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ABSTRACT

The wide range of step-up and step-down input-output voltage characteristic of the
Ćuk converter makes it a good candidate to interface photovoltaic arrays in both clas-
sical and distributed maximum power point tracking systems. Because its two inductor
structure, Ćuk converters have continuous input and output currents, which reduce the
additional filtering elements usually required for interfacing dc/dc converter topolo-
gies. However, PV systems based on Ćuk converters usually do not provide formal
proofs of global stability under realistic conditions, which makes impossible to en-
sure a safe operation of the PV installation. Therefore, this paper proposes a high-
performance sliding-mode controller for PV systems based on Ćuk converters, which
regulates the PV voltage in agreement with the commands imposed by a MPPT algo-
rithm, rejecting both load and environmental perturbations, and ensuring global stabil-
ity for real operation conditions. Finally, the performance of the regulated PV system
is tested using both simulations and experiments.
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1. INTRODUCTION
The development of PV systems is an active topic due to the use of those generation systems in many

types of electrical installations: i) large power plants [1], ii) small installations for both grid-tie and stand-alone
applications [2–4], and iii) industrial installations. In some cases, it is necessary to connect the PV installation
to the AC-grid and in other cases to stand alone loads or DC-buses. The first ones usually adopt step-up con-
verters to match the low-voltage provided by the PV modules with the high-voltage required by commercial
grid-connected inverters [5–10]. Instead, the second systems have more diverse requirements; for example,
PV systems interacting with stand-alone AC loads usually adopt step-up converters [5, 11–13], but PV sys-
tems designed for battery charging or to interacting with DC loads often use step-down converters [14, 15].
Figure 1 depicts some of those types of PV systems: Type I uses a step-up dc/dc converter to perform the max-
imum power point tracking (MPPT) control on the PV source, which ensures the extraction of the maximum
power from the PV string. Then, a dc/ac converter (inverter) injects such a PV power into the grid; in this
type of PV system usually vpv < vdc. Type II has a similar structure, but the dc/ac converter interacts with an
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AC load, which requieres a different control algorithm for the inverter. Type III does not use dc/ac converters;
instead, the step-down dc/dc converter interacts with a battery or DC load, hence vpv > vdc.
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Figure 1. Types of PV systems

Moreover, there exists a novel PV system structure named distributed maximum power point track-
ing (DMPPT) [6, 16–18], which is designed to reduce the detrimental impact of the partial shading: such a
phenomenon triggers the activation of the bypass diodes installed in commercial PV panels, which forces the
shaded modules to operate at the second quadrant (with negative voltage); this condition produces a reduction
in the power production and a health degradation on the shaded PV modules [13]. Those DMPPT systems have
dc/dc converters isolating each PV module, hence each PV module operates at the corresponding maximum
power point (MPP) independent of the shading condition of the other modules. This type of PV system, de-
picted in Figure 1 as Type IV, exhibits a series-connection of the dc/dc converters outputs to produce the high
voltage required by the dc/ac converter. Such a series-connection causes that the dc/dc converters must to share
the voltage imposed at the input of the dc/ac converter. Therefore, with a low number of PV modules, each
dc/dc converter must support an output voltage higher than the input voltage, hence requiring a step-up voltage
operation. Instead, with a high number of PV modules, each dc/dc converter must withstand an output voltage
lower than the input voltage, hence requiring a step-down voltage operation. Finally, it is also possible that, for
a particular number of PV modules, each dc/dc converter will exhibit the same voltage at both input and output
terminals.

