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 The use of solar energy may replace the present fossil fuel or gas to produce 

electricity. The goal of this study is to set up a simulation model to survey 

the performance of a photovoltaic thermal system (PV/T) based on the 

computational fluid dynamics (CFD) method. Ansys fluent software has been 

used for the simulation procedure. The electrical panel output and its 

efficiency were investigated numerically. In addition, the effect of variations 

in absorbed radiation on inlet fluid and absorber panel temperature on the 

system performance was investigated. The study was conducted for three 

cases, in a first case, where there is no refrigerant in the system and in the 

latter case, at constant fluid rate of the pump, whereas the third case with 

optimal pump operation. The numerical findings obtained from CFD 

simulators have been compared with the test records of the experimental 

results of the literature. The two results have a good agreement. From the 

obtained results, it can be noted that the system shows a good improvement 

for the electric net efficiency level of 3.52% with a lower reduction of the 

thermal system efficiency of 1.96% in comparison to the system when using 

the constantly high flow rate. 
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1. INTRODUCTION 

According to the fact that traditional energy sources (coal, oil, natural gas and nuclear fuels) are 

constrained and finite, and the energy producing sector is considering the main contributor to the 

environmental pollution, energy should be produced from renewables. The solar energy is an inexhaustible 

and completely environmentally friendly source of energy [1]. However, once the solar cell becomes 

illuminated, the effect of photocells and an electromotive force appears at its ends which is connected to the 

energy supply consumed and so the solar cell becomes a source of electrical energy [2]. In this way, just a 

small fraction of the energy of solar radiation is transformed into electrical energy, whereas most of it is 

converted into thermal energy that is a dedicated panel which brings about an increased module temperature 

which will cause some decrease in the electrical energy efficiency by about 0.5 %/K [3].  

Photovoltaic has particular advantages as an energy source: once installed, it does not generate 

pollution and does not emit greenhouse gases, it has a simple scalability in relation to energy needs, and 

silicon has a high availability in the earth's crust [4]. Photovoltaic systems have long been used in technical 

applications since the 1990 s [5] Photovoltaic panels were produced for the first time in mass production at 

the end of 2000, after German ecologists and Euro solar received government funding for a 10-thousandth. 

https://creativecommons.org/licenses/by-sa/4.0/
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Technological progress and increased scale of production in any case reduced costs, [6] increased reliability 

and increased efficiency of photovoltaic installations [7].  

Recently studies have shown that a sufficient mass flow with a low input point temperature can 

achieve a satisfying improvement in electrical efficiency [8]. The excessive thermal energy which is removed 

from the fluid may be used for the hot water preparation or as warm water in swimming pools, which 

increases the system's overall efficiency. The increasing fluid flow demands the addition of electricity from 

the system pumps, reducing the net electrical system efficiency [9].  

This paper describes the control method of the pump output (fluid flow) with the objective of 

improving the efficiency of the PV system. However, the major problem is the inefficiencies of non-

conventional energy sources as compared to conventional energy sources. So, the dynamic analysis of the 

system efficiency improvement is presented in this paper. We could also see how the energy performance of 

the system that uses the hybrid photovoltaic rises due to the thermal energy resulting from it and which can 

be used in the home setting, but due to the power demand of the electric pump the electrical efficiency 

decreases with a constantly high flow. For these reasons it is important to optimize the system using the only 

manageable capacity in the system with mass flows by monitoring the change in the dose to the panels and the 

panel temperature to obtain the highest net power, the thermal photovoltaic panels and the system optimize.  

The mechanisms used for solar radiation, condensation and thermal transfer are modeled using the 

CFD method by Selmi et al. [10]. He observed that the use of forced flow water has a temperature lower than 

that of non-stream water. A simulated model was constructed to consider the simulated model validity. There 

was a high correlation between the experiment results and the results of the simulation.  

