on real 

data sets. 

  

 

2. RAYLEIGH INVERTED-WEIBULL DISTRIBUTION 

Suppose X is a random variable following Rayleigh distribution. Then its probability density 

function (pdf), cumulative distribution function (cdf), and reliability function are respectively given by: 
 

𝑓(𝑥) = 2𝛽2𝑥𝑒−(𝛽𝑥)2  𝑥 ≥ 0, 𝛽 > 0,  (1) 

𝐹(𝑥) = 1 − 𝑒−(𝛽𝑥)2 , 𝑥 ≥ 0, 𝛽 > 0,  

𝑟(𝑥) = 𝑒−(𝛽𝑥)2. 
 

Alzaatreh et al. [7] propose transformed transformer method for generating families of continuous 

distributions, among these new families: 
 

1 − 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
− 𝑙𝑜𝑔(𝐺(𝑥))

0
  (2) 

 

where 𝑓(𝑡) is the baseline distribution, 𝐺(𝑥) is the cumulative distribution function of certain continuous 

distribution. 

This new method for generating new distribution has been used by many authors. For example, 

Ganji et al. [19] introduced the Weibull-Rayleigh distribution, and Kadim and Mohammed [15] introduced 

Rayleigh Pareto distribution. Bahati et al. [20] studied the properties and applications of Lindley-exponential 

distribution. Nosakhare and Festus [21] proposed three parameter generalized Lindley distribution. In (2), if 

the baseline distribution 𝑓(𝑡) is the Rayleigh distribution given in (1), then (2) becomes; 
 

1 − 𝐹(𝑥) = ∫ 2𝛽2𝑡𝑒−(𝛽𝑡)2𝑑𝑡
− 𝑙𝑜𝑔(𝐺(𝑥))

0
. (3) 

 

If we consider 𝐺(𝑥) as the one parameter inverted Weibull distribution where its cumulative distribution 

function (cdf) is given by: 
 

𝐺(𝑥) = 𝑒−𝑥−𝛼
. 𝑥 ≥ 0, 𝛼 > 0  

 

In (3) becomes; 
 

1 − 𝐹(𝑥) = ∫ 2𝛽2𝑡𝑒−(𝛽𝑡)2𝑑𝑡
𝑥−𝛼

0
. 

 

The cumulative distribution function (cdf) of the extended distribution known as Rayleigh inverted Weibull 

distribution is given by: 

 

𝐹(𝑥) = 𝑒−𝛽2𝑥−2𝛼
 𝑥 ≥ 0, 𝛼 > 0, 𝛽 > 0 (4) 

 

The probability density function (pdf) is given by: 

 

𝑓(𝑥) = 2𝛼𝛽2𝑥−2𝛼−1𝑒−𝛽2𝑥−2𝛼
𝑥 > 0, 𝛼 > 0, 𝜎2 > 0 (5) 

 

The probability density functions (pdf) of Rayleigh inverted Weibull (RIW) distribution with different values 

of α and 𝛽 = 1 are shown in Figure 1 which demonstrates the flexibility of the RIW distribution. The pdf is 

unimodal, right skewed and becomes less peaked with increasing values of α as shown in Figure 1. 
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Figure 1. The pdf of RIW distribution with 𝛼 = 0.5, 1, 2, 3 and 𝛽 = 1 

 

 

3. RAYLEIGH WEIBULL (RW) DISTRIBUTION 

Alzaatreh et al. [7] proposed transformed transformer method for generating families of continuous 

distributions, among these new families:  

 

1 − 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡.
− 𝑙𝑜𝑔(1−𝐺(𝑥))

0
  (6) 

 

where 𝑓(𝑡) is the baseline distribution, and 𝐺(𝑥) is the cumulative distribution function of certain continuous 

distribution called transformed transmuter distribution.  

In (6), if the baseline distribution 𝑓(𝑡) is the Rayleigh distribution given in (1), then (6) becomes.  