Therefore, PV systems require both step-up and step-down dc/dc converters depending on the ap-
plication. Moreover, DMPPT systems require dc/dc converters able to support both step-up/down operation
conditions. This type of problem has been addressed using the Ćuk converter [19–21], which can operate with
output voltages lower, equal, or higher than the input voltage. Moreover, the Ćuk converter provides contin-
uous input and output current, which reduces the size of both the input and output filters required to provide
high-quality power to the load. Those characteristics have made the Ćuk converter a suitable option to design
PV systems. For example, the works reported in [19, 21–25] propose PV systems based on Ćuk converters de-
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signed to supply resistive loads. However, such a design choice is not applicable to grid-connected systems, in
which the converter load is the dc-link between the MPPT converter and the inverter. Another problem of those
solutions is the lack of a capacitor between the PV module and the converter, hence all the switching ripple of
the converter is propagated to the PV module, which produces additional power losses. Finally, the PV voltage
is not regulated, which allows the propagation of the perturbations present at the dc-link into the PV module
terminals. In contrast, in [23, 25] is adopted a MPPT fuzzy controller that could mitigate, in some degree, the
effects of those perturbations, but formal stability analyses are not given, hence it is not a safe solution. A
similar approach was proposed in [26], but the PV module is modeled as a voltage source, which significantly
reduces the validity of the analyses; and similar to the previous cases, the PV voltage is not regulated, thus
degrading the MPPT performance when perturbations occur [17].

A PV system with similar limitations was proposed in [27] for injecting power to the grid. As in the
previous cases, the load of the Ćuk converter is considered as a constant resistance, which does not accurately
represent the input impedance of an inverter. Moreover, the mathematical analyzes consider the PV module as
a constant voltage source, which is a strong simplification. Therefore, both modeling considerations are not
realistic enough for grid-connected systems. A similar approach was used in [28], where the load is considered
as a constante resistance. In this case the PV module equations are described, but those expressions are not
used in the Cuk converter analysis. Finally, such a paper does not considers any dynamic analysis or formal
stability proof, hence it is not demonstrated the system safe operation.

A work representing the source and load of the Ćuk converter with realistic models is reported in
[29]. The system is formed by both wind and PV generators, and it is controlled with an MPPT based on an
ant colony optimization algorithm and a fuzzy controller for a three-phase inverter. The MPPT operates at
the Ćuk converter for tracking the maximum power point, but no formal analysis of the stability is provided.
In fact, the Ćuk converter is modeled with static equations without accounting for the dynamic behavior of
the power system, which makes difficult to guarantee both the global stability of the system and the rejection
of perturbations caused by the inverter or environmental conditions. On the other hand, the work reported
in [30] improves the PV systems by controlling the Ćuk converter using a sliding-mode controller. Such a
control approach provides fast dynamic responses and robustness to grid-connected perturbations. However,
the mathematical analyses of that work adopt inaccurate models for both the load and the PV source: a resistive
load and voltage source, respectively. Moreover, the conditions for global stability are not discussed.

The Ćuk converter has also been used for designing industrial PV applications, such as the wa-
ter pumping systems reported in [31–33]. The devices developed in [31, 32] implement an incremental-
conductance MPPT algorithm, but no formal regulation of the PV voltage is implemented. Therefore, the
perturbations in the motor could spread to both the PV module and the MPPT controller. In [33], in addition
to the above limitations, a fuzzy MPPT controller was designed considering a linearized model of the Ćuk
converter, which makes difficult to guarantee the global stability of the system at multiple operation points.

The Ćuk converter has been also used for DMPPT applications with several limitations. For example,
the work reported in [34] demonstrates the advantages, in terms of power production, of a DMPPT system
based on Ćuk converters. However, such a work does not consider any control system to compensate the load
perturbations, hence it is not evident that such a system will be stable under real operation condition. Similarly,
the work reported in [35] proposed a DMPPT system with PI voltage controllers, which are unable to ensure
global stability. Moreover, the PV module is represented by a Thevenin equivalent, hence the analyses are valid
just at a given operating point. Finally, the work adopts a cascade MPPT algorithm based on the perturb-and-
observe (P&O) algorithm. Another DMPPT approach, based on the current equalization technique, is proposed
in [36, 37]. The main disadvantage of such a technique is the lack of voltage conversion ratio, since the string
voltage is imposed by the MPP voltage of the modules. The work in [36] adopts a classical programmed current
control, while the work in [37] does not consider any formal controller. Therefore, both approaches are not
robust to perturbations generated by a grid-connected inverter.

