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 Population-based approaches regularly are better than single based (local 

search) approaches in exploring the search space. However, the drawback of 

population-based approaches is in exploiting the search space. Several hybrid 

approaches have proven their efficiency through different domains of 

optimization problems by incorporating and integrating the strength of 

population and local search approaches. Meanwhile, hybrid methods have  

a drawback of increasing the parameter tuning. Recently, population-based 

local search was proposed for a university course-timetabling problem with 

fewer parameters than existing approaches, the proposed approach proves its 

effectiveness. The proposed approach employs two operators to intensify and 

diversify the search space. The first operator is applied to a single solution, 

while the second is applied for all solutions. This paper aims to investigate 

the performance of population-based local search for the nurse rostering 

problem. The INRC2010 database with a dataset composed of 69 instances is 

used to test the performance of PB-LS. A comparison was made between  

the performance of PB-LS and other existing approaches in the literature. 

Results show good performances of proposed approach compared to other 

approaches, where population-based local search provided best results in  

55 cases over 69 instances used in experiments. 
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1. INTRODUCTION  

Nurse rostering problem (NRP) involves assigning a set of nurses to different shifts subject to  

a variety of constraints until a complete roster is constructed [1, 2]. Constraints in the NRP problem can be 

categorized as hard and soft [3-5]. The main goal, when allocating nurses to various shifts is to fulfill  

the hard constrains (i.e. feasible rosters) and try to minimize the soft constraints as much as possible with 

https://creativecommons.org/licenses/by-sa/4.0/
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penalization (in order to produce a high-quality nurses shifts). The smaller value indicates a better quality of 

nurse rostering shifting. NRP is an NP-hard problem due to the difficulty of finding optimal shifts [3, 4]. 

However, finding a rostering with a good nurse quality relies on the approach used during the search [3-5]. 

Recently, several methods have been applied to solve NRP [6-18]. Jaradat et al. [6] proposed  

the hybrid elitist-ant system algorithm. The proposed algorithm aims to increase the diversity of the search 

space in the elitist-ant system algorithm by integrating it with external memory.  

Rajeswari et al. [7] used a modified nelder-mead method in the bee colony optimization algorithm 

for multi-objective mathematical programming. The methodology is a combination of specific local search, 

honeybee decision making, and multi-agent particle environment system. Awadallah et al. [8] proposed  

a hybrid-harmony search algorithm with hill climbing for increasing the exploitation mechanism. The authors 

modified the memory to accelerate the convergence rate by using the global swarm optimization concept. 

Santos et al. [9] used integer-programming techniques of the compact and monolithic formulation.  

The proposed technique is distributed into two pools, the first one improves the dual bounds for rapid 

solution production to lower the optimal solution, while the second is used to speed-up the production  

near-optimal. Awadallah et al. [10] replaced the bee operator in the artificial bee colony algorithm by  

the hill-climbing optimizer to propose a hybridization that exploits the search space for good solution quality. 

Burke and Curtois [11], proposed new approaches for branch and price algorithm and an ejection chain, 

where they integrated both algorithms by using the dynamic programming method. Lü and Hao [5] proposed 

an adaptive neighborhood search by using two different neighborhood moves and adaptively alterations 

between three intensification and diversification search strategies referring to the search history.  

Bilgin et al. [12] presented a general hyper-heuristic approach that can work into two different timetabling 

healthcare problems (i.e. patient admission and nurse rostering) and provided a set of a low-level heuristic for 

each problem. Valouxis et al. [13] proposed a strategy based on phases to produce a good quality solution. 

The first phase deals with each nurse and each day of the week and the second deals with a specific allocated 

daily shift. Nonobe [14] used metaheuristic based on the constraint-optimization problem to find suitable 

values to variables that have constraint violations’ weight. The author adopted the tabu search to improve  

the performance of controlling dynamically the tabu tenure. He used constrain weights to examine solutions 

during the neighborhood search. 

Most of these approaches are hybridization between population-based and local-based approaches. 