 

𝐹(𝑥) = ∫ 2𝛽2𝑡𝑒−(𝛽𝑡)2𝑑𝑡.
− 𝑙𝑜𝑔(1−𝐺(𝑥))

0
  (7) 

 

Considering 𝐺(𝑥) as the one parameter Weibull distribution where its cumulative distribution function (cdf) 

is given by: 

 

𝐺(𝑥) = 1 − 𝑒−𝑥𝛼
.  

 

In (7) becomes. 

 

𝐹(𝑥) = ∫ 2𝛽2𝑡𝑒−(𝛽𝑡)2𝑑𝑡
− 𝑙𝑜𝑔(1−𝐺(𝑥))

0

 

 

= ∫ 2𝛽2𝑡𝑒−(𝛽𝑡)2𝑑𝑡
𝑥𝛼

0

 

 

The cumulative distribution function (cdf) of the extended distribution known as Rayleigh Weibull 

distribution is given by: 

 

𝐹(𝑥) = 1 − 𝑒−𝛽2𝑥2𝛼
. (8) 

 

The probability density function (pdf) is given by: 

 

𝑓(𝑥) = 2𝛼𝛽2𝑥2𝛼−1𝑒−𝛽2𝑥2𝛼
 .  (9) 

 

The probability density functions (pdf) of Rayleigh Weibull (RW) distribution with 𝛽 = 1 and 

different values of α are shown in Figure 2, which demonstrates the flexibility of the RW distribution. The 

pdf is unimodal, right skewed and becomes less peaked with increasing values of α, for values of α less than 

one the pdf is a decreasing function, see Figure 2. 
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Figure 2. The pdf of RW distribution for α=0.5, 1, 2, 3 and β=1 

 

 

4. PROPERTIES OF RAYLEIGH INVERTED-WEIBULL DISTRIBUTION 

4.1.  Reliability and hazard functions 

The survival function, r(x) and hazard function, h(x) of the Rayleigh inverted Weibull distribution 

are given by: 

 

𝑟(𝑥) = 1 − 𝑒−𝛽2𝑥−2𝛼
, ℎ(𝑥) =

2𝛼𝛽2𝑥−2𝛼−1𝑒−𝛽2𝑥−2𝛼

1−𝑒−𝛽2𝑥−2𝛼 . 

 

The hazard function of Rayleigh inverted-weibull (RIW) distributions with 𝛽 = 1 and different values of α 

are shown in Figure 3, which indicates that the hazard rate function is increasing and decreasing, right 

skewed and becomes large peaked with increasing values of α. 

 

 

 
 

Figure 3. The hazard rate function of RW distribution with β=1 and α=0.5,1,2,3 

 

 

4.2.  Moments  

 Theorem (1) 

The k-th moment of (RIW) distribution is given by: 

 

𝐸(𝑋𝑘) = 2𝛼𝛽
𝑘−1
𝛼 𝛤 (

1 + 2𝛼 − 𝑘

2𝛼
+ 1)  ; 𝑘 = 1,2,3, . ..  

 

 Proof: 
 

𝐸(𝑋𝑘) = ∫ 𝑥𝑘𝑓(𝑥)𝑑𝑥
∞

0

 

 

𝐸(𝑋𝑘) = ∫ 𝑥𝑘2𝛼𝛽2𝑥−2𝛼−1𝑒−𝛽2𝑥−2𝛼
𝑑𝑥

∞

0
𝐸(𝑋𝑘) = 2𝛼𝛽2 ∫ 𝑥𝑘−2𝛼−1𝑒−𝛽2𝑥−2𝛼

𝑑𝑥
∞

0
  

 

Let 𝑡 = 𝛽2𝑥−2𝛼, then 𝑥 = (
𝛽2

𝑡
)

1 2𝛼⁄

, so 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

New extensions of Rayleigh distribution based on inverted-Weibull and Weibul … (Mahmoud M. Smadi) 

5111 

𝐸(𝑋𝑘) = 2𝛼𝛽2 ∫ (
𝛽2

𝑡
)

𝑘−2𝛼−1
2𝛼

𝑒−𝑡𝑑𝑥
∞

0

𝐸(𝑋𝑘) 

 

= 2𝛼𝛽
𝑘−1
𝛼 ∫ 𝑡

1+2𝛼−𝑘
2𝛼 𝑒−𝑡𝑑𝑥

∞

0

𝐸(𝑋𝑘) 

 

= 2𝛼𝛽
𝑘−1

𝛼 𝛤 (
1+2𝛼−𝑘

2𝛼
+ 1). 

