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The energy transition from fossil-fuel generators to renewable energies represents a
paramount challenge. This is mainly due to the uncertainty and unpredictability asso-
ciated with renewable resources. A greater flexibility is requested for power system op-
eration to fulfill demand requirements considering security and economic restrictions.
In particular, the use of gas-fired generators has increased to enhance system flexibility
in response to the integration of renewable energy sources. This paper provides a com-
prehensive formulation for modeling a natural gas supply network to provide gas for
thermal generators, considering the use of wind power sources for the operation of the
electrical system over a 24-hour period. The results indicate the requirements of gas
with different wind power level of integration. The model is evaluated on a network of
20 NG nodes and on a 24-bus IEEE RTS system with various operative settings during
a 24-hour period.
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1. INTRODUCTION

Two crucial sectors for life nowadays are natural gas (NG) and electricity. Although these sectors
followed different paths throughout the majority of the 20th century, in the last 25 years they have progressively
converged. The usage of NG for electricity generation through gas-fired generation plants has enhanced the
interdependence among gas and electric power sources [1]. Consequently, the gas and power systems have
become intertwined, leading to new challenges due to the complexity involved in the issues that each poses to
the other [2].

In terms of gas-fired power plants, limitations due to both gas supply contracts and access to the gas
network are unknown, generating effects and externalities in their operation. From the gas system perspective,
the demand for natural gas from residential and industrial areas is more predictable and less volatile, compared
to the natural gas consumption for electricity generation. For these reasons, the gas system interconnected
to the electrical system requires greater flexibility. Nevertheless, flexibility is expensive because it requires
additional extraction and transmission capacities to provide the necessary operational margin [3].

Moreover, reducing greenhouse gas emissions is imperative for climate change mitigation, leading
to increased investments in reducing conventional fossil fuel-based power generation [4]-[6]. Therefore, a
massive effort has been made worldwide to integrate renewable energy technologies [7]. This implementation
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has largely been done through photovoltaic and wind systems [8]. Despite this, the use of these resources
can influence the electric power system operation due to certain characteristics of these resources such as
uncertainty and variability [9]. Generating new requirements for dealing with disruptions, i.e. challenges in
stability [10]. Therefore, energy systems require strategies to improve their flexibility and stability, and thus
achieve the integration of these intermittent resources and meeting the requirements of the demand [11], [12].

One of the technologies currently used, to balance intermittency and increase system flexibility, is gas-
fired thermal generators [13]. This is because they have technical requirements, such as shorter on/off times,
greater up and down ramps, lower emissions and higher financial performance in comparison with traditional
coal-fired power plants [14]. Despite this, the flexibility they can bring to the system is limited and requires
greater flexibility of the gas system [3].

Consequently, this paper provides a comprehensive formulation for modeling a NG supply network to
provide gas for thermal generators, considering the use of wind power sources for the operation of the electrical
system over a 24-hour period. Integrated NG and electricity system’s target functionality is to minimize the
overall cost of the system, taking into account power generation costs, gas costs and losses in both systems.
The resulting formulation provides optimum results regarding all generators, gas consumption requirements
and technical requirements of the gas-fired generators, all under various operating states and scenarios.

This paper is structured in these sections: Section 2 presents the problem description and formulation.
In section 3, the electrical and gas systems and their parameters are outlined. Then, using the described systems,
the formulation is tested. The results are analyzed and discussed at the end of this section. Some concluding
remarks on this topic are given in section 4.

Electric power systems and gas systems have been extensively studied from different points of view.
The first have been analyzed, through the optimal energy flow for the dispatch of the generation resources [15]-
[17]. As a result, the formulation of the multi-period DC optimal power flow (DCOPF) has been enhanced in
order to incorporate renewable energy generation’s variability, considering factors such as electricity demand
and wind availability uncertainty [18]-[21].