In general, the main advantage of population-based approaches is their ability to explore the research space, 

whereas local-search approaches are more adapted to exploit the research space [19-35]. Therefore, 

combining the population-based and local-search approaches will help taking advantage of these two 

approaches and produces a good approach for solving NRP. However, combining these two approaches 

involves considering an increasing number of parameters. This constitutes a new challenge for most 

hybridization approaches. Hence, most researches move toward proposing other approaches with fewer 

parameters’ tuning for NRP. The main contribution of this paper is to use population-based local search  

(PB-LS) [36], which is applied in another optimization problem (i.e. Course timetabling) to the nurse 

rostering problem. PB-LS has proved its efficiency with fewer parameters; hence, it can be applied to  

the NRP, which has different neighborhood structures. 

Our work aims to study the performance of PB-LS over the nurse rostering problem. The proposed 

approach will help to obtain a good quality solution for nurse rostering shifting. In order to evaluate  

the efficiency of PB-LS, we compare the performance of PB-LS with other approaches applied to NRP in  

the literature. Sixty-nine datasets were used and results indicate that PB-LS can produce good results. 

Following the introduction, the paper is structured as follows. Section 2 presents a description of  

the dataset used in this paper. Section 3 details the proposed methodology. Section 4 presents the results 

obtained by applying PB-LS to the considered dataset and discuss its findings. Finally, Section 5 concludes 

the paper and discusses perspectives for the proposed work. 

 

 

2. DATASET DESCRIPTION 

A 69 standard NRP benchmark datasets are used to test the performance of the proposed method. 

Datasets were obtained from PATAT 2010, international nurse rostering completion (INRC2010, 

https://www.kuleuven-kulak.be/nrpcompetition/instances) [37] and another version introduced in [38]. 

NRC2010 datasets are classified into four groups, toy; sprint; medium and long instances. Toy instances are 

provided for testing purposes, where the other three sprint; medium and long instances are provided for 

competition purpose, and used by researchers to evaluate their approaches.  

Each dataset of the three competition datasets contains three groups of instances, the early, late,  

and hidden instance groups. Later on, an update with extra group added to them named as hint group. Table 1 

summarizes the datasets that are used in this paper.  

https://www.kuleuven-kulak.be/nrpcompetition/instances
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Table 1. INRC2010 datasets summarization 
Instances Early instances Hidden instances Hint instances Late instances 

Sprint run 10 10 3 10 

Medium run 5 5 3 5 

Long run 5 5 3 5 

 

 

3. METHODOLOGY 

In this paper, a population-based local search approach (PB-LS) is proposed [36] for nurse rostering 

problems (NRP). PB-LS is assembled of gravitational emulation local search (GELS), based on the natural 

principle of gravitational attraction [39]. PB-LS is proposed to overcome some of the population based 

approaches limitations such as [36]: 

- Using a population of solutions in local search to increase the capability of the intensification process 

and to overcome the weakness of the intensification process, which leads to non-significant 

improvements. 

- Using Memory Guide with elite solutions for useful information (in descending order) to overcome  

the limitation of the approaches that did not employ memory guidance for the search. In addition,  

this allows overcoming the dependency on randomization that requires a repair mechanism to be 

efficient in constrained problems and overcoming the issue of randomly updating the population. 

- Less parameterized and systemically updating the population. 

PB-LS proves its efficiency over an NP-hard optimization problem of university course timetabling 

problem [36]. This motivated us to use this method for NRP by using different neighborhood structures.  

PB-LS starts with an initial population and tries to minimize soft constraints iteratively by exploring their 

neighbor solutions. These solutions are obtained by using one or more neighborhood structures over  

the current solution. For more details about the constraints Hint, Hard and Soft presented in the INRC2010 

datasets and their mathematical formulations, readers can refer to [5]. As in [6], four groups of neighborhood 

structures are used: 

- Single shift per day neighborhood structure associated with hard constraint. 

- Weekend, personal request, alternative qualifications, overtime, and under time are the most violated 

constraints associated with soft constraints. 

- Shuffle, greedy shuffle, core shuffle to swap large sections of personal schedules. 

- Shake a shift, weekend, and two people for solution shaking. 
PB-LS calculates the gravitational force value (F, assuming minimization problem) by calculating 

the difference between two objects; the trial solutions objective function values (i.e. Ts) and the current 

solution objective function value (i.e. Cs) as presented in (1). 

 

F= Cs - Ts (1) 

 

Figure 1 shows the pseudo-code for the PB-LS approach for NRP. Below the description of some 

terms that are used in Figure 1. 