 

 Mean and variance: 

The mean and variance of RF distribution are, respectively given by: 

 

𝐸(𝑋) =  2𝛼 

 

𝑉𝑎𝑟(𝑋) = (2𝛼𝛽1 𝛼⁄ 𝛤 (
2𝛼−1

2𝛼
+ 1))

2

− 4𝛼2. 

 

4.3.  Quantile and random number generation 

The qth quantile of Rayleigh inverted Weibull (RIW) distribution is given by: 

 

𝑥𝑝 = 𝑄(𝑝) = 𝐹−1(𝑝) =  (
−𝛽2

𝑙𝑜𝑔 𝑝
)

1 2𝛼⁄

, 0 < 𝑝 < 1.  

 

The median of the distribution is. 

 

𝑥1
2

= (
−𝛽2

𝑙𝑜𝑔
1
2

)

1 2𝛼⁄

 

 

The random number generator of Rayleigh inverted Weibull distribution is given by: 

 

𝑥 =  (
−𝛽2

𝑙𝑜𝑔 𝑢
)

1 2𝛼⁄

 

 

where u is the random number from uniform distribution; U (0,1). 

 

4.4.  Skewness and Kurtosis 

Because the moments involve gamma function, the kurtosis and skewness can be found using 

quantipes: 

 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
(𝑄3 − 𝑄2) − (𝑄2 − 𝑄1)

(𝑄3 − 𝑄2) + (𝑄2 − 𝑄1)
  

 

 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  

( √
−𝛽2

𝑙𝑜𝑔 0 . 75
2𝛼

− √
−𝛽2

𝑙𝑜𝑔 0 . 5
2𝛼

) − ( √
−𝛽2

𝑙𝑜𝑔 0 . 5
2𝛼

− √
−𝛽2

𝑙𝑜𝑔 0 . 25
2𝛼

)

( √
−𝛽2

𝑙𝑜𝑔 0 . 75
2𝛼

− √
−𝛽2

𝑙𝑜𝑔 0 . 5
2𝛼

) + ( √
−𝛽2

𝑙𝑜𝑔 0 . 5
2𝛼

− √
−𝛽2

𝑙𝑜𝑔 0 . 25
2𝛼

)

  

 

A robust alternative measure of kurtosis using quantiles suggested by Moors [22] is given by: 

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  
(𝐸7 − 𝐸)5 − (𝐸3 − 𝐸1)

(𝐸6 − 𝐸2)
,  

 

where 𝐸i is the ith octile Ei=F-1(i/8). 
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5. PROPERTIES OF RAYLEIGH WEIBULL DISTRIBUTION 

5.1.  The reliability and hazard functions 

The survival function r(x) and hazard function h(x) of the Rayleigh Weibull distribution are given by 

 

𝑟(𝑥) = 𝑒−𝛽2𝑥2𝛼
 , ℎ(𝑥) =  2𝛼𝛽2𝑥2𝛼−1. 

 

The hazard function of Rayleigh Weibull (RW) distribution with 𝛽 = 1 and 𝛼 = 0.7 and 𝛼 = 2 are shown in 

Figure 4. It is noted that the hazard rate function is increasing concave down trend for 𝛼 = 0.7 and increasing 

concave up trend for 𝛼 = 2, it is also noted for values of α greater than one, the hazard function is increasing 

concave up trend. 