Siddiqui et al. [11] have developed a numerical model in order to make a comparison between a 

PV/T hybrid system and a PV module. The thermic and the electrical sections have been combined to give a 

multi physical simulation model. The effect of some parameters was also investigated, including the absorbed 

radiation, the contact temperature resistance, the inlet speed and the input temperature. It was concluded that 

PV/T systems may be used in regions where solar radiation and the ambient temperature are both high 

A dynamic model simulation was applied by Bhattarai et al. [12] in order to compare the 

performances of a metallic and tube PV/T system via a solar collector. The scientists have developed a one-

dimensional simulation model by solving energy savings formulas for several sections of a systems at the 

same time. The results were in accordance with the numerical data that was measured in the experiments. It 

was detected that the thermal efficiency of daily solar collectors was approximately 18% greater than that of 

the PV/T system. Whereas the main energy saving in the PV/T system was greater than that of a PV collector.  

Cerón et al. [13] have also developed a 3D model for collectors with flat sheet metal plates and 

tubes. In this investigation, different thermal transfer heat transfer systems were considered in a stable 

combination simulation. The numerical findings were evaluated by means of experimental results and 

standardized heat transfer correlations. In addition, different convection thermal transfers for the water fluid 

within the tubes have been calculated on Nusselt.  

Aste et al. [14] have reported a new PV/T roller bonding design. A simulated design was also 

obtained by resolving the relevant energy budgets of the system to assess the electrical and thermal 

performance. An experiment with a PV/T prototype has been installed and monitored by Haurant et al. [15] 

during 18 months. They also supplied a model simulation of the PV/T system as described in TRNSYS. The 

simulation software. The simulated results and observed data have been compared. A high degree of 

agreement between the simulation results and the results of the experiments was observed.  

The thermal photovoltaic panel system is composed of a photovoltaic-thermal panel, which in the 

study has a surface area of 24.89 m, a water reservoir and a circulating pump. The photovoltaic panel 

transforms solar energy into electricity. The heat part of the system is the absorbing plate which is 

responsible for transferring the resulting thermal power from the solar panel to the fluid. The exchange of 

heat occurs in the water tank, where the hot water is supplied in the top part of the tank, while cold water is 

carried to the tank floor. The cool water via the circulation pump delivers with the pre-defined mass flow to 

the base of the panel.  

The thermal photovoltaic solar system is so designed so that simple photovoltaic solar cells can be 

added directly above the solar absorber. This system consists of a cover of glass that loses its light at the 

absorbers, photovoltaic cells that convert the energy of the solar dosage to direct electrical energy and the 

plate of the absorbers which plays a heat transfer role from the collector to a fluid that passes through a tube. 

The block diagram of the photovoltaic-thermal system is shown in Figure 1. 

This pump is part of a PV-thermal system which has the task of keeping the required flow through 

the panel background. Thus, realizing the resulting thermal energy from the panel and cooling it. To keep the 

desired flow, the electrical power required by the pump is provided by (1) [16]. 
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𝑃𝑝 =
𝐾𝑚3

2𝐴𝐶
2 𝜑2𝜂

 (1) 

 

where: K is the coefficient of total loss, m: is mas of flow rate, ρ is the fluid density, Ac is: pipe cross-section 

area and η is the Pump efficiency.  

From (1), it is clear that the only changing parameter is the flow rate mass of the fluid, while all 

other parameters remain constant and are dependent on the system and fluid physical characteristics. Electric 

power required to run the pump is in fact an extremely nonlinear function that rises to the cube as the flow 

fluid mass increases.  

 

 

 
 

Figure 1. Functional scheme of photovoltaic-thermal system 

 

 

Any temperature changes shall cause some changes in the characteristics of photovoltaic cells. To 

investigate the characteristics of cells it is important that you know how the temperature influences the 

following parameters: Isc short circuit current, current of cell I, open loop voltage Uoc, Pm maximum power 

and efficiency of the cell η. Efficiency is common to decrease by approximately 0.5% for the increase of the 

panel temperature of 1 oC. The rationale is that the temperature increase will cause some decrease in the 

prohibited strap width, which causes a slight increase in the saturated current, but because of the temperature 

rise the kinetic energy of the particles is increasing, which results in a reduction in the electric field of the  

P-N compound. The decrease in the electric field causes the electrics and cavities to recombine more quickly, 

ultimately resulting in a decrease in open circuit voltage 

The variation in temperature mainly influences the quantity of open- circuit voltage. The Iks short 

circuit current is temperature dependent and may be written as [17]. 