- Initial solution: Si; and the quality of Si denoted by f(Si)  

- Best obtained solution: Sb and the quality of Si denoted by f(Sb) 

- The maximum number of iterations denoted by N.max 

- Number of iterations to reset the solution directions to update denoted by R.iter 

- Force value for gravity denoted by force  

- Nth velocity vector memory to provide direction value denoted by VVn 

- Number of shaking neighborhood denoted by Nsn 

The PB-LS algorithm starts with a zero direction value (i.e. zero velocity) that initializes the search, 

and then this value is updated throughout the search process. For better shifting, the search space is 

administered by the force value (using (1)), and then the search space is intensified using any local  

search algorithm. PB-LS uses the MPCA-ARDA algorithm [36] as a local search due to its ability of  

complementary exploration and exploitation. MPCA-ARDA is proposed in [40] as hybridization between 

multi-neighborhood particle collision algorithm and adaptive randomized descent algorithm. 

In step 1 (i.e. Initialization phase), we initialize all the required parameters mentioned in Table 2. 

Then, the initial solution for the memory of the velocity vector vv is generated by applying shaking 

neighborhoods. Initially, solutions (vv1,…, vvN) are produced based on the number of neighborhoods and 

their directions are set to zero in the vv memory. 
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Figure 1. Pseudocode for PB-LS approach [36] over nurse rostering problem 

 

 

Table 2. Parameters used in PB-LS for NRP 
Parameter Value 

N.max  Termination Criteria (maximum iterations) equal to 100,000 

R.iter Iterations number to reset or to retune the directions equal to10 

Nsn Shaking neighborhood structures 

Local Search MPCA-ARDA (iterations number equal to10) 

 

 

In step 2 (i.e. Improvement phase), vv memory is reordered in decreasing order based on their 

direction values. The solutions are compared based on their direction values, and the solution with the highest 

direction value is selected for further improvement prior to other solutions in vv. 

a. In step 2.1, if all direction values are different, we select the highest solution direction value and set 

Si=vv1, then MPCA-ARDA is applied to generate Si
* until the stopping criteria are met. MPCA-ARDA 

uses different shaking neighborhood. Later, the force value is calculated using (1) (i.e. Cs = Si and Ts=Si
*

) 

and is added (negative or positive) to the stored direction value of vv1. The best solution (i.e. Sb) is 

updated with Si
* in case of f(Si

*) (i.e. the quality of Si
*) is better than f(Sb) (i.e. the quality of Sb).  

If the quality of Si
* is better than Si, we replace vv1 with Si

*. Otherwise, the unimproved counter is 

increased (UnImprove1) by one for the selected solution. In case UnImprove1 is equal to pre-set 

unimproved iterations (i.e. R.iter), the direction of vvn is returned to zero and vv1 solution is changed with 

the best neighbor solution generated from Sb random neighbors (i.e. Sb*) by shaking the neighborhoods. 

This practicability tries to escape from local optima and attempts to expand the search space. 

b. In step 2.2, if the direction values are similar for all vv solutions, step 2.1.a is executed to distinguish  

the solutions of similar direction values. This tries to preserve a set of diverse solutions. 

 

 

4. RESULTS 

The proposed approach is experimented for 25 runs (as suggested in [6]) through 69 instances that 

were announced in INRC2010 (https://www.kuleuven-kulak.be/nrpcompetition/instances) for 100,000 
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iterations. The machine used is an Intel Core i5 3.2 GHz processor, 8 GB RAM, and the code implemented 

using java language over NetBeans IDE v 8.2. As stated in INRC2010, the instances require a solution within 

approximately 10 seconds for the sprint instances, 10 minutes for the medium instances, and 10 hours for  

the long instances.  

However, different factors affect the performance of the machine such as memory, clock speed and 

the operating system. Therefore, the results of the runs are obtained at different times. As depicted in [5], 

simulations in our approach are performed under relaxing timeout conditions, and we employ 1000 seconds 

for the sprint instances, 5000 seconds for the medium instances and 20 hours for the long instances.  