In terms of PV systems control, Ćuk converters have been regulated using both linear and non-linear
techniques. That is the case of the Ćuk converter used for the micro-inverter reported in [38], which adopts
a PI controller and a cascade MPPT algorithm. However, in that work the load is modeled with a constant
impedance, which is not accurate to represent a grid-connected power system. Another approach was pre-
sented in [39], which uses the jump-parameter linear-optimal-control technique to regulate the Ćuk converter.
Unfortunately, as in the previous cases, the load and PV model are simplified to a resistance and voltage source,
respectively. PV systems based on Ćuk converters have been also controlled using more complex control tech-
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niques, such as the model predictive controller reported in [40]. The main problems of such a solution are the
inaccurate PV source model (constant voltage) and the particular load model (constant resistance), which are
not realistic for practical applications. Moreover, the is not a formal stability analysis, hence a safe operation
is not demonstrated.

In conclusion, the following problems are present in the PV systems based on Ćuk converters reported
in literature:
− Some solutions adopt non-realistic PV source and load models for the converter analysis, hence the

system performance and stability are not ensured
− Other solutions do not consider the converter regulation using a high-bandwidth controllers able to miti-

gate perturbations. Therefore, load perturbations occurring in grid-conned PV systems [41] and DMPPT
systems [17, 13] will be transferred to the source terminals, which could lead the MPPT controller to an
unstable and dangerous operation [42]

− The solutions accounting for high-bandwidth controllers do not provide a global stability proof. Some
of those solutions are based on linear controllers, which are not able to ensure the same performance
and stability in all the operation range [43, 44], other solutions do not provide any stability analysis.
Therefore, no stable and safe operation is ensured

This paper provides a solution solving all those problems, a non-linear controller ensuring global
stability in all the operation range of the Ćuk based PV system, which is aimed at rejecting both the load and
environmental perturbations to ensure a stable and safe operation. Such a controller is designed using realistic
PV source and load models for the converter analysis, which ensures the solution applicability to stand-alone,
grid-connected and DMPPT PV systems. The proposed converter analysis takes into account the effect of the
non-linear behavior of the PV panel into the PV system, and the adopted load model is in agreement with the
electrical behavior of a capacitive dc-link regulated by an additional device. The proposed controller is based
on the sliding-mode theory, which has been successfully used [43] to develop a non-linear controller for a PV
system based on a boost converter. Finally, the transversality, reachability and equivalent control conditions
of the sliding-mode controller are analyzed in detail to provide a global stability proof. The remain of the
paper is organized as follows: Section 2 presents the analysis of the PV system and the design of the proposed
sliding-mode controller, describing also the stability conditions. Section 3 presents the performance evaluation
of the system, under realistic conditions, using detailed circuital simulations. Then, section 4 presents the
experimental validation of the solution using a proof-of-concept prototype. Finally, the conclusions of the
work close the paper.

2. DESIGN OF THE PROPOSED SLIDING-MODE CONTROLLER
The circuital scheme of the PV system based on the Ćuk converter is presented in Figure 2. Such a

scheme considers the PV string lumped into a single PV model scaled in current, which is a widely adopted
model [44]. This modeling strategy enables to generalize the system analysis for any size of the PV array, i.e.
large arrays used in PV systems Type I, II and III or the single modules used in PV systems Type IV.
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Figure 2. Circuital scheme of the PV system based on a Ćuk converter

The model also considers the output voltage vdc regulated by an external device: in systems Type I,
II and IV the grid-connected inverter usually regulates the dc voltage vdc at the input terminals [17, 44], while
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in systems Type III the battery imposes the vdc voltage [14, 43]. The Ćuk converter provides inverse polarities
to the input terminals with respect to the output voltage, hence the PV string (or module) is connected as it is
shown in Figure 2.

