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 In this paper we proposed a novel procedure for training a feedforward 

neural network. The accuracy of artificial neural network outputs after 

determining the proper structure for each problem depends on choosing the 

appropriate method for determining the best weights, which is the 

appropriate training algorithm. If the training algorithm starts from a good 

starting point, it is several steps closer to achieving global optimization. In 

this paper, we present an optimization strategy for selecting the initial 

population and determining the optimal weights with the aim of minimizing 

neural network error. Teaching-learning-based optimization (TLBO) is a less 

parametric algorithm rather than other evolutionary algorithms, so it is easier 

to implement. We have improved this algorithm to increase efficiency and 

balance between global and local search. The improved teaching-learning-

based optimization (ITLBO) algorithm has added the concept of 

neighborhood to the basic algorithm, which improves the ability of global 

search. Using an initial population that includes the best cluster centers after 

clustering with the modified k-mean algorithm also helps the algorithm to 

achieve global optimum. The results are promising, close to optimal, and 

better than other approach which we compared our proposed algorithm with 

them. 
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1. INTRODUCTION  

Artificial neural networks (ANN) are new computational methods and systems for machine learning, 

knowledge demonstration, and ultimately the application of knowledge to oversee the output of complex 

systems. The main idea of networks is inspired by the way the biological neural system to process data and 

information in order to learn and create knowledge. The main philosophy of the artificial neural network is to 

model the processing characteristics of the human brain to approximate the usual computational methods 

with the biological processing method. In other words, the artificial neural network is a method that learns 

the communication knowledge between several sets of data through training and saves it for use in similar 

cases. This processor works in two ways similar to the human brain: Learning the neural network is done 

through training, and weighting in the neural network is similar to the information storage system of the 

human brain. With the help of computer programming knowledge, it is possible to design a data structure that 

https://creativecommons.org/licenses/by-sa/4.0/
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acts like a neuron. Then the network train by creating a network of these connected artificial neurons, 

creating a training algorithm for the network, and applying this algorithm to the network. Training the neural 

network means determining the appropriate weights for the neural network. For this purpose, a strong and 

fast optimization method should be used. Initially, researchers who were required to train neural networks to 

solve their problems, generally used from classical neural network training algorithms such as gradient-based 

optimization like error back-propagation algorithm [1]. But these algorithms, along with their high speed, 

have major disadvantages, such as the problem of trapping into the local minimum [2]. Another weakness of 

these algorithms is that they must be applied to a specific and standard category of neural networks such as 

multilayer perceptron [3]. Although evolutionary algorithms are slightly slower than gradient-based 

algorithms, they have the ability to escape from local minimum traps, and evolutionary algorithms are not 

dependent on a specific network structure and can be defined by any network structure. Therefore, many 

researchers have used evolutionary algorithms to train neural networks [4]-[6]. Therefore, the use of 

evolutionary algorithms in the neural network has the advantage of escaping from local minimum traps and 

also not being dependent on a certain network structure. 

Clustering is one of the most popular ways to discover data knowledge. The discovery of knowledge 

is broadly divided into two categories: supervised and unsupervised. A supervised knowledge discovery 

process typically requires class labels that are sometimes not available in the dataset. This machine model 

learns using labeled data and having the right answers. Unsupervised machine learning is the process that a 

machine learns without using labeled data and any teachers. Known discovery knowledge techniques such as 

clustering can handle unlabeled datasets. The K-means algorithm for clustering is one of the most popular 

and widely used algorithms [7]. 

In this paper, after extensive research, we have concluded that the selection of the initial population 

for artificial neural network training algorithms is very important. So instead of randomly selection an initial 

population in a small search space, we decided to use result of clustering in a larger search space. Searching 

in a larger space increases the chances of finding a global optimal or extremely close to optimal answers. 

Using the modified k-mean algorithm, we divide our large initial population into a limited number of 

clusters, and then consider the best cluster centers as the initial population of our training algorithm. We then 

use an improved teaching-learning based optimization algorithm (ITLBO) as the training algorithm. This 

algorithm solves the problem of trapping in the local optimal and by creating a proper balance between 

exploration and exploitation, it has been able to get closer to the global optimal. 