 

𝐼𝐾𝑠 = 𝐴𝑇3 exp(−
𝑞𝑈𝑂𝑘−𝐸𝑔

𝐾𝑇
𝜋𝑟2 ) (2) 

 

Where A: collector surface, T: collector temperature, q-elementary charging (1.602x10 C), open voltage 

circuit Uok, width Eg- of the forbidden belt (eV). K-Boltzmann constant (1,3806 x 10 J/K). 

 

 

2. METHOD  

2.1.  Calculating the total irradiance for the panel 

The electrical power of the PV panel is frequently caused by the high dosage of solar energy. Solar 

dosage on the Itt inclined surface may be expressed as the sum of the following 3 components [18]. 

 

𝐼𝑡𝑡 = 𝐼𝑏,𝑇 + 𝐼𝑟,𝑇 + 𝐼𝑑,𝑇  (3) 

 

where: Ib,T is direct sunlight is on the sloping surface, Ir,T is the diffused solar radiation on the sloping 

surfaces and Id,T is the reflection of solar radiation on the sloping surface. 

 

𝐼𝑏,𝑇 = 𝐼𝑏  𝑐𝑜𝑠Ө (4) 
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𝐼𝑑,𝑇 = 𝐼𝑑𝑐𝑜𝑠 2  
𝛽

2
 [1 + 𝐹 𝑠𝑖𝑛3  

𝛽

2
  ] (5) 

 

𝐼𝑟,𝑇 = 𝜌 (𝐼𝑏𝑐𝑜𝑠Ө𝑧 + 𝐼𝑑) 𝑠𝑖𝑛2 𝛽

2
 (6) 

 

where Ib∶ is direct solar maturation (normal), Id∶ is horizontal diffuse solar maturation, Ir: is the collector 

processing in relation to the surface horizontal, ρ: soil albedo, F: modulating factor, Ө∶ is the angle between 

the direction of the sun and the normal inclined surface, Өz∶ the zenithal angle of the sun, the angle of 

inclination of the surface β,  

 

cos 𝜃 =  cos 𝜃 𝑧 𝑐𝑜𝑠𝛽 +  sin 𝜃 𝑧 𝑠𝑖𝑛𝛽 (7) 

 

The modulation factor F can be calculated as [14]. 

 

𝐹 = 1 −
𝐼𝑑

𝐼𝑡
 (8) 

 

where: 𝐼𝑡 is the total solar dose on a horizontal surface and is calculated as [19].  

 

𝐼𝑡 = 𝐼𝑏 𝑐𝑜𝑠Ө 𝑧 +  𝐼𝑑 (9) 

 

Angels that determine the optimum panel location are illustrated in Figure 2. 

 

 

 
 

Figure 2. The angels that determine the optimum position for the panel [15] 

 

 

2.2.  Calculation of photovoltaic heating system 

One factor that affects the operation of the PV panel is temperature. A part of the sun radiation 

falling on the system is absorbed largely by the panels and turns into electricity and surrenders, the other part 

becomes the inner energy of the panel material and the temperature of the entire system increases. This 

warmth is passed on to the fluid circulating through the absorber tubes. The heat transfer processes that take 

place are convection, conducting, radiation. By taking all these parameters into account the heat exchange 

modulus equation is calculated as (10) [20]. 

 

𝐶𝑀𝑜𝑑
𝑑𝑡𝑀𝑜𝑑

𝑑𝑇
= 𝑞𝐿𝑤 +  𝑞𝑆𝑤 + 𝑞𝐶𝑜𝑛 − 𝑃𝑂𝑢𝑡 − 𝑄𝑡 (10) 

 

where: Cmod is the heat capacity of the modules, dtMod∶ is the temperature of the module, qLw∶ is the power of 

the long-wave radiation, qSw ∶is the charge of the long-wave radiation, qCon∶ is the power conduction heat 

convection, Pout is the derived power of the power modules and Qt is the heat power absorbed by the fluid. 