On the other hand, the gas system has been analyzed through different studies. In one of them, a
detailed study of gas transmission was made, implementing a simplex algorithm expansion [22]. Martin et al.
[23], a fully intermixed model was applied for the gas network optimization steady-state case. Pfetsch et al.
[24] investigate several approaches in order to resolve a main challenge in pipeline gas transmission, which is
the nomination validation problem, through different algorithms based on linear and nonlinear mixed-integral
methods.

The interdependence of electricity and NG systems has been extensively studied. Zhang et al. [25],
in order to simulate the coordinated stochastic model for the economic response of the hourly power system
demand, along with the NG transport constraints, a Monte-Carlo simulation was applied. Operational perfor-
mance of hydrothermal systems and the NG network in the short term was studied at [26]. Because of the
necessity of gas-fired power plants, the transport of NG through pipelines affects power generation and trans-
mission with respect to safety and economics, a situation that was studied in [27]. And the reference [28] used
the Newton-Raphson formulation to analyze integrated electricity and NG systems.

In addition, considerable research has been done on the coordination of natural gas and electricity
systems. Qadrdan et al. [29]-[31] investigated how the increase in wind power plants impacts on the British
gas network. Sohrabi et al. [32], performed steady-state integrated NG transmission network and power
system formulation, taking into account the market price of electricity on the basis of the information gap
decision theory. The impact of NG system on the short-term planning of the electricity system considering
a considerable increase of renewable energies is presented in [33]. An operational strategy based on interval
optimization for integrated gas and electricity systems is proposed in [34] to enhance system performance
considering demand response and renewable energy sources uncertainty.
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2. PROBLEM FORMULATION

2.1. Notation

2.1.1. Indices
g Index of thermal units of generation.
1,7 Index of network buses connected by transmission branches.
m,n Index of gas buses connected by a line pipe.
t Index of time periods (hour).

2.1.2. Parameters

A; Wind turbine power connected to bus ¢ (MW).

Wit Available wind for the turbine connected to bus ¢ at time ¢
Cmn Constant of the gas line pipe connecting node m ton .
L Electric load in bus 7 at time ¢.

b Thermal unit fuel cost ratio.

9 )
max min
P, Py

Maximum/Minimum power generation limits for thermal units.

Pl Maximum power flow limits of branch connecting bus ¢ to j.
Tij Reactance of branch connecting bus ¢ to j.

45 Resistance of branch connecting bus i to j.

n Efficiency of thermal units.

k¢ Gas demand percentage at time ¢.

up down
Ry?, Ry _
Sg:?am s ng,zn

Sd,,

mazx min
Prrmaz Pry

Ramp-up/down limits of thermal generation unit g (MW/h).
Maximum/Minimum gas supply limits at node n .

Gas demand in node n (Scm).

Maximum/Minimum gas pressure limits at node n .

n

VOOL Load loss value ($/MWh).
VvwcC Wind loss value ($/MWh).
H Conversion value (MBtu/10°Scm).
2.1.3. Variables
Py Active power flow of branch connecting bus ¢ to j at time ¢t (MW).
Py, Active power produced by thermal unit g at time ¢t (MW).
P Active power generated by wind turbine connected to bus ¢ at time ¢ (MW).
Py Constrained wind turbine power connected to bus 7 at time ¢ (MW).
f,,;ymt Gas flow from node m to node n at time ¢ (Scm).
LS;;  Load shedding in bus 7 at time ¢ (MW).
Pr,,;  Gas pressure at node n time ¢ (bar).
Sgn,+  Gas supply in node n time ¢ (Scm).
Se,+  Gas demand in node n time ¢ for generation of thermal units (Scm).
EC 24-hour electrical operating costs ($).
GC 24-hour gas operating costs ($).
OF 24-hour Total operating costs ($).
0;.+ Voltage angle of bus ¢ at time ¢ (rad).

2.2. Formulation

This formulation is based on an optimization problem, designed to determine the lowest overall system
operating cost, derived from the production of electricity to meet demand over a 24-hour period, including all
gas system costs as specified in (1).

