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 As wind turbines more widely used with newer manufactured types and 
larger electrical power scales, a brief mathematical modelling for these wind 
turbines operating power curves is needed for optimal site matching 
selections. In this paper, 24 commercial wind turbines with different ratings 
and different manufactures are modelled using single cumulative probability 
density functions modelling equations. A new mean of a composite 
cumulative probability density function is used for better modelling 
accuracy. Invasive weed optimization algorithm is used to estimate different 
models designing parameters. The best cumulative density function model 
for each wind turbine is reached through comparing the RMSE of each 
model. Results showed that Weibull-Gamma composite is the best modelling 
technique for 37.5% of the reached results. 
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1. INTRODUCTION 

Modelling of renewable energy resources to maximize the best use of them can be made through 
using best mathematical modelling techniques which give a great effect on more describing the probabilistic 
nature of these resources. Wind energy is one of most commonly used renewable energy resources today 
especially in electrical power engineering. Wind power is transferred into electrical power by the mean of 
wind turbines. Mathematical modelling of wind turbines results in forecasting the generated electrical power 
from them and also helps to compare different turbines performance on same site location as a tool for 
optimal site matching. Each wind turbine has a power curve describing the relation between input wind speed 
and turbine output electrical power [1]. These curves are varied according to different manufacturers and 
different generated power ratings. The mathematical models which are used to describe the wind turbines  
operating power curves will be different. Each wind turbine curve has three main points cut-in speed point  
(2-5 m/s) at which turbine starts to operate and generate power, rated speed point (7-16 m/s) at which wind 
turbine generates its rated power and cut-out speed (20-30 m/s) at which turbine is shutdown to prevent it 
from damage. These ranges of cut-in speed, rated speed and cut-out speed are reached from manufacturers’ 
tests. The most commonly used mathematical models to approximate wind speed-power characteristics curve 
for the turbines are linear functions [2], quadratic functions [3], cubic functions [4], spline functions [5] and 
logistic functions [6]. The modelling functions are categorized into piecewise continuous functions and single 
continuous functions. Authors in [7] reached that modelling wind turbine electrical power curve using single 
continuous functions is better than using piecewise continuous functions modelling where piecewise 
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modelling techniques give higher errors especially at the rated wind speed point. As using logistic functions 
in this area of modelling results in very good approximations, so authors used a new proposed modification 
of a 4-parameters logistic function modelling to give better modelling accuracy than the default 4-parameters 
logistic functions. Authors in [8] made a comprehensive review about wind turbines power curves modelling 
techniques. Power curves during modelling are categorized into deterministic modelling and probabilistic 
modelling. Mathematical curve fitting and artificial intelligence techniques are examples of deterministic 
modeling [9, 10]. Curve fitting models have two subsections one of them is segmented curve fitting models 
like linear functions, polynomial functions and exponential functions [11-13]. The second subsection is 
integrated curve fitting models like double exponential-based functions and logistic functions [14, 15].  
The accuracy of different models is described through the following commonly used criteria: mean absolute 
error (MAE), root mean square error (RMSE) and determination coefficient R2.  

Authors in [16] used nine different logistic functions equations to model six commonly used wind 
turbines. In [17], authors used weibull cumulative probability density function modelling as a new tool to 
model different six wind turbines with generation power ranges (2-7 MW). Weibull cumulative density 
function gives lower RMSE than all types of 4-point logistic functions with simpler modelling equation.  
In this paper as an extension for previous literature, different single cumulative probability density functions 
and a new approach of a composite cumulative probability density function are used to model larger scale 
wind speed and power values. To check these models validity, different 24 commercial wind turbines are 
modelled. The generated power of these wind turbines covers the range (200 KW-7 MW). The used single 
cumulative probability density functions for modelling are weibull, gamma and log-normal distribution 
functions. Also a new composite of weibull – gamma cumulative probability density function is generated 
and compared with single distribution functions used in this paper to reach more accurate modelling of  
the different wind turbines. Each wind turbine is modelled using all cumulative density functions mentioned 
in this paper and finally results are compared to reach more accurate model in each case using RMSE comparison. 