The rest of this article is being as: In this article, we will first give a brief description of the 

clustering algorithm used in section 2, and then we present the ITLBO algorithms, and then we describe our 

proposed method. Then, in section 3, we first provide a brief description of case study datasets, and then we 

show the results of experiments using the proposed approach applied to the neural network problem. The 

conclusion of this work is presented in the last section. 

 

 

2. MATERIALS AND METHODS 

2.1.  K-mean clustering 

Nowadays, clustering is one of the most widely used issues in the field of artificial intelligence. The 

issue of clustering has particular importance due to the growing volume of web-based texts, textual statues, 

articles, and can also be effective in improving the results obtained from search engines and information 

classification. Proper clustering makes it easier to search and access information more efficiently. In general, 

clustering algorithms can be divided into two general categories: Overlapping clustering method and 

exclusive clustering method. In the overlapping clustering method, a data can belong to several clusters with 

different ratios, an example of which is fuzzy clustering. In the exclusive clustering method, after clustering, 

each data is assigned exactly one cluster, k-mean algorithm belongs to this category. The k-mean clustering is 

the process of classifying a set of objects into clusters, in which the internal members of each cluster are most 

similar to each other and have the least similar to members of other clusters. Clustering is the process of 

separating data or objects into subclasses called clusters. Each cluster contains data that seems to be more 

similar to each other, and data that appears to be less similar to each other is placed in different clusters.  

The k-mean algorithm is one of the most widely used clustering algorithms. This algorithm was first 

introduced by McQueen in 1967 [8] that is designed for clustering numerical data. In the k-mean algorithm, 

first the k member is randomly selected from the n members as the cluster centers (k<n). The remaining n-k 

members are then assigned to the nearest cluster center based on Euclidean distance. After allocating all 

members, the cluster centers are recalculated by the average value of the clusters members, and this continues 

until the cluster centers remain stable. Suppose that 𝐷 =  {𝑥1, 𝑥2, … , 𝑥𝑛} is a set of n data and 𝐶1, 𝐶2, … , 𝐶k are 

separate clusters on D, in which case the error function is defined is being as: 
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𝐸 = ∑ ∑ 𝑑(𝑥, 𝜇(𝑐𝑖))𝑥∈𝑐𝑖

𝑘
𝑖=1  (1) 

 

where μ (𝑐𝑖) is the center of the 𝑐𝑖  cluster and d (x, μ (𝑐𝑖)) is the distance between x and μ (𝑐𝑖). Euclidean 

distances are commonly used to calculate distance in this formula. But in this paper, we use Manhattan 

distance to identify members belonging to clusters, and we modify the k-mean algorithm in this way. This 

modified algorithm maintains both numerical and categorical features of the samples. The distance in our 

method is calculated is being as in (2). 

 

𝑑 (𝑥𝑗 , 𝜇(𝑐𝑖)) =  
∑ |𝑥𝑗,𝑘−𝜇(𝑐𝑖),𝑘|+∑ 𝑑(𝑥𝑗,𝑘−𝜇(𝑐𝑖),𝑘)𝑚

𝑗=𝑡+1
𝑡
𝑗=1

|𝐴|
 (2) 

 

The Manhattan's distance is based on the sum absolute values errors and is less sensitive than the sum 

squares errors.  

 

2.2.  Improving teaching-learning optimization algorithm (ITLBO) 

The teaching-learning optimization (TLBO) algorithm was introduced by Rao. In 2011 [9] this 

algorithm is a popular and powerful optimization algorithm that is used in many engineering and real-world 

problems. The algorithm is inspired by the process of teaching and learning in a typical classroom.  

Although TLBO offers high-quality solutions in the shortest possible time and has consistent 

convergence [9], in the learning phase of this algorithm, each learner randomly selects another learner from 

the population. This problem leads to an imbalance between the two concepts of diversity and convergence. 