OF EC + GC

(1)

The (2) shows the total cost of electricity generation for a 24-hour period. Through the sum of the cost of
producing energy with g thermal units during a ¢ time interval, plus the costs associated with load loss, plus the
costs associated with non-utilization of the maximum wind generation source available.
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EC = > b-P + Y (VOLL-LS;, + VWC-PY) )
gt it
Dispatch model constraints are determined by the optimal power flow equations. The DC optimal
power flow equilibrium is defined by (3). The amount of power flowing in each line is determined by (4). The
constraints on the maximum amount of power that can flow through each line are given by the (5).

Z Py + LSy + PY% — Lii = Z P 3)
g J
1
P = X (Oie  — 0j4) 4)
=Py < Py < PR 5)

On the other hand, the restrictions for thermal generation units are defined in (6), (7), and (8), where
(6) corresponds to the operational range of thermal generators. The (7) and (8) specify the maximum limits
of the ramp-up and ramp-down of thermal generators, i.e. the maximum value that can vary the power of a
generator in a one-hour interval.

Pyt < Py <P ©6)
Pop — Py < RZP @
Ppyn — P, < R ®)

The load shedding of bus i is restricted to the existing demand at time ¢ as indicated in (9).

0 < LSy < Ly 9

The constraints for wind generation are defined in (10) and (11), where (10) corresponds to to the
amount of available wind power not utilized. In (11) indicates the range of minimum and maximum power that
a wind turbine can produce, taking into account the capacity variables and wind availability.

PY = w-A — PY (10)
0 < PY < w4 (1

The (12) indicates the total cost to supply gas considering the purchase price of gas delivered at node n during
an interval of time .

GC = > - Sg,, H (12)
n,t

The flow conservation equation at node n, insures the gas balance at node n and is given by the (13).

Z fn,mﬂf = Z fmm,t + ngt - kt : Sdn - Sen,t (13)

m

Now, is up to consider the constraints on the gas transportation tubes. In this case, there’s no distinction
between passive and active gas transportation tubes. For the gas transportation tube, the relation between the
flow f,,, »+ in the gas transportation tube (m,n) and the pressures Pry,: and Pry; is given by the (14).
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Where C,,, ,, is a value that varies according to length, diameter and absolute roughness of the pipeline and gas
composition.

; = Cr2n,n : (Prfn}t - PT?l,t) (14)

m,n,t

Alternately, the restrictions for gas units are defined in (15), and (16), where (15) corresponds to the
limitations of gas inflow at a supply node n. In the case of gas pressure restrictions, natural gas transportation
companies must not receive natural gas at a higher pressure than that guaranteed by the supplier at the input
point. On the contrary, the demand at each exit point must be satisfied at a minimum pressure secured to the
industrial user or the local distribution company, this is expressed in (16).

ngin < ngt < ngar (15)

n — — n

prmin < Pr,, < Prpe (16)

n — — n

Finally, gas-fired power plants connect the electricity and natural gas systems. Since gas fired power
plants produce energy for the electric system as a supplier, and at the same time, they consume natural gas,
making it a requirement for the natural gas system. This is expressed in the (17).

bg- Py, = Sept-H-n e N 17

3.  RESULTS AND DISCUSSION

With the objective of quantify the requirements of gas according to wind integration, a power system
case is used to simulate operational conditions with a detailed modeling of the gas network. In this section
different scenarios are evaluated, with a 24 hour period to consider the dispatching of generators. All simula-
tions were completed by a personal computer (PC) using Ipopt® Solver (3.12.10) under the JuMP 0.19.2 Julia
platform [35].

3.1. Case description: IEEE 24-bus and gas network 20-stations

This section presents the results and simulations on the gas needs in the energy transition considering
the integration of wind energy. This is based on the gas network linkage with electricity network, shown in
Figure 1. Also, considering different demand cases, wind availability profiles, and installed wind capacities.