As shown in Table 2, PB-LS employs four parameters: 

a. The termination criteria (N.max), which is presented in [6] and takes into consideration the relax 

timeout condition. 

b. Iteration number to reset (or retune) the directions (R.iter), which is presented in [2]. 

c. Shaking- neighborhood structures (Nsn), which is presented in [6];  

d. Iteration number for the local search (in this case, MPCA-ARDA used as a local search with 10 

iterations), which is presented in [36].  

In order to evaluate the performance of PB-LS, a comparison is made between PB-LS performance 

and results of similar methods based on their published works. Table 3 shows a comparison based on sprint 

instances, Table 4 shows a comparison based on medium instances and Table 5 shows a comparison based on 

long instances. 

In Tables 3-5, the best result obtained by PB-LS (denoted as Best) and the rank of PB-LS (dented as 

Rank) are illustrated and compared to the other approaches. The best results so far are depicted by bold color. 

Meanwhile, in Tables 3-5, the empty cells with a symbol (-) denote that the algorithm is not applied to the 

corresponding instance, for example, R4, R6, R7, R9 and R10 did not apply their algorithms to the 9 hint 

instances, and R6, R8 and R10 did not apply their algorithms to the 20 hidden instances. 

 

 

Table 3. Comparison between PB-LS and similar methods in the literature using sprint instances 
Dataset PB-LS R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 

Rank Best 

sprint_early_01 8 57 57 56 58 56 56 56 56 57 56 56 

sprint_early_02 Same 58 59 59 64 58 58 58 58 59 58 58 

sprint_early_03 Same 51 51 51 59 51 51 51 51 51 51 51 

sprint_early_04 Same 59 59 59 67 59 59 59 59 60 59 59 

sprint_early_05 Same 58 58 58 63 58 58 58 58 58 58 58 

sprint_early_06 2 54 54 53 58 54 54 54 54 54 54 54 

sprint_early_07 Same 56 56 56 61 56 56 56 56 56 56 56 

sprint_early_08 Same 56 56 56 58 56 56 56 56 56 56 56 

sprint_early_09 Same 55 55 55 61 55 55 55 55 55 55 55 

sprint_early_10 Same 52 52 52 58 52 52 52 52 52 52 52 

sprint_hidden_01 Same 32 32 32 46 32 32 - 32 - 33 - 

sprint_hidden_02 Same 32 32 32 44 32 32 - 32 - 32 - 

sprint_hidden_03 Same 62 62 62 78 62 62 - 62 - 62 - 

sprint_hidden_04 Same 66 66 66 78 66 66 - 66 - 67 - 

sprint_hidden_05 Same 59 59 59 69 59 59 - 59 - 59 - 

sprint_hidden_06 Same 130 130 134 169 130 130 - 130 - 134 - 

sprint_hidden_07 Same 153 153 153 187 153 153 - 153 - 153 - 

sprint_hidden_08 Same 204 204 204 240 204 204 - 204 - 209 - 

sprint_hidden_09 Same 338 338 338 372 338 338 - 338 - 338 - 

sprint_hidden_10 Same 306 306 306 322 306 306 - 306 - 306 - 

sprint_hint_01 2 75 78 73 90 - 75 - - 78 - - 

sprint_hint_02 2 46 47 43 56 - 46 - - 47 - - 

sprint_hint_03 2 50 50 49 69 - 50 - - 57 - - 

sprint_late_01 Same 37 37 37 52 37 37 37 37 40 37 37 

sprint_late_02 2 42 42 41 56 42 42 42 42 44 42 42 

sprint_late_03 2 48 48 45 60 48 48 48 48 50 48 48 

sprint_late_04 2 73 73 71 95 73 73 75 73 81 75 76 

sprint_late_05 Same 44 44 46 57 44 44 44 44 45 44 45 

sprint_late_06 Same 42 42 42 52 42 42 42 42 42 42 42 

sprint_late_07 Same 42 42 44 55 42 44 42 42 46 42 43 

sprint_late_08 Same 17 17 17 19 17 17 17 17 17 17 17 

sprint_late_09 Same 17 17 17 17 17 17 17 17 17 17 17 

sprint_late_10 Same 43 43 43 54 43 43 43 43 46 43 44 

Note: R1: Hybrid Elitist-Ant System [6], R2: Directed Bee Colony Optimization Algorithm [7], R3: Hybridization of harmony search 

with hill-climbing [8], R4: Integer programming techniques [9], R5: A hybrid artificial bee colony [10], R6: New approach for branch 

and price algorithm and an ejection chain [11], R7: Adaptive neighborhood search [5], R8: Hyper-heuristic approach [12],  