ITLBO solves this problem by improving the basic TLBO. In this algorithm, the teaching phase is the same 

as the basic TLBO algorithm, and the learning phase is described is being as. At this stage, all learners are 

randomly placed in a rectangular structure. Every learner have to learn from their neighbors. Here, in order to 

increase the diversity in the algorithm, after a certain number of iterations, the members are randomly 

rearranged in a rectangular structure. ITLBO has been developed to improve the TLBO algorithm. In TLBO, 

for example, random choices make low local search abilities, but in ITLBO, along with adding the concept of 

neighborhood, we try to reduce random choices and use the capabilities of neighbors. This increases the local 

and global search ability. The main sections of ITLBO are: 

 

2.2.1. ITLBO learning phase 

In this phase, each learner is known with an integer and placed in a rectangular array. Neighbors of 

each learner are clearly identified in Figure 1. At this step, learners may learn from neighbors or the best 

person in the class. This process is based on local search capability, in addition, a balance is established 

between local and global search. In a local search, each learner updates their position with the probability of a 

Pc by the best learner in their neighborhood or by the teacher, the global best, in the population. 

 

 

 
 

Figure 1. A class of learners arranged in a rectangle 

 

 

𝑋𝑖,𝑛𝑒𝑤 =  𝑋𝑖,𝑜𝑙𝑑 + 𝑟2. (𝑋𝑖,𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − 𝑋𝑖,𝑜𝑙𝑑) + 𝑟3. (𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − 𝑋𝑖,𝑜𝑙𝑑) (3) 

 

Where 𝑋𝑖,𝑡𝑒𝑎𝑐ℎ𝑒𝑟  is the teacher in the neighborhood of𝑋𝑖 and 𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟  is the teacher of the whole class, and 

𝑟2, 𝑟3 are random numbers in the range of (0, 1). If the new position of each member is improved, the new 

position will be accepted. In the global search, if the probability of Pc is not met, each learner selects a 

random learner like 𝑋𝑗 from the whole class to provide learning, if 𝑋𝑗 is better than 𝑋𝑖, or else, learning 

establish based on TLBO algorithm learning phase by (4), (5).  
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𝑋𝑛𝑒𝑤 =  𝑋𝑖 + 𝑟. ( 𝑋𝑗 − 𝑋𝑖) 𝑖𝑓 𝑓(𝑋𝑖) > 𝑓(𝑋𝑗) (4) 

 

𝑋𝑛𝑒𝑤 =  𝑋𝑖 + 𝑟. ( 𝑋𝑖 − 𝑋𝑗) 𝑖𝑓 𝑓(𝑋𝑖) < 𝑓(𝑋𝑗) (5) 

 

Therefore, using this operation, both local and global search capabilities are obtained. In this 

algorithm, we improve exploitation capability by this concept that for each person in the population there are 

a number of neighbors who learn from the best of them. To maintain diversity after a number of iterations, 

each person's neighboring members change. This makes balance between exploration and exploitation 

capabilities.  

 

2.3.  Investigate the range of variable changes 

In evolutionary algorithms, when a new position is obtained for each individual, it may lead to the 

production of variables that are outside the defined range. In this case, most researchers use from 

convergence approach based on algorithm 1, but this method is an old and obsolete method that causes the 

algorithm to trapping in the local minimum. To overcome these problems, we have proposed a new method 

in algorithm 2 to determine the range of variable changes, as shown in Figure 2. This algorithm prevents the 

algorithm from trapping in the local optimal and also prevent from making the best answers in high number 

of iteration.  