The gas network linkage with electricity network, is composed for a modified IEEE 24-bus power
system and the gas network of Belgium, modified from [15], [22]. The data for thermal units are listed in
Table 1, modify from [15]. In Table 2 the lines reactance, power line constraints and interconnections are
shown, modify from [15]. NG system nodes’ technical and economic features are shown in Table 3, and the
operational specifications of gas network are provided in Table 4, modifying the information from [15], [22].

3.2. Results

The system performance was evaluated on the basis of an increase in wind power generation capac-
ity, starting with a case without wind power installed (i.e. 0 MW), then a case with an installed capacity of
500 MW and a case of 1000 MW. The analysis highlights the changes in gas requirements for power generation
during a 24-hour period due to wind availability. The gas requirements according to wind power generation
over a 24-hour period are shown in Figure 2. It can be seen that the gas requirements in the case without wind
power available have a similar performance in all the simulations. Conversely, when having an installed wind
power (i.e. 500 MW), the gas requirements present a greater variability, which grows when facing different
wind patterns as the installed wind power increases (i.e. 1000 MW).

As installed wind power increases, in some cases, peak gas requirements also rise. These peaks may
be more noticeable in cases with high variability in the wind profile, like the one presented in Figure 2(b).
At hour 11 in the case with 0 MW of installed wind capacity, there is a requirement of gas 41130 Scm, in
the cases of 500 MW and 1000 MW of installed wind capacity, the gas requirements increase by 100% and
315% respectively. Also in Figure 2(b), it can be seen that when there is a decrease in the gas requirement, the
decrease is more considerable, as the installed wind capacity increases, as can be seen in the 16th hour.
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Figure 1. Gas network linkage with electricity network

Table 1. Thermal generation data for the 24-bus test system
Gen Bus P/M"(MW)  Pim9® (MW)  Marginal Cost MW)  Rg” (MW/h)  RZ°“"™ (MW/h)

1 18 100 400 5.47 17 17
2 21 100 400 5.49 17 17
3 1 30.4 152 23.32 84 84
4 2 30.4 152 23.32 84 84
5 15 54.25 155 16 21 21
6 16 54.25 155 10.52 21 21
7 23 108.5 310 10.52 21 21
8 23 140 350 10.89 28 28
9 7 75 350 20.7 49 49
10 13 206.85 591 20.93 21 21
11 15 12 60 26.11 7 7
12 22 0 300 30 100 100

Table 2. Branch data for the 24-bus test system
From To Xj;; (pu) Rating(MVA) From To Xj;; (p.u) Rating (MVA)

1 2 0.0139 175 11 13 0.0476 500
1 3 0.2112 175 11 14 0.0418 500
1 5 0.0845 175 12 13 0.0476 500
2 4 0.1267 175 12 23 0.0966 500
2 6 0.192 175 13 23 0.0865 500
3 9 0.119 175 14 16 0.0389 500
3 24 0.0839 400 15 16 0.0173 500
4 9 0.1037 175 15 21 0.0245 1000
5 10 0.0883 175 15 24 0.0519 500
6 10 0.0605 175 16 17 0.0259 500
7 8 0.0614 175 16 19 0.0231 500
8 9 0.1651 175 17 18 0.0144 500
8 10 0.1651 175 17 22 0.1053 500
9 11 0.0839 400 18 21 0.013 1000
9 12 0.0839 400 19 20 0.0198 1000
10 11 0.0839 400 20 23 0.0108 1000
10 12 0.0839 400 21 22 0.0678 500
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Table 3. Technical and economical characteristics of gas nodes
Gas Node Sgp™(Sem)  Sgpt*®(Sem)  Sdp (Sem)  Pryt**(Sem)  Pr;'@®(Sem) €, (USD/MBTU)