 
 

2. MATHEMATICAL MODELLING WITH CUMULATIVE DENSITY FUNCTIONS  
Mathematical modelling is used in this paper to describe wind turbines output power according to 

valid wind speed inputs. The used single cumulative density function models are weibull, gamma and  
log-normal. Also a composite cumulative density function model is used. It consists of two terms, the first 
term is weibull term with a weighting coefficient and the second is gamma term with another weighting 
coefficient. The general equation to describe the fitted wind turbine output power pi at input wind speed vi is 
described in (1). (θ1, θ2, … , θn) are the cumulative density function designing variables which are optimally 
selected for optimal power curve modelling. If (1) is multiplied by the wind turbine rated output power (Pr) it 
will transferred to (2) where output power Pi unit will be in (KW). 

As indicated in Table 1, weibull cumulative density function has two designing variables which are 
the shaping parameter (k) and the scaling parameter (c). But the standard cumulative gamma density function 
has only a shaping parameter (a). The log-normal cumulative distribution function has two designing 
variables which are the distribution mean (µ) and standard deviation (σ). As a way to reach a more accurate 
fitting curve the weibull – gamma composite distribution function is generated with five designing variables 
as indicated in Table 1, where w1 is the weibull cumulative density function weight in the composite.  
The designing variables of each model can be reached using least square regression [18, 19] or using function 
optimization techniques [20]. In this paper invasive weed optimization algorithm [21] is used for optimal 
selection of each cumulative model designing parameters values. The objective function assigned to  
the optimization algorithm is the RMSE which should be minimized as an indicator for high accuracy 
modelling. In (3) shows the objective function which will be minimized, where N is the number of measured 
data points between input wind speeds with spacing interval 1 m/s and turbine corresponding output powers. 
n is the number of models designing variables. Wind turbines under study have manufacturers’ nameplates 
and measured tests values as on [22]. 
 

pi = F(vi,θ1, θ2, … . , θn)   (p. u. ) (1) 
 

Pi = Pr  F(vi,θ1, θ2, … . , θn)  (KW) (2) 
 
Minimize: 
 

RMSE = �1
N
∑ (Pmeasured − Pi(vi,θ1, θ2, … . , θn))2N
i=1  (3) 

 
Subject to: 
 

 θi−min ≤ θ1, θ2, … . , θn ≤ θi−max  , i = 1,2,3, … . . , n (4) 
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Table 1. Cumulative probability density functions modelling equations 
Cumulative density function model Equation θ1 θ2 θ3 θ4 θ5 

Weibull Pi = Pr (1 − e−�
vi
c �

k

) k c − − − 

Gamma Pi = Pr
∫ ta−1e−t. dtvi
0

Г(a)
 a − − − − 

Log-normal Pi = PrФ( 
ln(vi) − µ

σ
 ) µ σ − − − 

Weibull & Gamma 
Composite Pi = Pr (w1 �1 − e−�

vi
c �

k

� + (1 − w1)
∫ ta−1e−t. dtvi
0

Г(a)
) k c µ σ w1 

 
 

3. INVASIVE WEED OPTIMIZATION ALGORITHM (IWO) 
Invasive weed optimization algorithm will be used to select the optimal values of the designing 

parameters for each cumulative density function model. The sequential steps of invasive weed optimization 
technique are [23]: 
− Populations Initialization: populations (seeds) with finite numbers are being dispread over d-dimensional 

search space with random positions. Where d is number of the designing variables. 
− Seeds Reproduction: every seed grows to form a new plant and produces newer number of seeds.  

The number of seeds of each plant depends on their fitness value while as each plant fitness value 
increases, number of plant seeds also increases. 

− Spatial Dispersal: random selections of each plant seeds and adaptations in the algorithm are made in this 
part. The new seeds are being randomly scattered over the search space using standard normal 
distribution functions under variance variations. The standard deviation (σ) of the standard normal 
random functions will be produced within initial value ( σinitial) and a final value (σfinal) in every step. 
During simulation, a nonlinear alteration- modulation index (𝑛𝑛) is selected to reach certain satisfactory 
performance. In (5) shows how the standard deviation (σiter) at each iteration (iter) is calculated, where 
itermax is the maximum number of iterations. 
 