 

 

Algorithm 1. Basic bound constraints handling 
1. For j=1→dim 

2.  If 𝑋𝑖(𝑗) > 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑(𝑗) 
3.  𝑋𝑖(𝑗) = 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑(𝑗) 
4.  Else if 𝑋𝑖(𝑗) < 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑(𝑗) 

5.  𝑋𝑖(𝑗) = 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑(𝑗) 
6.  End if 

7. End for 

 

(a) 

 

 

Algorithm 2. Modified bound constraints handling 
1. For j=1→dim 

2.  If 𝑋𝑖(𝑗) < 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑(𝑗) 
3.  𝑋𝑖(𝑗)=(2* 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑(𝑗))–𝑋𝑖(𝑗) 
4.  Else if 𝑋𝑖(𝑗)>𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑(𝑗) 

5.  𝑋𝑖 (𝑗)=(2* 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑(𝑗))–𝑋𝑖(𝑗)  
6.  End if 

7. End for 

 

(b) 

 

Figure 2. The range of variable changes; (a) algorithm 1: basic bound constraints handling,  

(b) algorithm 2: modified bound constraints handling 

 

 

3. THE PROPOSED METHOD 

The basic TLBO algorithm, like other evolutionary algorithms, suffers from low convergence speed. 

In order to improve the performance of the algorithm we modified the learning phase of TLBO algorithm and 

then we presented ITLBO algorithm with balance between local and global search. And also, we used from a 

datamining technique called Mk-mean to make more efficient use of the hidden information in the search 

space to create a more suitable initial population. Clustering means placing data in each cluster that has the 

least distance and the most similarity. 

The importance of initial populations in evolutionary algorithms has long been debated. The initial 

population is the starting point of any algorithm, and algorithms that start at a proper starting point may have 

better results than others. In this article, we have tried to start of a stronger initial population by better 

analyzing the search space. The routine is to use from cluster centers of a large population as initial 

population instead of randomly select the limited initial population. We consider the best clustering centers as 

the initial population of our algorithm. The pseudocode of the proposed algorithm for more details is shown 

in Figure 3. 
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Algorithm 3. Proposed algorithm 

Clustering section: 

Input: Dataset D, Number of Clusters k, Dimensions d: 

{𝐶𝑖 is the ith cluster} 

{% Initialization Phase for Clustering algorithm} 

1: (𝐶1, 𝐶2, … , 𝐶𝑘)=Initial partition of D. 
{% Iteration Phase for Clustering algorithm} 

2: While (Iter < Max_Iter) 

3: 𝑑𝑖𝑗=distance between case i and cluster j; 

4: 𝑛𝑖= min (𝑑𝑖𝑗); 

5: Assign case i to cluster 𝑛𝑖; 
6: Re-compute the cluster means of any changed clusters above; 

7: End While 

Training section: 

8: Training algorithm population = Clustering Output results. 

{% Initialization Phase for Training algorithm} 

9: Objective function 𝑓(𝑋) 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑑)𝑡 d = number of design variables 

{% Iteration Phase for Training algorithm} 

10: While (Iter < Max_Iter) 

{%Teacher Phase} 

11: Calculate the mean of each design variable 𝑋𝑚𝑒𝑎𝑛  

12: Identify the best solution (𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)  

13: For i = 1→ pop size  

14: Calculate teaching factor 𝑇𝐹 using 𝑇𝐹 =  𝑟𝑜𝑢𝑛𝑑 [1 + 𝑟𝑎𝑛𝑑(0,1)]  
15: Modify solution based on best solution (teacher) using 𝑋𝑛𝑒𝑤 = 𝑋𝑖 + 𝑟. (𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − 𝑇𝐹 . 𝑋𝑚𝑒𝑎𝑛) 
16: Calculate objective function for new mapped student 𝑓(𝑋𝑛𝑒𝑤 ) 

17: If 𝑋𝑛𝑒𝑤 is better than 𝑋𝑖 

18: 𝑋𝑖 = 𝑋𝑛𝑒𝑤  

19: End If %End of Teacher Phase 

{% Learner Phase} 

20: finding neighbors for each learner 

21: If rand<P_c 

22: Update the solution using Eq. (3);  
23: Else 

24: Randomly select another learner𝑋𝑗, such that 𝑗  𝑖 

25: If 𝑋𝑖is better than 𝑋𝑗  

26: Update the solution using Eq. (5);  
27: Else 

28: Update the solution using Eq. (4);  
29: End If 

30: If 𝑋𝑛𝑒𝑤 is better than 𝑋𝑖 

31: 𝑋𝑖 = 𝑋𝑛𝑒𝑤   

32: End If  

33: End If 

29: End For 

30: End While 

 