 

 

  
 

Figure 4. The hazard rate function of RW distribution with 𝛽 = 1 and 𝛼 = 0.7 and 𝛼 = 2 

 

 

5.2.  Moments 

 Theorem (2) 

The k-th moment of Rayleigh Weibull distribution about the origin is given by: 

 

𝐸(𝑋𝑘) = 2𝛼𝛽
1−𝑘
𝛼 𝛤 (

𝑘 + 2𝛼 − 1

2𝛼
+ 1)   

 

 Proof: 
 

𝐸(𝑋𝑘) = ∫ 𝑥𝑘𝑓(𝑥)𝑑𝑥
∞

0

 = ∫ 𝑥𝑘2𝛼𝛽2𝑥2𝛼−1𝑒−𝛽2𝑥2𝛼
𝑑𝑥 = 

∞

0

2𝛼𝛽2 ∫ 𝑥𝑘+2𝛼−1𝑒−𝛽2𝑥2𝛼
𝑑𝑥.

∞

0

  

 

Let 𝑡 = 𝛽2𝑥2𝛼, then 𝑥 = (
𝑡

𝛽2)
1 2𝛼⁄

. Therefore 

 

𝐸(𝑋𝑘) = 2𝛼𝛽2 ∫ (
𝑡

𝛽2
)

𝑘+2𝛼−1
2𝛼

𝑒−𝑡𝑑𝑥
∞

0

 = 2𝛼𝛽
1−𝑘
𝛼 𝛤 (

𝑘 + 2𝛼 − 1

2𝛼
+ 1). 

 

 Mean and variance.  

The mean and variance of RF distribution are, respectively given by 𝐸(𝑋) =  2𝛼 

 

𝑉𝑎𝑟(𝑋) = (2𝛼𝛽−
1
𝛼𝛤 (

1 + 4𝛼

2𝛼
))

2

− 4𝛼2 . 

 

5.3.  Quantile and random number generation 

The qth quantile of Rayleigh Weibul (RW) is given by: 

 

𝑥𝑝 = 𝑄(𝑝) = 𝐹−1(𝑝) =  (−
𝑙𝑜𝑔( 1 − 𝑝)

𝛽2
)

1 2𝛼⁄

, 
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where F-1(.) is the inverse distribution function. 

The median of the distribution is given by: 

 

𝑥1
2

= (−
𝑙𝑜𝑔(1/2)

𝛽2
)

1 2𝛼⁄

 , 

 

The random number generator of Rayleigh Frechet distribution can be expressed as:  

 

𝑥 =  (−
𝑙𝑜𝑔( 1 − 𝑢)

𝛽2
)

1 2𝛼⁄

, 

 

where u is the random number from uniform distribution U (0,1). 

 

5.4.  Skewness and Kurtosis 

Because the moments involve gamma function, kurtosis and skewness can be found using quantiles: 

 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
(𝑄3−𝑄2)−(𝑄2−𝑄1)

(𝑄3−𝑄2)+(𝑄2−𝑄1)
 , therefore  

 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  

( √−
𝑙𝑜𝑔( 0.25)

𝛽2

2𝛼
− √−

𝑙𝑜𝑔( 0.5)
𝛽2

2𝛼
) − ( √−

𝑙𝑜𝑔( 0.5)
𝛽2

2𝛼
− √−

𝑙𝑜𝑔( 0.75)
𝛽2

2𝛼
)

( √−
𝑙𝑜𝑔( 0.25)

𝛽2

2𝛼
− √−

𝑙𝑜𝑔( 0.5)
𝛽2

2𝛼
) + ( √−

𝑙𝑜𝑔( 0.5)
𝛽2

2𝛼
− √−

𝑙𝑜𝑔( 0.75)
𝛽2

2𝛼
)

,  

 

The kurtosis measure is given by; 

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  
(𝐸7−𝐸)5−(𝐸3−𝐸1)

(𝐸6−𝐸2)
, Where 𝐸i is the ith octile Ei=F-1(i/8). 