σiter =  (itermax−iter)n

itermax
n (σinitial − σfinal) + σfinal (5) 

 
− Competitive Exclusion: in this process and after maximum number of plants is reached, only the plants 

with lower fitness can pull out and produce seeds, others are being discarded. The process continues in 
each iteration till maximum iterations are reached and simply the plant with best fitness is the closest to 
the optimal solution. IWO algorithm flow chart is as indicated in Figure 1. 

 
 

 
 

Figure 1. IWO algorithm flow chart 
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4. RESULTS AND DISCUSSION 
Firstly, six commercial wind turbines with electrical output power range from 2 MW to 7 MW are 

modelled using single and composite cumulative density functions (CDFs) [24, 25]. Different commercial 
wind turbines with different manufactures are handled. The number of iterations made by IWO is 1000 
iterations to get designing parameters values of each cumulative density function model to minimize  
the RMSE of all models then RMSE of all models are compared. The model with the lowest RMSE is 
considered as the optimal one. Then, the cumulative density functions models are extended to model wider 
range of commercial wind turbines to check their validity of modelling. The other commercial wind turbines 
are categorized into the following ranges in a descending order:  
- Wind turbines with generation range from 600 KW to 1000 KW. 
- Wind turbines with generation range from 400 KW to 500 KW. 
- Wind turbines with generation range from 200 KW to 300 KW. 
 
4.1.  Wind turbines with generation range [2 MW-7 MW] 

Wind turbines modelled in this section are: Vestas (V80), Siemens (S82), Repower (RE82), Nordex 
(N90), Siemens (S107) and Vestas (V164). The rating of each wind turbine is as indicated in Table 2. In this 
section results showed that single weibull cumulative probability density function gives the minimum  
RMSE for all the six wind turbines, so it considered the optimal model in this generation power range. 
Weibull- gamma composite gives lower accuracy than single weibull models but it has higher accuracy than 
both single gamma and single log-normal cumulative density function (CDF) models. Log-normal density 
function model gives the lowest accuracy. The cumulative density functions models of each wind turbine and 
actual power curve by manufacturers reached through measured data points are sketched on same axes as 
shown in Figure 2. Weibull power curves give a very accurate approximations for the actual power curves as 
indicated in Figure 2, where  actual curves and weibull curves are very near to coincide. Error between  
actual power curves and all models has higher values around the rated speed point of each wind turbine and 
slightly after cut-in speed point of all wind turbines. In case of all wind turbines under using wiebull 
modelling curves, error takes very small values for wind speed values higher than wind turbines rated  
wind speeds. 
 
4.2.  Wind turbines with generation range [600 KW-1000 KW] 

Wind turbines modelled in this part are An-Bonus 1000/54, Enercon (E53), Leitwind  
(LTW77-1000), Leitwind (LTW80-850), Leitwind (LTW9-1000) and Vestas (V47) with rated powers shown 
in Table 3. Through results, weibull cumulative probability density (CDF) gives lowest RMSE and higher 
accuracy in four out of six of the wind turbines in this generation range. The wind turbines best modelled 
using weibull CDF are Leitwind (LTW77-1000), Leitwind (LTW80-850), (Leitwind LTW90-1000) and 
Vestas (V47). Weibull–gamma composite CDF gives lowest RMSE and higher accuracy in two out of six of 
the wind turbines in this range. The wind turbines best modelled using weibull–gamma composite is  
An-Bonus 1000/54 and Enercon (E53). Also from results, the single log-normal CDF is the worst model with 
highest RMSE values. Each wind turbine actual power curve and most accurate CDF model describing it are 
sketched on same graph as shown in Figure 3. 
 
4.3.  Wind turbines with generation range [400 KW-500 KW] 

Danish Wind Tech Windane (DWT34), Enercon (E40)/5.4, Turbowinds T400-34, Vestas (V39), 
Wespa 500/47 and Windflow 45-500 are the six wind turbines modelled in this part using different CDF 
models. As shown in Table 4, weibull–gamma CDF gives more accurate results with lower RMSE in four out 
of six of wind turbines in this power range. The wind turbines best modelled using weibull–gamma 
composite are Enercon (E40)/5.4, Turbowinds T400–34, Vestas (V39) and Windflow 45-500. Single weibull 
CDF gives lowest RMSE and higher accuracy in two wind turbines which are DWT34 and Wespa 500/47. 
The wind turbine (DWT34) has actual power curve differ than usual actual power curves where the data 
points with wind speeds lower than rated wind  speed are intermittent and not smooth. Weibull CDF is  
the best model for this wind turbine actual curve shape. Actual power curves and most accurate CDF model 
describing each turbine is sketched on same graph as shown in Figure 4. 