Figure 3. Suggested method 

 

 

4. EXPERIMENTS 

4.1.  Defining classification problems and predicting time series 

In this section, we evaluate the effectiveness of the proposed method using ten classification 

problems and two time series prediction problems, and to prove the effectiveness of the proposed algorithm, 

its results are compared with other algorithms such as basic TLBO and ITLBO. In addition, the results of the 

improved training algorithm have been compared with the basic neural network training algorithms from 

other articles, and then in another step, the performance of the proposed method has been compared with 

other methods available in the research literature, the following experiments can be seen in detail. 

Classification problems include Iris, diabetes diagnosis, thyroid disease, breast cancer, credit card, glass, 

heart, wine, page blocks, and liver disorders. Time series prediction problems include Mackey-Glass [10] and 

gas furnaces [11]. The number of features in the classification problem, the number of classes and the total 

number of samples listed in Table 1. Classification problems are taken from the UCI machine learning 

repository [12]. The Mackey-Glass is a dataset that obtained from the (6), which is td=17. 

 
𝑑𝑥(𝑡)

𝑑𝑡
=  −𝑏𝑥(𝑡) +

𝑎𝑥(𝑡−𝑡𝑑)

1+𝑥10(𝑡−𝑡𝑑)
  (6) 
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For the Mackey-Glass dataset, we considered the x (t+6) output with the input variables x(t), x(t-6), 

x(t-12) and x(t-18). For gas furnace dataset, the input variables are u(t-3), u(t-2), u(t -1), y(t-3), y(t-2), y(t-1) 

and the output variable is y(t), as reported in previous works [13]. We implemented this algorithm by 

MATLAB. We used 30 runs to evaluate the performance of this model. The datasets were randomly divided 

into two sets: The training set and the test set for each run. 70% of the total data was used for the training set 

and the rest of the data was used as a test set to examine the model. Datasets are normalized to the interval  

[-1], [1] using the min-max normalization method. 
 
 

Table 1. Explain the datasets used for the proposed method 
Dataset Instances Features Classes 

1. Iris 

2. Diabetes 
3. Thyroid 

4. Cancer 

5. Card 

6. Glass 

7. Heart 

8. Wine 
9. Page-blocks 

10. Liver 

11. Mackey-Glass 
12. Gas Furnace 

150 

768 
7200 

699 

690 

214 

270 

178 
5473 

345 

1000 
296 

4 

8 
21 

10 

15 

10 

13 

13 
10 

6 

1 
2 

3 

2 
3 

2 

2 

6 

2 

3 
5 

2 

0 
0 

 

 

4.2.  The results of the comparison of the proposed methods 

The performance of the algorithms evaluated and compared based on two criteria, training, and 

testing errors that on the classification problems it means classification error percentage. The error function 

for Mackey-Glass dataset is root mean squared error (RMSE) and for gas furnace dataset is MSE. The 

average results after 30 runs for the algorithms are shown in Table 2. The results show the superiority of the 

proposed method. It can be seen that the MK-ITLBO algorithm performs better than other methods. We used 

the average ranking test to find the best algorithm. These results are found using the RANK function in 

Microsoft Excel, and the average rankings are shown in Table 3. The results show that MK-ITLBO ranks 

first in all cases for training errors and testing errors. 
 