For the precise balance, it is required to know each specified component in (10), as: 
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2.2.1. Module thermal capacity (CMod)  

To establish the thermal capacity of the module you need to know the panel structure itself. In this 

case, the panel is made up of three layers: the glass cover, the monocrystalline photovoltaic cells and the 

absorption cover. It assumes that the temperature of the panels is uniform across all three layers. Each 

individual layer has their own thermal capacity and the module's thermal capacity is defined as the sum of all 

the individual strata and depends on the material type of each layer and the deformation thickness [21]. 

 

𝐶𝑀𝑜𝑑 = ∑ 𝐴𝑑𝐾𝜌𝐾𝐶𝐾
𝑚
𝐾=1  (11a) 

 

𝐶𝑀𝑜𝑑 = ∑ 𝐴𝑑𝐾𝜌𝐾𝐶𝐾

𝑚

𝐾=1

 (11b) 

 

where: A is the surface of the panel, dk is the thickness of the individual layer, ρk is the density of every layer, 

Ck is the thermal capacity of the individual layer. The characteristics of each individual layer are shown in 

Table 1. The surface area of the panel is 24.9 m2.  

 

 

Table 1. Characteristics of every single layer of the photovoltaic panel [22] 
Layer ρK(kg/m3) dk(m) CK( J/kgK) CMod (j/k) 

Monocrystalline 2330 0.0003 677 11780 

Absorbing layer 1200 0.0005 1250 18637 
Glass cover 300 0.003 500 112027 

    143 (kJ/k) 

 

 

2.2.2. Heat transfer by convection (qConv) 

Convection heat transfer is defined by Newton’s cooling regulations between the front panel and the 

surrounding air [23]. 

 

𝑞𝐶𝑜𝑛𝑣 = −ℎ𝐶𝐴(−𝑇𝑀𝑜𝑑 − 𝑇𝐴𝑚𝑏) (12) 

 

where: hC is the transferring factor that represents the combination of forced and natural convection. Where 

there is no air, we can ignore the forced convection factor. Natural convection coefficient between ambient 

air and the system is defined by (13), (14). 

 

ℎ𝐶,𝑓𝑟𝑒𝑒 = 1.31 √𝑇𝑀𝑜𝑑 − 𝑇𝑎𝑚𝑏  3
 (13) 

 

𝑏𝐶,𝑓𝑜𝑟𝑐𝑒𝑒𝑑 = 5.6 + 3.8𝑣 (14) 

 

where v: is wind speed. 

During the mean day the heat transferred by convection is equal to the sum of forced and naturally 

occurring convection and is given by (15) [24]. 

 

𝑞𝐶𝑜𝑛𝑣 = 𝐴(ℎ𝐶,𝑓𝑟𝑒𝑒 + 𝑏𝐶,𝑓𝑜𝑟𝑐𝑒𝑒𝑑)(𝑇𝑀𝑜𝑑 − 𝑇𝑎𝑚𝑏) (15) 

 

2.2.3. Electrical output power from panel  

The electrical output power obtained from the panel is a function of the total ripening of panel and 

the temperature of the panel. It decreases as the temperature increases and it increases as the temperature 

decreases. The electrical power obtained from the panel is calculated from the known table that shows the 

value of electrical power at a certain temperature of the board. The row vector representing the total power of 

the module ranges from 1 to 1501 W/m2, whereas the column vector represents the temperature of panel 

ranges from 30-70 oC 

 

2.2.4. Heat power obtained on the fluid 

The product of absorption-transmission is the product of absorption factor and transmission factors. 