 
4.4.  Wind turbines with generation range [200 KW-300 KW] 

Wind turbines modelled in this section are: Leitwind LTW42 – 250, Windmaster Hmzwm300/25, 
Vergnet-C275/30, Vestas (V27), Wespa 200/31 and Norwin 29-STALL-225 (Norwin225). The rating of each 
wind turbine is as indicated in Table 5. All wind turbines in this part have cut-out speed (25 m/s) except 
Hmzwm300/25. Results showed that single weibull CDF gives the minimum RMSE for 50% of wind 
turbines under study in this section and weibull – gamma composite gives higher accuracy in the rest 50%. 
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The two wind turbines Wespa 200 and Norwin225 actual power curves are differ in shape compared to other 
four wind turbines as they have a maximum power point. Weibull-gamma composite is the best model for 
these two different curves shapes. Also single gamma CDF model gives higher accuracy than single wiebull 
CDF for modelling these two power curves with lower RMSE. In case of Hmzwm300/25 wind turbine,  
the best CDF to verify best approximations is weibull-gamma composite then gamma CDF wih intermediate 
approximations and better accuracy than weibull CDF in this case. Log-normal CDF models give the lowest 
accuracy on most of results. Actual power curves and most accurate CDF models describing each case are 
sketched on same graph as shown in Figure 5. 

 
 

5. CONCLUSION 
Results showed that single and composite CDF modelling for 24 commercial wind turbines with 

wide range of rated powers and rated wind speeds are good mathematical modelling tools which could be 
used for optimal site matching selections. In the range [2MW-7MW], single weibull CDF is the optimal 
model for all wind turbines under study. Weibull-gamma composite CDF modelling accuracy started to 
increase as turbine rated power decreases.  In the range [600KW-1000 KW], weibull-gamma composite CDF 
gives best modelling results for two out of six of wind turbines in this manufacturing power range.  
In the manufacturing power range [400KW-500 KW], four wind turbines have optimally modelled with 
weibull-gamma composite CDF. Both single weibull and weibull-gamma composite have equal share of 
optimal modelling for wind turbines with rated power range [200 KW-300 KW]. Weibull-gamma composite 
is the optimal model to describe wind turbines actual power curves which containing maximum power points 
like Wespa 200 and Norwin225. Weibull-gamma composite CDF proofs its superiority as a mathematical 
tool to best fit 37.5% of the 24 wind turbines power curves under study. 
 
 
APPENDIX 
 
 

Table 2. Single and composite cumulative density functions models result for power range 
 [2 MW–7 MW] 

Model Parameters V80 
(2000KW) 

S82 
(2300KW) 

RE 82 
(2050KW) 

N90 
(2300 KW) 

S107 
(3600 KW) 

V164 
(6995 KW) 

Weibull k 4.5786415 4.1929594 4.557548 4.1613744 4.6331647 4.3835995 
c 9.6420951 10 9.4212791 9.9995814 9.6739173 9.4674353 

RMSE 𝟐𝟐𝟐𝟐.𝟑𝟑𝟐𝟐𝟑𝟑𝟑𝟑 𝟏𝟏𝟏𝟏.𝟓𝟓𝟓𝟓𝟑𝟑𝟐𝟐 𝟐𝟐𝟐𝟐.𝟓𝟓𝟓𝟓𝟐𝟐𝟑𝟑 𝟏𝟏𝟓𝟓.𝟐𝟐𝟏𝟏𝟓𝟓𝟓𝟓 𝟓𝟓𝟐𝟐.𝟑𝟑𝟓𝟓𝟐𝟐𝟐𝟐 𝟓𝟓𝟏𝟏.𝟐𝟐𝟏𝟏𝟏𝟏𝟐𝟐 
Gamma a 8.8108292 9.0903382 8.6008824 9.0863184 8.8427663 8.6258787 