2.1. Mathematical model of the PV system
The Ćuk converter is controlled using a binary signal u, which defines the state of the MOSFET

(u = 1 is closed and u = 0 is open; its complementary signal is ū = 1 − u). The signal u is generated by a
sliding-mode controller (SMC), which follows the command vr provided by a MPPT controller. In this cascade
structure the MPPT controller defines the optimal PV voltage needed to extract the MPP power from the PV
source, while the SMC ensures the stable operation of the PV system in such an optimal PV voltage, rejecting
also perturbations. Applying the flux balance principle in the inductors and the charge balance principle in the
capacitors [45], switched differential equations are obtained is being as (1)-(4):

Cpv
dvpv
dt

= ipv − iL1 (1)

Ci
dvci
dt

= iL1 · ū− iL2 · u (2)

L1
diL1
dt

= vpv − vci · ū (3)

L2
diL2
dt

= vci · u− vb (4)

Then, the averaged differential equations are obtained by averaging the switched equations within the
switched period [45] is being as (5)-(8):

Cpv
dvpv
dt

= ipv − iL1 (5)

Ci
dvci
dt

= iL1 · (1− d)− iL2 · d (6)

L1
diL1
dt

= vpv − vci · (1− d) (7)

L2
diL2
dt

= vci · d− vb (8)

In the previous equations d represents the duty-cycle of the converter. Finally, by applying the steady-
state analysis of dc/dc converters [45], i.e. considering the derivatives of (5)-(8) equal to zero, static expressions
are obtained as being as (9)-(12):

Ipv = IL1 (9)

IL1 = IL2 ·
D

(1−D)
(10)

Vci =
Vpv

(1−D)
(11)

Vci =
Vb
D

(12)

The previous equations use capital variables to represent steady-state values.
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2.2. Controller surface and stability
The main objective of the sliding-mode controller (SMC) is to impose the PV voltage value defined

by the MPPT controller [41, 44, 46]. Therefore, the SMC must to drive the Ćuk semiconductors to reject the
perturbations generated by both the load and the environmental conditions. This paper proposes the switching
function ψ and the sliding surface φ given in (13) and (14), respectively.

ψ = K · (vpv − vr)− iCpv
(13)

φ = {ψ = 0} (14)

In (13), K is a constant that must be designed to impose the desired dynamic behavior to the PV
voltage. Moreover, iCpv

represents the current of the capacitor Cpv that defines the PV voltage, while vr is the
reference imposed by the MPPT controller. To ensure both the viability and stability of the sliding surface (14)
it is needed to perform two tests [17], transversality condition and reachability conditions. It must be noted that
the equivalent control condition, in the context of dc/dc converters, is equivalent to the reachability conditions
as it was demonstrated by Sira-Ramirez in [17].

The previous analyses require the derivative of the switching function (13) is being as (15):

dψ

dt
= K · dvpv

dt
− dipv

dt
+
diL1
dt
−K · dvr

dt
(15)

Such a derivative takes into account that iCpv = ipv–iL1. Then, replacing the differential (1) and (3)
into (15) leads to the explicit expression given in (16).

dψ

dt
= K · ipv − iL1

dt
− dipv

dt
+
vpv − vci · ū

L1
−K · dvr

dt
(16)

The derivatives of both PV current dipvdt and reference voltage dvr
dt are discussed afterwards.

2.2.1. Transversality condition
The transversality condition verifies the presence of the control signal u into the switching function

derivative, which is needed to modify the trajectory of the system state-variables. The mathematical represen-
tation of this condition is given in (17).

d

du

(
dψ

dt

)
6= 0 (17)

Replacing expression (16) into (17) leads to expression (18):

d

du

(
dψ

dt

)
=
vci
L1

> 0 (18)

Since both vci and L1 are always positive, as it is demonstrated in (12), the proposed SMC fulfills the transver-
sality condition.