Absorption factors are defined as the ability of the body absorbing the sun's maturation, whereas transmission 

factors are defined as the amount of solar dosage that passes through the body of the panel. The system has a 

pipe absorber through which cold water flows and draws the heat energy from panels, which results in a 

decrease in panel temperature, and therefore the greater electrical power panel efficiency achieved. 
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Simultaneously, the thermal power obtained is the thermal energy that can be used for preparing domestic hot 

water in the house, which considerably improves the efficiency of the overall system. The heat power of the 

Qu panel in accordance with Hottel-Willier's equation is [25]. 

 

𝑄𝑢 = 𝐴[𝐿𝑡𝑡 (𝛼𝜏) − 𝑈𝐿 (𝑇𝑀𝑜𝑑 − 𝑇𝑎𝑚𝑏) (16) 

 

where: UL stands for total loss of heat, ατ is the absorbing transmission product. 

From (16), one can see that thermal removal factor is a very non-linear function. All the variables, 

apart from mass flow, are constant depending on the construction and the physical characteristics of the 

system itself. Heat dissipation rate is extremely low as flow increases. Thus, under (1), the electrical output 

of the pump is cubical as the flow increases, so it may be concluded the efficiency of the entire system will 

decrease with high fluid flow.  

 

 

3. RESULTS AND DISCUSSION 

3.1.  Simulation results before optimizing the system functioning 

Before displaying simulation results, it is necessary to define all the parameters used in the system. 

Tables 2 and 3 show the main thermal PV system parameters and their values. Figure 3 shows the 

dependence of total panel dosing of on the total radiation that falls on titled panel surface, while the Figure 4 

demonstrates the panel temperature dependence of the fluid flow. Figure 5 shows the dependency of the net 

energy output of the panels on fluid flow, and Figure 6 illustrates the efficiency of the panel in relation to the 

fluid flow. From the simulation it becomes clear that the temperature in the panel decreases at a flow of up to 

15 Kelvin for the warmest part of a day (from 10 h to 16 h). By reducing the panel surface temperature, the 

panel's electrical efficiency increases by 1.5% over the same period during the day, as can be seen in Figure 6.  

For net electrical efficiency, Figure 5 illustrates the system is energy efficiency at full capacity only 

for the warmest part in the day. When the panel temperature does not rise above 40 oC it becomes energy 

efficiency and therefore economically cools down the panel at the maximum steady flow because small 

amounts will fall onto the board in the morning or early evening.  

 

 

Table 2. Main photovoltaic panel parameters used in this system [18] 
Parameters of panel Value Parameters of panel Value 

total area (A) 24,895 m2 absorption factor (α) 0.7 

coefficient of total emission factor module (є) 0.9 Transmission-absorption factor 0.53 
heat loss 5 W/m2K geometric factor 0.92 

 

 

Table 3. Main pump parameters used in this system [21] 
Pump parameters Value Pump parameters Value 

Coefficient of mechanical losses (K) 15 pipe radius (r) 0.011 m 
fluid density (ρ) 1000 kg/m3 maximum power 50 W 

Thermal capacity (c) 4186 J/kgK input temperature in panel 18 oC 

 

 

 
 

Figure 3. Total radiation falls onto the surface of the titled panel 
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Figure 4. Photovoltaic thermal panel temperature prior to system optimization 
 

 

 
 

Figure 5. Net electrical output power of the PV panel prior to system optimization 
 

 

Due to the low dosage of the panel, the power obtained on the modules is reduced, whereas the 

electrical power built into the pump remains consistently high, leading to inefficiency of the overall system. 

Thus, it is clear that the net electrical efficiency is negative in the mornings and in the evenings, so it will be 

necessary to spend the electricity from the mains to get the desired pump operation. It is therefore necessary 

to optimize your system so that the mass flow of fluid into the system controls the overall ripening of the 

panel throughout the day. 

 

 

 
 

Figure 6. Efficiency of the photovoltaic panels before system optimization 
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3.2. Results of system simulation after optimization  

Using the finite algorithm, which is included in the work scheduling solutions, we achieved the 

optimal stream values in a 15-minute resolution. The optimum flow obtained for the resolution in a minute is 

illustrated in Figure 7. The system energy budget is shown in Table 4, shown for the day when using only 

one photovoltaic module, when a hybrid system (constant high flow) is employed and when using an 

optimized flow. 