R9: A systematic two-phase approach [13] and R10: A general constraint optimization [14]. 
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Table 4. Comparison between PB-LS and similar methods in the literature using medium instances 
Dataset PB-LS R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 

Rank Best 

medium_early_01 Same 240 241 245 280 240 245 244 240 242 240 241 

medium_early_02 Same 240 241 243 281 240 245 241 240 241 240 240 

medium_early_03 Same 236 236 239 287 236 242 238 236 238 236 236 

medium_early_04 Same 237 237 245 278 237 240 240 237 238 237 239 

medium_early_05 Same 303 303 310 330 303 308 308 303 304 303 304 

medium_hidden_01 Same 111 111 143 410 111 155 - 117 - 130 - 

medium_hidden_02 Same 220 220 230 412 221 254 - 220 - 221 - 

medium_hidden_03 Same 34 34 53 182 34 54 - 35 - 36 - 

medium_hidden_04 Same 78 78 85 168 78 94 - 79 - 81 - 

medium_hidden_05 Same 119 119 182 520 119 177 - 119 - 122 - 

medium_hint_01 2 42 42 42 64 - 48 - - 40 - - 

medium_hint_02 Same 91 91 91 133 - 94 - - 91 - - 

medium_hint_03 2 140 140 135 187 - 140 - - 144 - - 

medium_late_01 2 161 161 176 234 157 174 187 164 163 158 176 

medium_late_02 Same 18 18 30 49 18 31 22 20 21 18 19 

medium_late_03 Same 29 29 35 59 29 38 46 30 32 29 30 

medium_late_04 Same 35 35 42 71 35 48 49 36 38 35 37 

medium_late_05 Same 107 107 129 272 107 137 161 117 122 107 125 

 

 

Table 5. Comparison between PB-LS and similar methods in the literature using long instances 
Dataset PB-LS R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 

Rank Best 

long_early_01 2 197 198 194 339 197 197 198 197 197 197 197 

long_early_02 Same 219 220 228 399 219 229 223 222 220 219 219 

long_early_03 Same 240 240 240 349 240 240 242 240 240 240 240 

long_early_04 Same 303 303 303 411 303 303 305 303 303 303 303 

long_early_05 Same 284 284 284 383 284 284 286 284 284 284 284 

long_hidden_01 Same 346 346 389 4466 346 400 - 346 - 363 - 

long_hidden_02 Same 89 89 108 1071 89 117 - 89 - 90 - 

long_hidden_03 Same 38 38 48 163 38 51 - 38 - 38 - 

long_hidden_04 Same 22 22 27 113 22 29 - 22 - 22 - 

long_hidden_05 Same 41 41 55 139 41 56 - 45 - 41 - 

long_hint_01 2 40 40 40 126 - 42 - - 33 - - 

long_hint_02 2 28 28 29 122 - 30 - - 17 - - 

long_hint_03 Same 55 55 79 278 - 83 - - 55 - - 

long_late_01 Same 235 235 249 588 235 257 286 237 241 235 235 

long_late_02 Same 229 229 261 577 229 263 290 229 245 229 229 

long_late_03 Same 220 220 259 567 220 262 290 222 233 220 220 

long_late_04 Same 221 221 257 604 222 261 280 227 246 221 221 

long_late_05 Same 83 83 92 329 83 102 110 83 87 83 83 

 

 

As shown in Tables 3-5, results indicate that PB-LS produces very good quality solutions.  

The proposed approach reaches 55 optimal solutions out of 69 instances. While in other instances PB-LS 

obtained the second rank except in one instance (i.e. sprint_early_01).  