2.2.2. Reachability conditions
The reachability conditions verify the capability of the SMC to converge into the desired sliding

surface (14). The reachability conditions are the following ones: i) if the system operates under the surface,
the switching function derivative must be positive to reach the surface; and ii) if the system operates above the
surface, the switching function derivative must be negative to reach the surface [17]. Moreover, the sign of
the transversality condition also affects the reachability conditions: a positive transversality value implies that
u = 1 produces a positive value of dψ

dt ; while a negative transversality value implies that u = 1 produces a
negative value of dψdt [17]. Therefore, taking into account that (18) is a positive value, the following reachability
conditions must be fulfilled:
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lim
ψ→0−

dψ

dt

∣∣∣∣
u=1

> 0 (19)

lim
ψ→0+

dψ

dt

∣∣∣∣
u=0

< 0 (20)

Replacing (16) into (19) leads to:

K · ipv − iL1
Cpv

− dipv
dt

+
vpv
L1
−K · dvr

dt
> 0 (21)

However, the small-ripple approximation principle [45] establishes that the capacitor current, in a
second-order filter, corresponds to the current ripple in the inductor. Examining the circuital scheme of
Figure 2 reveals that the node connecting the PV source, the capacitor Cpv and the inductor L1 form a second
order filter. This is verified by (9), which confirms that the steady-state current of both the PV source and
the inductor L1 are equal, hence the steady-state value of Cpv current is cero. Therefore, the only component
present into the current of Cpv is the ripple of L1.

Under the light of the previous analysis, the Cpv current is given in (22), where δiL1(t) is the time-
varying current ripple in L1. The maximum and minimum values of δiL1(t) correspond to the current ripple
magnitude in L1, which is denoted by ∆iL1.

iCpv
= ipv − iL1 = δiL1(t)

−∆iL1 < δiL1(t) < ∆iL1

}
(22)

Finally, expression (21) is modified by considering that iCpv = ipv − iL1, replacing also the value
obtained in (22) for iCpv , to define a first limitation on dvr

dt :

dvr
dt

>
−1

K
·
(
dipv
dt
− vpv
L1
−K · δiL1

Cpv

)
(23)

Therefore, dvrdt must to fulfill expression (23) to guarantee the surface reachability. The evaluation of
such a limit must be performed at the worst-case conditions, i.e. the most restrictive values:

dipv
dt = max

(
dipv
dt

)
> 0

δiL1 = max(δiL1) = ∆iL1 > 0

}
(24)

Similarly, the second reachability condition must be also analyzed. For that case, expression (16) is
replaced into (20) is being as (25):

K · ipv − iL1
Cpv

− dipv
dt

+
vpv − vci

L1
−K · dvr

dt
> 0 (25)

Expression (24) is also modified by considering that iCpv
= ipv− iL1 and the iCpv

value given in (22)
is being as (26):

dvr
dt

<
−1

K
·
(
dipv
dt
− vpv − vci

L1
−K · δiL1

Cpv

)
(26)

Then, dvrdt must to also fulfill expression (26) to guarantee the surface reachability. The evaluation of
such a second limit must be performed at the worst-case conditions, i.e. the most restrictive values:

dipv
dt = min

(
dipv
dt

)
< 0

δiL1 = min(δiL1) = −∆iL1 < 0

}
(27)
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In conclusion, the reference signal provided by the MPPT algorithm must to fulfill the dynamic re-
strictions given by (23)-(24) and (26)-(27) to ensure the reachability conditions. In practice, those dynamic
restrictions correspond to a slew-rate limitation of the reference signal.

2.2.3. Closed-loop dynamics
In dc/dc converter applications, the stability of a SMC is ensured by both the transversality and reacha-

bility conditions; this taking into account that the equivalent control condition is equivalent to both reachability
conditions [17]. Such stability ensures the existence of the sliding-mode, which imposes a system trajectory
parallel to the surface and with a null steady-state error [17]. Those conditions are formalized is being as (28):{

ψ = 0 ,
dψ

dt
= 0

}
(28)

The previous conditions correspond to the closed-loop behavior of the PV system under the action of
the SMC. Replacing expressions (1) and (13) into ψ = 0, and taking into account that Cpv

dvpv
dt = iCpv

=
ipv − ipv , the closed-loop expression is obtained is being as (29):

dvpv
dt

=
K

Cpv
· (vpv − vr) (29)

Such an expression defines the closed-loop behavior of the PV voltage. Therefore, (29) is used in the
following section to calculate a value of K that imposes the desired behavior to the PV system.