n n

Anderlues 0 1.20 0.00 0.00 66.2 0.00
Antwerpen 0 0.00 4.03 1.25 80.0 0.00
Arlon 0 0.00 0.22 0.00 66.2 0.00
Berneau 0 0.00 0.00 0.00 66.2 0.00
Blaregnies 0 0.00 15.62 2.08 66.2 0.00
Brugge 0 0.00 3.92 1.25 80.0 0.00
Dudzele 0 8.40 0.00 0.00 77.0 2.28
Gent 0 0.00 5.26 1.25 80.0 0.00
Liege 0 0.00 6.39 1.25 66.2 0.00
Loenhout 0 4.80 0.00 0.00 77.0 2.28
Mons 0 0.00 6.85 0.00 66.2 0.00
Namur 0 0.00 2.12 0.00 66.2 0.00
Petange 0 0.00 1.92 1.04 66.2 0.00
Peronnes 0 0.96 0.00 0.00 66.2 1.68
Sinsin 0 0.00 0.00 0.00 63.0 0.00
Voeren 0 22.01 0.00 2.08 66.2 1.68
Wanze 0 0.00 0.00 0.00 66.2 0.00
Warland 0 0.00 0.00 0.00 66.2 0.00
Zeebrugge 0 11.59 0.00 0.00 77.0 2.28
Arlon 0 0.00 0.00 0.00 80.0 0.00
Table 4. Technical characteristics of gas network
From To Active  CZ, From To Active  C2,

Zeebrugge Dudzele 0 9.07027 Berneau Liege 0 0.02701

Zeebrugge Dudzele 0 9.07027 Liege Warnand 0 1.45124

Dudzele Brugge 0 6.04685 Liege ‘Warnand 0 0.02161

Dudzele Brugge 0 6.04685 Warnand Namur 0 0.86384

Brugge Zomergem 0 1.39543 Namur Anderlues 0 0.90703

Loenhout Antperwen 0 0.10025  Anderlues Peronnes 0 7.25622

Antperwen Gent 0 0.14865  Peronnes Mons 0 3.62811

Gent Zomergem 0 0.22689 Mons Blaregnies 0 1.45124

Zomergem Peronnes 0 0.65965 Warnand Wanze 0 0.05144

Voeren Berneau 1 7.25622 Wanze Sinsin 1 0.00642

Voeren Berneau 1 0.10803 Sinsin Arlon 0 0.00170

Berneau Liege 0 1.81405 Arlon Petange 0 0.02782

Similar to peak gas requirements, as wind capacity increases, so can overall gas consumption in a
24-hour period. This can be seen in Figure 2(d), in which gas consumption for the case of 500 MW of installed
wind capacity is higher in almost every hour over the case without wind capacity. As well as the gas require-
ments are greater according with the increase in wind power capacity. Nevertheless, there may be cases in
which increasing the wind capacity generates a decrease in gas consumption in a few hours, as shown in Figure
2(c). This is why gas consumption was evaluated for a period of 192 hours, equivalent to 8 days, for different
installed wind capacity, starting from 0 MW to 1100 MW, in periods of 100 MW, as shown in Figure 3.

These results depend directly on the technical and economic requirements of the thermal generators,
present in Table 1, and the economic requirements of the gas, present in Table 3. This is because, in this case,
the cost of natural gas used for power generation is higher than the average cost of thermal generators that
are not gas-fired. This generates that when solving the optimal flow of power and the economic dispatch, it
looks for to use in a minimum way the gas, and therefore the gas-fired generators. However, due to the technical
limitations of some thermal generators, in particular their reduced rate of power change per hour, it is necessary
to use gas-fired thermals, to supply the variations present in the power system.