Despite that PB-LS has obtained second place in some instances, it outperformed the same 

approaches in other different instances. For example, PB-LS obtained the eighth rank in sprint_early_01 and 

outperformed R2, R4, R5, R6, R7, R9 and R10. In addition, PB-LS outperformed R2 in sprint_early_02,  

R4 in medium_hidden_02, R5 in sprint_late_07, R6 in medium_early_01, R7 in medium_hidden_01, R9 in 

sprint_hidden_01, R10 in sprint_late_05. Moreover, PB-LS outperformed R1 in sprint_early_02, R3 in 

sprint_early_02, and R8 in sprint_early_02. Results indicate that PB-LS outperformed all approaches in some 

instances and obtained similar performances to other approaches in some cases. This confirms that PB-LS 

can be considered as a good approach for NRP. To better evaluate the performance of the proposed approach, 

Figure 2 depicts a comparison between PB-LS and other approaches refereeing to the number of best results 

(optimal solutions) obtained over the 69 instances. 

Figure 2 shows the number of best results obtained over 69 datasets for the proposed approach and 

the considered existing works. The proposed approach obtained 55 best optimal solutions over 69 instances. 

R4 comes in the second rank with 52 best optimal solutions. R3 comes in the last rank with only one  

optimal solution. 

Figure 3 depicts further analysis by comparing similar, worse and better results of the proposed 

approach over the 69 instances to the other considered approaches. In the legend, the blue color denotes that 

the proposed approach has the same number of better results than the existing approach. The orange color 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

A novel population-based local search for nurse rostering problem (Anmar Abuhamdah) 

477 

represents the number of times that the proposed approach has the best results. The gray color represents  

the number of times that the existing approach has the best results. For example, the proposed approach and 

R1 obtained 62 similar number of best solutions. However, the proposed approach outperformed R1 in  

7 cases. In addition, in all cases, PB-LS obtained several better results greater than the other existing 

approaches (orange bar against gray bar). Table 6 summarizes experimental results achieved by PB-LS over 

sprint instances, Table 7 for the medium instances, and Table 8 for the long instances. 

 

 

 
 

Figure 2. Comparison of the number of best results obtained over the 69 instances 

 

 

 
 

Figure 3. The number of similar, worse and better results compared to the proposed approach 

 

 

Table 6. Experimental results for our approach on INRC2010 over sprint instances 
Dataset Best avg σ Time 

sprint_early_01 57 58.7 1.8 4* 

sprint_early_02 58 58.6 1.0 3* 

sprint_early_03 51 51.8 0.7 7* 

sprint_early_04 59 60.1 0.8 4* 

sprint_early_05 58 58.2 0.4 6* 

sprint_early_06 54 54.2 0.4 3* 

sprint_early_07 56 56.6 0.5 3* 

sprint_early_08 56 56.4 0.4 4* 

sprint_early_09 55 55.5 0.7 4* 

sprint_early_10 52 52.5 0.4 6* 

sprint_hidden_01 32 33.9 1.2 68 

sprint_hidden_02 32 33.5 1.1 86 

sprint_hidden_03 62 63.5 1.9 6* 

sprint_hidden_04 66 67.2 0.7 24 

sprint_hidden_05 59 59.6 0.6 8* 

sprint_hidden_06 130 133.4 2.4 48 

sprint_hidden_07 153 156.1 3.7 5* 

sprint_hidden_08 204 205.8 1.6 71 

sprint_hidden_09 338 340.2 2.8 34 

sprint_hidden_10 306 306.6 1.9 7* 

sprint_hint_01 75 77.2 5.4 44 

sprint_hint_02 46 49.2 2.9 26 

sprint_hint_03 50 54.7 6.7 35 

sprint_late_01 37 38.3 1.1 23 

sprint_late_02 42 43.7 1.5 18 

sprint_late_03 48 50.2 0.9 8* 

sprint_late_04 73 76.6 2.4 28 

sprint_late_05 44 45.1 0.8 6* 

sprint_late_06 42 42.5 0.6 9* 

sprint_late_07 42 43.9 0.9 8* 

sprint_late_08 17 17 0 5* 

sprint_late_09 17 17 0 4* 

sprint_late_10 43 45.2 1.2 10* 
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Table 7. Experimental results for our approach on INRC2010 over medium instances 
Dataset Best avg σ Time 