2.3. Design of the dynamic response
Expression (29) put into evidence that the closed-loop behavior of the PV voltage is equivalent to a

linear system. Hence, expression (29) is analyzed in Laplace domain as being as (30):

vpv(s)

vr(s)
=

1

1− Cpv

K · s
(30)

The most commonly used MPPT algorithm for PV systems is the perturb and observe (P&O) solution
[13], which produces step-like changes on the PV voltage to track the optimal value that maximizes the power
production. The P&O is characterized by two parameters: the perturbation size ∆po and period Ta. Therefore,
the dynamic response of the PV voltage corresponds to a first-order step response, in which the step magnitude
is equal to ∆po:

vpv(s) = ∆po

(
1

s
− 1

s− K
Cpv

)
(31)

From the previous expression it is noted that a stable (negative) pole is obtained only for negative
values of K. Hence, the restriction must be fulfilled as being as (32):

K < 0 (32)

Translating expression (31) to the time domain:

vpv = ∆po

(
1− e

K
Cpv
·t
)

(33)

Then, expression (33) describes the closed-loop behavior of the PV voltage under the action of both
the SMC and the P&O algorithm. However, the P&O requires a stable PV power to detect the best direction of
the next perturbation, as it is explained in [13]. This means that the perturbation period Ta must be longer than
the settling-time ts of the PV system, otherwise the P&O controller will be unstable; such an analysis can be
found in [13]:
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Ta > ts (34)

Therefore, K must be designed to ensure that condition (34) is fulfilled. This is done by calculating
the settling time of the PV voltage from (33), which is given in (35) for the classical band of 2%:

ts = 4 ·
(
−Cpv
K

)
(35)

Finally, replacing (35) into (34) gives:

K ≤ −4 · Cpv
Ta

(36)

In conclusion, K must to fulfill the limit imposed by (36) to ensure a stable PV system. However, the
value of K could be tuned to reduce the settling-time of the PV system, which eventually makes possible to
reduce the P&O period, hence providing a faster tracking of the optimal PV voltage.

2.4. Practical implementation
Theoretical SMCs impose infinite switching frequency [14], which could destroy the semiconductor

devices. Therefore, SMCs for dc/dc converters are implemented using hysteresis comparators to limit the
switching frequency [14]. The hysteresis band ±H is placed around the desired value of the proposed sliding-
surface to limit the switching frequency, which transforms (14) is being as (37):

φ = {|ψ| < H} (37)

Considering the reachability conditions given in (19) and (20), the control law needed to drive the
system into the hysteresis band is being as (38):

u = 1 if ψ < −H
u = 0 if ψ > +H

}
(38)

The switching circuit designed to implement the control law given in (38) is depicted in Figure 3,
which is based on two comparators and a Set-Reset Flip-Flop. In addition, Figure 3 also presents the calculation
of the switching function ψ from the measured variables: the PV voltage and Cpv current. Finally, the figure
also depicts the digital implementation of both the P&O algorithm and the slew-rate limitation (SR) for the
voltage reference, which is needed to fulfill the reachability conditions (23)-(24) and (26)-(27).

+

-

+

-

-H

+H

Ѱ
S

R

Q u

Flip-Flop

k

vpv

vr

+

-

iCpv

-

+

P&O

SR

vpo

vpv

ipv

Switching circuitDigital

processor

Figure 3. Implementation of the SMC

Moreover, from expressions (13) and (37) it is noted that −H < ψ < H , which corresponds to
−H < K · (vpv − vr) − iCpv < H . However, under a correct operation of the SMC, the PV voltage is equal
to the reference value, i.e. vpv = vr, which leads to practical condition is being as (39):
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−H < iCpv
= δiL1(t) < H (39)