 

 

6. ESTIMATION OF RAYLEIGH INVERTED-WEIBULL DISTRIBTION 

In this section, the estimates of the parameters of the Rayleigh inverted Weibull distribution are 

derived. Let 𝑋1, 𝑋2 , … , 𝑋𝑛 be a random sample from Rayleigh inverted Weibull distribution with probability 

density function given in (5). Then the likelihood function is given by: 

 

𝐿 = ∏ 2𝛼𝛽2𝑥𝑖
−2𝛼−1𝑒−𝛽2𝑥𝑖

−2𝛼

𝑛

𝑖=1

 = 2𝑛𝛼𝑛𝛽2𝑛 [∏ 𝑥𝑖
−2𝛼−1

𝑛

𝑖=1

] 𝑒−𝛽2 ∑ 𝑥𝑖
−2𝛼𝑛

𝑖=1  . 

 

The ln-likelihood function can be expressed as: 

 

𝐿 = 𝑛 𝑙𝑜𝑔 2 + 𝑛 𝑙𝑜𝑔 𝛼 + 2𝑛 𝑙𝑜𝑔 𝛽 − (2𝛼 + 1)∑ 𝑙𝑛 𝑥𝑖

𝑛

𝑖=1

− 𝛽2 ∑𝑥𝑖
−2𝛼

𝑛

𝑖=1

. 

 

The normal equations become: 

 
𝜕 𝑙𝑛 𝐿

𝜕𝛼
= 

𝑛

𝛼
− 2∑ 𝑙𝑛 𝑥𝑖

𝑛
𝑖=1 + 2𝛽2 ∑ 𝑥𝑖

−2𝛼𝑛
𝑖=1 = 0 ,  (10) 

 

𝜕 𝑙𝑛 𝐿

𝜕𝛽
=  

2𝑛

𝛽
− 2𝛽 ∑𝑥𝑖

−2𝛼

𝑛

𝑖=1

= 0, 

 

Which implies that 

 

𝛽 = √
𝑛

∑ 𝑥𝑖
−2𝛼𝑛

𝑖=1

  (11) 
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The following equation can be obtained by substituting (11) in (10).  

 

𝑔(𝛼) =
𝑛

𝛼
− 2∑𝑙𝑛 𝑥𝑖

𝑛

𝑖=1

+ 2𝑛
∑ 𝑥𝑖

-2𝛼 𝑙𝑜𝑔( 𝑥𝑖)
𝑛
𝑖=1

∑ 𝑥𝑖
-2𝛼𝑛

𝑖=1

 = 0. 

 

Therefore, MLE of α, can be obtained by solving 𝑔(𝛼) using numerical methods, once the MLE for 

α is obtained, the MLE for 𝛽 can be concluded from (11). The asymptotic normality results can be stated to 

obtain the approximate confidence intervals for the maximum likelihood estimators. The Fisher information 

matrix I (β, α) can be written is being as.  

 

𝐼(𝛽, 𝛼) =

[
 
 
 
 −

𝜕2 𝑙𝑜𝑔 𝐿 (𝛽, 𝛼)

𝜕𝛽
 −

𝜕2 𝑙𝑜𝑔 𝐿 (𝛽, 𝛼)

𝜕𝛽𝜕𝛼

 −
𝜕2 𝑙𝑜𝑔 𝐿 (𝛽, 𝛼)

𝜕𝛽𝜕𝛼
 −

𝜕2 𝑙𝑜𝑔 𝐿 (𝛽, 𝛼)

𝜕𝛼2
 
]
 
 
 
 

 . 

 

The elements of the observed fisher information matrix are being as. 