Variations in the power system as mentioned above increase when implementing wind systems. This
is due to the fact that in the search to use wind energy in totality, there are some fluctuations in the power
generation of the electrical system, which must be controlled by the other generation plants, in order to have an
optimal power flow. These fluctuations in power generation grow proportionally as the installed wind capacity
increases. Given the limited ramps of coal-fired power plants, variations must be controlled by gas-fired power
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plants, which leads to increased gas consumption. And as the fluctuations grow, due to the increase in installed
wind capacity, so does gas consumption, as shown in Figure 3.
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Figure 2. Hourly gas requirements for installed wind power capacities within a 24-hour period
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Figure 3. Total gas requirements for installed wind power capacities
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As mentioned above, one of the points to consider were the technical requirements of the gas fired
thermal generators, specifically in this case the up and down ramps. These ramps become critical to an inter-
mittent renewable energy source, such as wind power. In cases such as this one, the ramps of the coal-fired
generators are very limited, leaving the task of controlling the intermittent to the gas-fired generators. However,
the ramps of the gas generators, have their restrictions, and the value of these is intrinsic to the generator, which
means that the limits designed for the generator cannot be exceeded or changed [13].

Therefore, when including wind power generation, the limits of up and down ramps must be known,
especially those of the gas fired power plants. That is why the ramps were determined both up and down, for
a period of 192 hours, for three cases of installed wind capacity (0 MW, 500 MW and 1000 MW), as shown
in Figure 4. The ramps were calculated by the hourly difference of the power generated by all the gas fired
thermal generators, i.e. the values of the ramps are not from a single generator, on the contrary they are the
sum of the ramps required from all the gas fired generators, at the same instant of time.

In Figure 4, it can be seen how the growth in installed wind capacity leads to an increase in the
technical requirements of gas fired boilers, in this case the ramps. Note that the growth is in the absolute value
of the ramps, ie is given both in the up and down ramps. In the case where there is no wind power generation,
the critical values of the up and down ramps are 332 MW/h and 159 MW/h respectively. For the case of
500 MW of installed wind capacity, the critical values of the up and down ramps are 1.3 and 2 times higher
than the case of 0 MW respectively. And for the case of 1000 MW of installed wind capacity, the critical values
of the up and down ramps are 2.1 and 3.3 times higher than the initial case respectively.

Whereas the values of the up and down ramps of a gas fired thermal generator tend to be the same,
only the peak values of the ramps can be taken. Hence, for the implementation of 500 MW of wind power
generation, the critical values of the ramps are increased by 26%. Under normal conditions, the ramps required
by thermal generators do not reach their limits, thus it is not necessary to make major changes to the system to
achieve these target ramps. Nonetheless, in the case of implementing 1000 MW of wind power generation, the
critical values of the ramps are increased by 108% with respect to the initial case. Therefore, it is necessary to
double the number of ramps that are currently available, which generates the need for the implementation of
another thermal gas generator, with certain technical requirements, to achieve these target ramps.
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Figure 4. Gas network linkage with electricity network

4. CONCLUSION

Global energy sources are being transitioned by reducing the consumption of fossil fuels and replacing
them with renewable resources, in an effort to reduce greenhouse gas emissions. In contrast, it is necessary
to incorporate natural gas into the energy transition discourse in order to meet the operational, economic,
political and social needs of the countries. In this paper, a detailed model of an economic dispatch for a 24-bus
electric system interconnected with a 20 node natural gas network, that involves wind energy was presented
under several operational settings for a 24-hour time frame. It was demonstrated that the planning process
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required between the NG infrastructure and the power system can be achieved through the mathematical model
presented.

Due to the uncertainty and unpredictability associated with renewable resources and the limited tech-
nical characteristics of coal-fired generators, then the gas will play a role in the energy transition. This leads
to a greater need for gas and gas-fired generators, regardless of the fact that the cost of generating energy from
these is higher than for coal-fired ones. The flexibility of both the power and gas systems is vital for the imple-
mentation of renewable energy sources. Furthermore, this flexibility is limited and costly. Consequently, the
excessive increase in the use of renewable energies can cause the system to reach its operational limits, with-
out achieving optimal results, and it is necessary to make technical changes in the system. Examples of these
changes include the implementation of new gas-fired power plants, new transmission lines, greater availability
of gas, and new gas transportation tubes.
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