RMSE 77.0521 78.6602 70.6185 76.2077 129.9588 290.2388 
Log-normal µ 2.0895277 2.1019618 2.0692422 2.1266333 2.0833491 2.0347969 

σ 0.4979363 0.8466739 0.4084169 0.404273 0.4425731 0.5 
RMSE 177.7675 202.9696 121.4790 137.8745 261.9741 650.0082 

Weibull & 
Gamma 

Composite 

k 3.9559485 5.4499193 3.6516703 4.4999684 5.4750602 4.2696103 
c 9.6805698 9.9910549 9.5393878 9.9524426 9.5816836 9.4758624 
a 8.8530`694 8.7451374 8.6501366 9.2805681 7.4819563 8.8373 

w1 0.5066826 0.7247037 0.9908485 0.9920755 0.9997306 0.9772746 
RMSE 52.1191 39.5255 31.3164 27.3973 53.9815 65.3657 

 
 

Table 3. Single and composite cumulative density functions models result for power range  
[600 KW–1000 KW] 

Model Parameters V80 
(2000KW) 

S82 
(2300KW) 

RE 82 
(2050KW) 

N90 
(2300 KW) 

S107 
(3600 KW) 

V164 
(6995 KW) 

Weibull k 3.51399081 3.50978311 3.75144762 5.08338348 4.77729061 4.048118103 
c 10.1682039 9.11191916 7.91437529 7.21305636 6.86532481 9.66602728 

RMSE 12.3277 20.1612 𝟏𝟏𝟏𝟏.𝟐𝟐𝟐𝟐𝟑𝟑𝟐𝟐 𝟏𝟏𝟐𝟐.𝟐𝟐𝟐𝟐𝟐𝟐𝟏𝟏 𝟏𝟏𝟏𝟏.𝟓𝟓𝟐𝟐𝟑𝟑𝟑𝟑 𝟓𝟓.𝟑𝟑𝟑𝟑𝟐𝟐𝟑𝟑 
Gamma a 9.15195429 8.19993779 7.14830941 6.62738716 6.28817718 8.767931229 

RMSE 27.6991 33.9007 45.4558 43.4489 55.9566 17.2480 
Log-normal µ 2.17761678 2.08182163 1.84885661 1.87383548 1.71654983 2.163028368 

σ 0.27096470 0.20919276 0.48594758 0.19408070 0.49933960 0.128639362 
RMSE 28.6595 33.3016 79.0039 30.5036 83.3064 51.5041 

Weibull & 
Gamma 

Composite 

k 4.67171616 5.19487854 4.57082859 5.39986899 5.49695513 5.486421942 
c 10.3782582 8.99324919 7.84314606 6.88081072 6.91339074 9.602042169 
a 8.71934719 7.90422764 7.13052487 6.88631243 6.07089206 8.529169868 

w1 0.55869607 0.79811014 0.49833116 0.47644887 0.69884878 0.713736952 
RMSE 𝟑𝟑.𝟑𝟑𝟏𝟏𝟐𝟐𝟐𝟐 𝟏𝟏𝟑𝟑.𝟓𝟓𝟑𝟑𝟓𝟓𝟐𝟐 23.9242 23.9750 18.9921 12.3724 
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V80 – Actual power curve and CDF power models 

 

 
S82 – Actual power curve and CDF power models 

 

 
RE82 – Actual power curve and CDF power models 

 
Figure 2. Wind turbines actual power curves and CDF power models with output power range [2 MW-7 MW] 
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N90 – Actual power curve and CDF power models 

 

 
S107 – Actual power curve and CDF power models 

 

 
V164 – Actual power curve and CDF power models 

 
Figure 2. Wind turbines actual power curves and CDF power models with output power range [2 MW-7 MW] (continue) 
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Figure 3. Wind turbines actual power curves and their optimal CDF models for power range  
[600 KW-1000 KW] 

 
 

Table 4. Single and composite cumulative density functions models results for power range  
[400 KW-500 KW] 

Model Parameters DWT34 
(400 KW) 

E40  
(500 KW) 

T400 
(400KW) 

V39 
(500KW) 

Wespa500 
(500KW) 

Windflow45 
(500KW) 

Weibull k 5.07686715 5.08680599 5.44584277 3.95460524 5.30386838 3.755277291 
c 10.9005567 9.61051239 9.96184430 10.1185051 8.47204202 9.443184015 