 

𝜕2 𝑙𝑜𝑔 𝐿 (𝛽, 𝛼)

𝜕𝛽2
= −

2𝑛

𝛽2
-2∑𝑥𝑖

−2𝛼

𝑛

𝑖=1

 , 

 

𝜕2 𝑙𝑜𝑔 𝐿 (𝛽, 𝛼)

𝜕𝛼2
=  -

𝑛

𝛼2
-4𝛽2 ∑𝑥𝑖

-2𝛼

𝑛

𝑖=1

𝑙𝑛 𝑥𝑖  ,  

 

𝜕2 𝑙𝑜𝑔 𝐿 (𝛽, 𝛼)

𝜕𝛽𝜕𝛼
=  4𝛽 ∑ 𝑥𝑖

−2𝛼 𝑙𝑛 𝑥𝑖

𝑛

𝑖=1

. 

 

The asymptotic distribution of MLEs is a bivariate normal that can be expressed as:  

 

(�̑�
�̑�
) ≈ 𝐵𝑉𝑁 ((

𝛽
𝛼
) , I-1(�̑�, �̑�)). 

 

Therefore, the two sided 100(1-α)% asymptotic cl approximate intervals for σ2 and α are:  

 

�̑� ± 𝑧𝛼

2

√𝑣𝑎𝑟( �̑�), �̑� ± 𝑧𝛼

2
√𝑣𝑎𝑟( �̑�), 

 

where zα/2 is the upper (α/2)-th percentile of the standard normal distribution. 

 

 

7. ESTIMATION OF RAYLEIGH WEIBULL DISTRIBUTION 

In this section, the estimates of the parameters of the Rayleigh Weibull distribution are derived. Let 

𝑋1, 𝑋2 , … , 𝑋𝑛 be a random sample from the Rayleigh Weibull distribution with probability density function 

given in (3.9). Then the likelihood function is given by: 

 

𝐿 = ∏ 2𝛼𝛽2𝑥2𝛼−1𝑒−𝛽2𝑥2𝛼

𝑛

𝑖=1

 = 2𝑛𝛼𝑛𝛽2𝑛 [∏ 𝑥𝑖
2𝛼−1

𝑛

𝑖=1

] 𝑒−𝛽2 ∑ 𝑥𝑖
2𝛼𝑛

𝑖=1 . 

 

The ln-likelihood function is given by: 

𝐿 = 2 𝑙𝑜𝑔 𝑛 + 𝑛 𝑙𝑜𝑔 𝛼 + 2𝑛 𝑙𝑜𝑔 𝛽 + (2𝛼 − 1)∑ 𝑙𝑛 𝑥𝑖

𝑛

𝑖=1

− 𝛽2 ∑𝑥𝑖
2𝛼

𝑛

𝑖=1

. 

 

The normal equations become: 
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𝜕 𝑙𝑛 𝐿

𝜕𝛼
= 

𝑛

𝛼
+ 2∑ 𝑙𝑛 𝑥𝑖

𝑛
𝑖=1 − 2𝛽2 ∑ 𝑥𝑖

2𝛼𝑛
𝑖=1 𝑙𝑛 𝑥𝑖 = 0,  (12) 

 

𝜕 𝑙𝑛 𝐿

𝜕𝛽
=  

2𝑛

𝛽
− 2𝛽 ∑𝑥𝑖

2𝛼

𝑛

𝑖=1

= 0.  

 

Which implies that 

 

𝛽 = √
𝑛

∑ 𝑥𝑖
2𝛼𝑛

𝑖=1

  (13) 

 

Substituting (13) in (12), we obtain  

 

𝑔(𝛼) =
𝑛

𝛼
+ 2∑𝑙𝑛 𝑥𝑖

𝑛

𝑖=1

− 2𝑛
∑ 𝑥𝑖

2𝛼 𝑙𝑛 𝑥𝑖
𝑛
𝑖=1

∑ 𝑥𝑖
2𝛼𝑛

𝑖=1

 = 0.  