 

Table 2. Average ranking for the proposed algorithms 
Training error TLBO ITLBO MK-ITLBO Algorithm 

2.7500 2.1667  1.0833  Rank 
Testing error TLBO ITLBO MK-ITLBO Algorithm 

2.9167 2.0000  1.0833  Rank 
 

 

Table 3. P-value results for pairwise comparing of MK-ITLBO versus other algorithms by Wilcoxon test 
TLBO ITLBO Criteria  Dataset  

1. Iris  

 

Training error 

Testing error 

2.0056e-03  

3.7446e-04  

5.2453e-05 

2.9940e-05 
2. Diabetes  

 

Training error 

Testing error 

2.9707e-05  

1.5884e-04  

2.5444e-08 

1.0405e-09 

3. Thyroid  
 

Training error 
Testing error 

2.9027e-11  
3.6205e-11 

9.5982e-10 
2.9082e-11 

4. Cancer  

 

Training error 

Testing error 

5.5569e-04  

3.0050e-07  

3.0671e-09 

2.6706e-11 
5. Card  

 

Training error 

Testing error 

1.3054e-05  

1.8508e-10  

7.8263e-08 

6.5277e-10 

6. Glass  
 

Training error 
Testing error 

2.1957e-02  
9.9797e-10  

6.3243e-08 
2.5432e-11 

7. Heart  Training error 3.7816e-05  4.6398e-06 

8. Wine Testing error  
Training error 

7.5102e-05  
3.3801e-01  

2.6689e-11 
3.3727e-02 

9. Page-blocks  

 

Testing error  

Training error 

2.4009e-08  

3.4339e-01  

2.5676e-11 

1.6744e-01 
10. Liver  

 

Testing error  

Training error 

9.9407e-01  

5.1138e-05  

2.9860e-11 

2.4198e-01 

11. MackeyGlass 
 

Testing error  
Training error 

5.2746e-02  
1.6743e-04  

1.3604e-11 
7.0507e-09 

12. Gas Furnace  

 

Testing error  

Training error 

Testing error  

3.3079e-02  

5.8282e-03 

1.5030e-02 

7.0507e-09 

4.3349e-07 

3.0199e-11 
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To evaluation whether the MK-ITLBO result was significantly better than other algorithms, we 

calculated the p-value test for all datasets with a significant level of 0.05 for datasets. From a statistical 

perspective p-value, the probability of rejecting the null hypothesis with the accuracy conditions is based on 

the observed data. The smaller the probability, the greater our confidence in the reality of the observed 

difference. The P-values calculated for MK-ITLBO compared to other algorithms are shown in Table 4. 

Table 5 compares our proposed MK-ITLBO algorithm and other approaches for classification problems.  

 

 

Table 4. Comparison of MK-ITLBO and other approaches for classification problems 
Dataset MK-ITLBO T-LogisticBatDN SA TS GA PSO GaTSa+BP 

Iris 0 5.2632 12.649 12.478 2.5641 4.6154 5.2564 
Diabetes 18.0698 3.1579 27.156 27.404 25.994 25.876 27.061 

Thyroid 5.0825 22.0164 7.3813 7.3406 7.2850 7.3322 7.1509 

Cancer 2.1643 5.2222 7.1729 7.2779 7.4220 6.2846 15.242 
Card 11.8428 6.9425 23.469 18.042 31.724 21.269 15.242 

Glass 20.0535 6.4423 58.381 56.412 58.031 57.777 55.142 

 

 

Table 5. Comparing the results of best algorithm with other methods in literature 
 Article number (approach) 

Dataset Criteria [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] Mk-

ITLBO 

Iris Tr_E 
(%) 

Te_E 

(%) 

- 
- 

- 
1.33 

1.79 
1.95 

- 
3.73 

1.53 
1.69 

- 
 

2.3 
2.2 

- 
2.67 

2.7 
4.87 

0.88 
4.37 

3.33 
- 

- 
4.61 

0 
0 

Diabetes Tr_E 

(%) 

Te_E 
(%) 

- 

21.66 

- 14.96 

16.63 

- 

23.09 

13.96 

15.63 

- 

 

21.6 

21.8 

- 

23.95 

- 

 

[26] 

- 

29.87 

 - 

25.87 

16.197 

18.0698  

Thyroid Tr_E 

(%) 
Te_E 

(%) 

- 

- 

3.18 5.27 

5.41 

- 

 

5.47 

5.11 

- 

 

- 

 

- 

 

- 

 

[26] 

- 
9.72 

- 

6.05 

- 

7.32 

5.0519 

5.0825 

Cancer Tr_E 
(%) 