RMSE 𝟐𝟐.𝟐𝟐𝟑𝟑𝟓𝟓𝟑𝟑 12.9906 12.6138 4.9861 𝟏𝟏𝟑𝟑.𝟑𝟑𝟑𝟑𝟑𝟑𝟓𝟓 13.3432 
Gamma a 10.0191590 8.833068618 9.18984033 9.16575333 7.80638918 8.526807326 

RMSE 16.6081 20.4273 14.5984 15.2630 27.1224 22.6648 
Log-normal µ 2.22099442 2.02428298 2.05734850 2.05878172 1.95173058 2.056619633 

σ 0.41683316 0.58071723 0.59738347 0.58954574 0.45376877 0.413980454 
RMSE 31.8266 55.6390 46.4912 56.1114 42.2353 35.8623 

Weibull & 
Gamma 

Composite 

k 5.44983184 5.24910190 4.79628596 4.40221460 4.43987452 4.070479611 
c 10.8146725 9.57014069 10.1764332 10.2524061 8.76400099 9.354395881 
a 10.1737986 8.87547077 8.70697015 8.44657368 7.10032993 8.689891341 

w1 0.79604839 0.67676089 0.78859391 0.79961165 0.79156114 0.799203941 
RMSE 7.3912 𝟏𝟏𝟏𝟏.𝟑𝟑𝟏𝟏𝟐𝟐𝟑𝟑 𝟓𝟓.𝟓𝟓𝟏𝟏𝟓𝟓𝟐𝟐 𝟑𝟑.𝟑𝟑𝟓𝟓𝟑𝟑𝟑𝟑 12.2600 𝟏𝟏𝟏𝟏.𝟏𝟏𝟑𝟑𝟑𝟑𝟓𝟓 

 
 

Table 5. Single and composite cumulative density functions models results for power range  
[200 KW-300 KW] 

Model Parameters LTW42  
(250 KW) 

Hmzwm300 
(300 KW) 

Vergnet275 
(275 KW) 

V27 
(225KW) 

Wespa200 
(200 KW) 

Norwin225 
(225KW) 

Weibull k 4.0697689 3.56446705 4.73408344 3.93238423 5.2200093 4.0108782 
c 7.3715829 11.9992984 9.44229627 9.71250815 9.4369866 11.004852 

RMSE 𝟏𝟏.𝟑𝟑𝟏𝟏𝟑𝟑𝟏𝟏 15.5949 𝟓𝟓.𝟑𝟑𝟐𝟐𝟐𝟐𝟑𝟑 𝟏𝟏.𝟏𝟏𝟐𝟐𝟓𝟓𝟏𝟏 7.7425 5.5275 
Gamma a 6.6875637 10.8173660 8.63979768 8.79714262 8.6861505 9.9749357 

RMSE 15.5454 14.4286 14.0277 7.0280 6.4450 4.0539 
Log-normal µ 1.8802266 2.29442812 1.97136886 2.01716517 1.9512223 2.2091740 

σ 0.2010117 0.49575513 0.64734251 0.58253198 0.6993891 0.4367508 
RMSE 10.7015 34.5871 37.5644 23.9209 25.1937 12.3601 

Weibull & 
Gamma 

Composite 

k 3.6365983 5.49392529 3.67535431 4.78120402 5.4180348 3.8489197 
c 11.581524 11.9992975 9.73174163 9.76929944 9.5559157 11.797809 
a 7.0368648 9.99934563 8.32769061 8.33768211 8.3211904 9.6720970 

w1 0.6875333 0.75 0.69122968 0.74795646 0.7380425 0.3043273 
RMSE 46.4423 𝟓𝟓.𝟓𝟓𝟏𝟏𝟐𝟐𝟐𝟐 10.9273 2.3653 𝟓𝟓.𝟐𝟐𝟏𝟏𝟓𝟓𝟓𝟓 𝟑𝟑.𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 
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Figure 4. Wind turbines actual power curves and their optimal CDF models for power range  
[400 KW-500 KW] 

 
 

     
 

Figure 5. Wind turbines actual power curves and their optimal CDF models for power range  
[200 KW-300 KW] 
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