 

Therefore, MLE of α, can be obtained by solving 𝑔(𝛼) using numerical methods, once the MLE for 

α is obtained, the MLE for β can be conclude from (7.2). The asymptotic normality results can be stated to 

obtain the approximate confidence intervals for the maximum likelihood estimators. The Fisher information 

matrix 𝐼(𝛼2, 𝛼) can be written is being as:  

 

𝐼(𝛽, 𝛼) =

[
 
 
 
 −

𝜕2 𝑙𝑜𝑔 𝐿 (𝛽, 𝛼)

𝜕𝛽
 −

𝜕2 𝑙𝑜𝑔 𝐿 (𝛽, 𝛼)

𝜕𝛽𝜕𝛼

 −
𝜕2 𝑙𝑜𝑔 𝐿 (𝛽, 𝛼)

𝜕𝛽𝜕𝛼
 −

𝜕2 𝑙𝑜𝑔 𝐿 (𝛽, 𝛼)

𝜕𝛼2
 
]
 
 
 
 

 . 

 

The elements of the observed Fisher information matrix are being as; 

 

𝜕2 𝑙𝑜𝑔 𝐿 (𝛽, 𝛼)

𝜕𝛽2
= −

2𝑛

𝛽2
-2∑𝑥𝑖

2𝛼

𝑛

𝑖=1

,  

 

𝜕2 𝑙𝑜𝑔 𝐿 (𝛽, 𝛼)

𝜕𝛼2
=  -

𝑛

𝛼2
-4𝛽2 ∑𝑥𝑖

2𝛼

𝑛

𝑖=1

𝑙𝑛 𝑥𝑖 ,  

 

𝜕2 𝑙𝑜𝑔 𝐿 (𝛽, 𝛼)

𝜕𝛽𝜕𝛼
=  4𝛽 ∑ 𝑥𝑖

2𝛼 𝑙𝑛 𝑥𝑖

𝑛

𝑖=1

 . 

 

The asymptotic distribution of MLEs is a bivariate normal that can be expressed as:  

 

(�̑�
�̑�
) ≈ 𝐵𝑉𝑁 ((

𝛽
𝛼
) , I-1(�̑�, �̑�)). 

 

Therefore, the two sided 100(1-α)% asymptotic cl approximate intervals for β and α are; 

 

�̑� ± 𝑧𝛼

2

√𝑣𝑎𝑟( �̑�), �̑� ± 𝑧𝛼

2
√𝑣𝑎𝑟( �̑�).  

 

 

8. APPLICATIONS 

8.1.  Application 1 

The following data set presents repair times (in h) for an airborne communication transceiver. This 

data set has been previously analyzed by Saudi and Sohail [17]. The data consists of 45 values and are 

displayed in Table 1. The authors analyzed and compared the proposed models Rayleigh inverted-Weibull 

(RIW) and Rayleigh Weibull distributions (RW) with other extensions and competing models. Exponential, 
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Rayleigh, generalized exponential (GE) [23], generalized Rayleigh (GR) [16], modified Rayleigh (MR) [17] 

are considered by the authors, their results are reported in Table 2. The Kolmogorov Simonov test is used to 

assess if this data set fits these distributions. The theoretical critical value of Kolmogorov Smirnov (K-S) test 

is 𝐾 − 𝑆0.05 = 0.2027 at 0.05 level of significance. The Kolmogorov Smirnov test statistics values for the six 

models being investigated are shown in Table 2. All the values of the Kolmogorov Smirnov test statistics are 

lower than the theoretical critical value, except the Rayleigh distribution. Hence, it is concluded that these 

fitted models except the Rayleigh distribution to the repair times (in hr) for an airborne communication 

transceiver are adequate. The maximum likelihood estimates of the model parameters, -2Ln L, Akaike 

information criteria (AIC), and Bayesian information criterion (BIC) values for different models are shown in 

Table 2. It is observed that the RW model has the lowest values of -2Ln L, AIC, and BIC than all the other 

models and hence the proposed RW model provides a better fitting than all the other models and extensions 

being considered in the comparison. 