medium_early_01 240 241.6 1.7 957 

medium_early_02 240 241.5 1.1 567* 

medium_early_03 236 238.6 1.2 921 

medium_early_04 237 238.7 1.4 249* 

medium_early_05 303 305.3 1.8 353* 

medium_hidden_01 111 120.8 3.8 2153 

medium_hidden_02 220 233.7 8.2 4370 

medium_hidden_03 34 35.9 1.9 705 

medium_hidden_04 78 82.4 2.5 2081 

medium_hidden_05 119 129.3 5.4 4429 

medium_hint_01 42 51.8 4.6 1505 

medium_hint_02 91 105.3 7.6 2453 

medium_hint_03 140 151.1 8.7 2691 

medium_late_01 161 172.6 6.3 3553 

medium_late_02 18 21.8 2.3 2417 

medium_late_03 29 32.9 2.2 583* 

medium_late_04 35 36.8 0.7 1108 

medium_late_05 107 116.7 6.8 4230 

 

 

Table 8. Experimental results for our approach on INRC2010 over long instances 
Dataset Best avg σ Time 

long_early_01 197 201.4 3.7 11114* 

long_early_02 219 231.3 6.3 12021* 

long_early_03 240 240 0 3041* 

long_early_04 303 304.9 0.7 5112* 

long_early_05 284 285.6 1.2 8392* 

long_hidden_01 346 355.9 5.4 21297* 

long_hidden_02 89 91.6 2.8 18844* 

long_hidden_03 38 40.1 1.2 14947* 

long_hidden_04 22 24.9 1.5 24663* 

long_hidden_05 41 45.2 2.7 26690* 

long_hint_01 40 42.8 1.8 15060* 

long_hint_02 28 30.2 1.1 14251* 

long_hint_03 55 57.5 1.5 31694* 

long_late_01 235 239.2 2.7 24811* 

long_late_02 229 230.8 1.2 16966* 

long_late_03 220 222.1 1.0 24035* 

long_late_04 221 224.3 2.4 15406* 

long_late_05 83 84.9 0.7 20434* 

 

 

In Tables 6-8, the best result obtained over 25 runs is denoted by Best, the average result is denoted 

by avg, the standard deviation is denoted by σ, and the computational time of the best result is denoted by 

Time (where * is the time limit in INRC2010). For example, in Table 6, the PB-LS achieves  

a value of 57 as the best result (over 25 runs) for sprint_early_01 instance in 4 seconds, with an average of 

58.7 and a standard deviation of 1.8. Tables 6, 7, and 8 illustrate that PB-LS obtains 43 out of 69 instances 

within the time limit (which marked as *) of INRC2010. 

Results in Tables 3-5, and analysis in Figure 2 and Figure 3 confirm that the proposed approach can 

produce good quality solutions for the NRP compared to other existing approaches in the literature.  

In addition, results in Tables 6-8 show that the proposed approach runs in a good manner for all instances 

with instances of diversity. As a perpective to this work will be to apply the proposed approach in the context 

of remote sensing big data [41-44], to explore the context of case-based reasoning using ‘hyper-heuristic’ 

[45, 46], and to evaluate the effect of uncertainty in the process of search for nurse rostering problem [47-49].  

 

 

5. CONCLUSION  

In this paper, we proposed a population-based local search approach (PB-LS) for the nurse rostering 

problem. The population-based is motivated by a gravitational emulation local search algorithm to intensify 

the search space and by an MPCA-ARDA to diversify the search. A comparison is made between  

the performance of the proposed approach and performances of other exiting approaches in the literature over 

69 datasets. In this paper, ten existing approaches are considered for comparison. Results indicate that  

the proposed approach produces a good quality solution compared to the existing approaches.  
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Our approach obtained 55 optimal solutions over 69 cases, and it is ranked first while comparing it 

to other approaches according to the number of optimal solutions. Additionally, results indicate that  

the proposed approach outperformed all the existing approaches while comparing the number of better 

solutions to the number of worse solutions. These results confirm the good performance of the proposed 

approach for solving the problem of nurse rostering. 

As future work, we propose to use more case studies to test the performance of the proposed 

approach and to apply it in context of remote sensing big data. Additionally, in this paper, we use a single 

heuristic approach with different neighborhoods over a population of solutions; which is chosen based on 

gravity formula. Another challenging topic to be explored is the study of the case-based reasoning method to 

allow using of ‘hyper-heuristic’. This will help to determine the better heuristic for a given population, and 

hence avoiding solving problems from scratch. 
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