 

 

Table 4. Energy balance of the system 
Module Electrical efficiency (%) Thermal efficiency (%) Total efficiency Output heating energy (kW/h) 

PV 21.4 0.000 12.22 0.00 
PV/T 8.15 62.72 71.72 59.54 

PV/T with optimizing flow 31.51 60.50 74.75 56.28 

 

 

The optimized flow algorithm is achieved as shown in Figure 7, with the optimized flow controlling 

the change in overall dose to panel, and therefore changing the temperature of the panels throughout the day. 

As a result, the resulting current has a shape of parabola, which is expectable because the lowest current is 

required in the morning and evening when panel temperature is at its minimum and requires minimal cooling, 

while the highest current is in the afternoon when the panel temperature is highest. This results in a 

noticeable improvement in net panel power gained and total system efficiency, which are illustrated in 

Figures 8 and 9. 

 

 

 
 

Figure 7. Optimized flow of the fluid across the panel at one minute resolution 

 

 

 
 

Figure 8. Temperature of the photovoltaic heat panel after the system optimization 
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Figure 9. The Net electrical output of the photovoltaic module after system optimization 

 

 

From the obtained optimized fluid flow across the panel, we obtained the results for simulations 

showing module temperature, solar photovoltaic system net power, overall electrical efficiency of the system 

at zero flow, at maximum flow and at the optimized flow. The optimized algorithm aims to achieve the 

maximum net power from the system. For the observed system, a maximum value must be set for the 

function that indicates the difference between the output on the panel and the required power in the pump. 

Because the only controllable variable in the given system is mass flow, an optimized algorithm should implement 

by that variable. 

The control of the mass flow would be obtained with the 15-minute resolution of the pump's 

electrical power. From the simulation results obtained, it is clear that there has been a noticeable 

improvement in terms of the electrical efficiency of the overall system and the obtained net power system. 

There is no more efficiency loss. For the daytime period when a small dose is on the panel, since a small 

current then goes through the system. 

During the evening and early morning hours, the flow rate is about 0.1 kg/s, so the amount of 

electric power required to start the pump is just a few watts, for the flow of 0.1 kg/s. The pump power 

required is around 1.52 W. At the hottest time of the day, when the panel temperature is also at its maximum 

and the panel is being cooled most extensively, the flow rate rises to 0.4 kg/s, which requires a power pump 

of about 40 W. 

From the results obtained, it can be seen that through optimizing the system algorithm, we can 

achieve the desired system management, i.e. allowing the panel mass flow to be matched by variables which 

affect the resulted panel electrical power, the total dose and a panel temperature. As a result, there is much 

better system management in the daytime period when small dose is compared to a constant high flow and 

high-quality behavior in the hottest part of the day when compared to the non-cooled system.  
 

 

4. CONCLUSION 

The aim of this research is to study the possibility of a photovoltaic-thermal water system by using a 

mathematical module. On this article an experiment is currently underway to analyze numerically the 

photovoltaic- thermal fluid-cooled system using CFD computational fluid dynamics method. A model of a 

basic thermal-photovoltaic system made up of a water tube and an absorbing absorber plate to produce the 

complete heat analysis module was simulated in this research. In order to obtain numerical results, a 

combined heat transfer analytical method has been applied. Impacts of temperature change of incoming water 

and solar absorbed sunlight have been considered.  

Both temperature distribution on the absorber board and the outlet water temperature have been 

estimated in temperature curves. The results obtained showed that the system delivers a significant 

improvement in the net electricity efficiency of 3.52% and a slight reduction in thermal efficiency by 1.96% 

over the system when using a constantly elevated flow. Whereas with respect to the photovoltaic module 

proper the net electrical efficiency improved by 0.35%. Results obtained from CFD simulators were 

compared with experimental results from the documentation. The numerical simulation results match the 

results of the experiments measurements in the documentation. 
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