 

 

Table 1. Repair times (in h) for an airborne communication transceiver 
0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 1.0 1.0 

1.0 1.0 1.1 1.3 1.5 1.5 1.5 1.5 2.0 2.0 2.2 2.5 3.0 3.0 3.3 
3.3 4.0 4.0 4.5 4.7 5.0 5.4 5.4 7.0 7.5 8.8 9.0 10.3 22.0 24.5 

 

 

Table 2. Results of ML estimates and model evaluation criterion for the data 
Distribution ML Estimates Ln L -2lnL AIC BIC K-S 

Exponential (λ) 0.2757 -102.97 205.94 207.94 209.8 0.173 
Rayleigh (β) 0.16313 -147.70 295.40 297.40 299.2 0.457 

GE (α, λ) 0.9383, 0.2640 -102.92 205.84 209.84 213.5 0.161 

GR (α, β) 0.2872,0.0542 -109.36 218.36 222.36 226.3 0.180 
MR (α, β) 0.002368,0.02661 -101.88 203.76 207.76 211.4 0.148 

RIW (β, α) 1.0558, 0.51 -98.40 196.80 200.80 204.41 0.090 
RW (β, α) 0.5858, 0.44 -88.54 177.08 181.08 184.69 0.120 

 

 

8.2.  Application 2 

The survival times of a group of patients suffering from Head and Neck cancer disease who were 

treated using a combination of radiotherapy and chemotherapy [24] are considered. Table 3 includes these 

data. Rama [25] fits exponential, Gamma, and Weibull distribution to the above data set. The maximum 

likelihood estimates for the model parameters, -2ln L, AIC, BIC, and Kolmogorov-Smirnov test statistic 

values are shown in Table 4. The proposed models Rayleigh inverted-Weibull (RIW) and Rayleigh weibull 

distributions (RF) in addition to Rayleigh baseline distribution are used in this work to fit the data. The 

results are also shown in Table 4. The theoretical critical value of Kolmogorov-Smirnov (K-S) test is  

𝐾 − 𝑆0.05 = 0.205 at 0.05 level of significance. All the values of the Kolmogorov Smirnov statistic values 

are lower than the theoretical critical value, except the Rayleigh distribution. Hence, the adequacy of fitting 

these models to the survival times data except the Rayleigh distribution is verified. It is observed that the RF 

model has the lowest values of -2Ln L, AIC, and BIC than exponential, Gamma, Weibull distributions, 

Rayleigh, and Rayleigh inverted Weibull (RIW) distribution, and hence the proposed Rayleigh Weibull (RW) 

model provides better fitting than all the other models being considered in the comparison. 

 

 

Table 3. Survival times of patients suffering from Head and Neck cancer disease 
12.20 23.56 23.74 25.87 31.98 37 41.35 47.38 55.46 58.36 63.47 

68.46 78.26 74.47 81.43 84 92 94 110 112 119 127 

130 133 140 146 155 159 173 179 194 195 209 
249 281 319 339 432 469 519 633 725 817 1776 

 

 

Table 4. Results of ML estimates and model evaluation criterion for the data 
Distribution ML Estimates -2lnL AIC BIC K-S 

Exponential (λ) 0.0045 564.03 566.03 567.81 0.139 

Rayleigh (β) 0.00266 643.91 645.91 651.48 0.490 

Gamma (λ, α) 0.0064, 1.0476 564.03 568.03 571.60 0.148 
Weibull (λ, α) 0.0064, 0.9404 563.68 567.68 571.25 0.129 

RIW (β, α) 1.0558, 0.51 559.00 563.00 566.57 0.110 

RW (β, α) 0.082, 0.47 536.69 540.69 544.26 0.129 
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9. CONCLUSION 

Two new extensions of the Rayleigh distributions were proposed and studied, namely Rayleigh 

inverted-Weibull (RIW) distribution and Rayleigh Weibull (RW). Some fundamental properties of these new 

extensions are derived. The maximum likelihood estimators along with asymptotic confidence intervals are 

also presented. Two real data sets were analyzed using the new extensions and compared with other 

extensions and competing models. The proposed Rayleigh Weibull (RW) distribution gives better fitting than 

all the other fitted models considered in the comparison. 
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