Te_E 

(%) 

- 
2.59 

- 2.95 
3.02 

- 
3.13 

2.35 
2.45 

- 
5.34 

2.6 
2.3 

- 
2.36 

2.27 
2.39 

- 
 

- 
 

- 
 

1.6182 
2.1643 

Card Tr_E 

(%) 

Te_E 
(%) 

- - 12.90 

13.14 

- 

 

12.57 

12.58 

- 

 

- 

 

- 

 

- 

 

[26] 

- 

5.56 

- 

7.97 

- 

 

11.5556 

11.8428 

Wine Tr_E 

(%) 
Te_E 

(%) 

- 

0.48 

- 

5.27 

- - 

2.81 

- - 

3.95 

1.6 

0.3 

- 

1.11 

1.55 

6.3 

[24] 

3.92 
4.66 

- 

2.81 

- 0.54201 

 3.0424 

Heart Tr_E 
(%) 

Te_E 

(%) 

- 
13.56 

- 
15.55 

- - 
40.88 

- - - 
16.6 

- - - - 
15.74 

- 10.4233 
12.5255 

Liver Tr_E 

(%) 

Te_E 
(%) 

- 

27.98 

- - - - - - 24.28 - - 20.87 - 20.7451 

22.9231 

page-

blocks 

Tr_E 

(%) 
Te_E 

(%) 

- - - - - - 

3.92 

- - - [26] 

- 
5.56 

- - 5.8544 

6.3727 

Glass Tr_E 
(%) 

Te_E 

(%) 

- 
31.23 

- 33.05 
34.09 

38.94 
- 

26.05 
28.09 

- 
26.5 

- 
- 

- 
25.6 

- 
 

- - 
26.17 

- 
- 

16.2387 
20.0535 

Mackey-

Glass 

Tr_E 

(%) 

Te_E 
(%) 

- [27] 

5.5E-

04 
4.7E-

04 

1.6E-

05 

1.7E-
05 

- 0.001 

0.001 

- - - - - - - 

0.68 

2.1514e-

4 

2.4224e-
4 

Gas 
Furnace 

Tr_E 
(%) 

Te_E 

(%) 

- [27] 
0.003 

0.004 

0.26 
0.28 

- 0.18 
0.19 

- - - - - - - 6.1936e-
4 

7.9393e-

4 
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This table shows the results of our proposed method with some datasets that have been selected as a 

sample. The results represent that the proposed method is superior to other basic neural network training 

algorithms. 

 

4.3. The results compare the proposed combined method with other methods available in the literature 

In this section, we compare the top algorithm among the proposed hybrid algorithms with other 

methods available in the literature and make all comparisons with the dataset sets introduced in this paper. 

Table 5 compares the MK_ITLBO method with the approaches introduced above. Fields with a symbol-

indicate that the proposed approach did not work on that dataset or that the results are not available. In this 

table Tr_E (%) means training error percentage and Te_E (%) means testing error percentage. 

 

 

5. CONCLUSION 

This article presented an improved teaching-learning based optimization algorithm for neural 

network training. We used two methods to improve the performance of the basic algorithm. First, to make a 

more effective search space for the initial population of the algorithm, instead of randomly selecting the 

population we used result of clustering with the modified k-mean algorithm, and second, we have improved 

the teaching-learning optimization algorithm to create a balance between exploitation and exploration. We 

have applied our method to classification and time series prediction problems. The results in section 4 show 

the superior performance of the proposed algorithm, as mentioned, this version has a powerful training 

algorithm against premature convergence that also balances exploitation and exploration. In addition, it is 

combined with the Mk-mean algorithm, which examines the search space more effectively. We also 

confirmed these results with statistical tests, and then compared this algorithm with other methods of 

literature, and based on different evaluations it was concluded that this algorithm has a better ability than 

other algorithms regarding classification and time series prediction errors. The results motivate us to find 

approach to change our method to the future works. This development could be in the use of chaotic mapping 

in the method. 
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