Finally, in section 2.2.2 the maximum and minimum values of δiL1(t) where calculated as ∆iL1 and
−∆iL1, respectively. But expression (39) also reports the maximum and minimum values of δiL1(t), which
corresponds to −H and H , respectively. Therefore, the magnitude of the current ripple in the inductor L1 (and
capacitor Cpv) is equal to H , and the limit values of δiL1(t) are:

min (δiL1) = −∆iL1 = −H
max (δiL1) = ∆iL1 = H

}
(40)

In practice, the switching circuit can be implemented using a TS-555 integrated circuit as it is de-
scribed in [14], or using the integrated circuit CD4043N as it will be presented in section 4. Similarly, the
calculation of ψ could be implemented with operational amplifiers, digital processors, or with a combination
of both circuits. Finally, the slew-rate limitation and P&O algorithm can be integrated into a single program
inside a digital microprocessor as it is reported in [14].

3. RESULTS AND DISCUSSION
To test the performance of the proposed SMC, the following parameters are considered: Cpv = Ci =

44 µF , L1 = L2 = 100 µH , vb = 18 V . Moreover, H = 500 mA was selected to ensure a maximum
switching frequency equal to 85 kHz. The PV system considers a BP585 PV panel [17] as PV source, which is
modeled using the ideal single diode model given in (41) [44], where S represents the solar irradiance measured
in W/m2, with the following parameters: A = 896.8 nA, B = 0.7029 V −1 and ks = (5/1000) A/(W/m2).

ipv = isc −A · eB·vpv , isc = ks · S (41)

Figure 4 presents the polarization and power curves of the BP585 PV panel under five different ir-
radiance conditions. The figure also depicts the MPP at each irradiance value. Such data put into evidence
the requirement of using a MPPT algorithm to track the MPP under time-varying environmental conditions.
As described before, this paper adopts the P&O algorithm, which parameters were calculated following the
procedure proposed in [17], obtaining Ta = 1 ms and ∆po = 0.3 V .
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Figure 4. Polarization and power curves of the BP585 PV panel

The first step, for the PV system design, is to apply (35)-(37) to impose a settling-time ts equal to
500 µs, which is shorter than Ta, obtaining K = −352 mA/V . Moreover, to test the dynamic restrictions
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given by (23)-(24) and (26)-(27), it is considered a maximum variation in the irradiance equal to 1 sun per
millisecond: this corresponds to a transition from the maximum irradiance possible (1 kW/m2) to a total
shade within 1 ms. Such a transition is translated into a change in the PV current from 5 A to 0 A within
1 ms, hence:

min
(
dipv
dt

)
= −5 kA/s

max
(
dipv
dt

)
= +5 kA/s

 (42)

In addition, from (41) it is calculated that ∆iL1 = 500 mA. Based on that value, and the ones given
in (42), the maximum and minimum slew-rates for vr, calculated from (23)-(24) and (26)-(27), are:

−0.4858 V/µs <
dvr
dt

< 0.4858 V/µs (43)

Such a restriction is imposed using a voltage slew-rate limiter with a maximum derivative lower than
0.4858 V/µs. This functional block is usually implemented inside the microprocessor executing the P&O
algorithm, as it was discussed in the previous section. For the simulations performed in this section, the
maximum slew-rate of vr was set equal to 0.4850 V/µs, which ensures that the reachability conditions are
fulfilled. Figure 5 presents the circuital simulation of the PV system, under the action of both the P&O and
SMC, for two different irradiance conditions: 1000 W/m2 and 400 W/m2.
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Figure 5. Dynamic response of the PV voltage

In the first case (top-left) the P&O imposes a positive change on the PV voltage reference vr, which
is successfully tracked by the PV voltage vpv under the desired settling time ts = 500 µs. The figure (top-left)
also depicts the theoretical PV voltage waveform predicted by (33), which puts into evidence the correctness
of the sliding-mode analysis and design. The figure at the bottom-left presents the switching function of the
SMC operating at 1000 W/m2, which is constrained inside the hysteresis band of±500 mA. Such a condition
verifies that the SMC exhibits a stable operation. In the second case (top-right), the P&O imposes a negative
change on vr, which is again successfully tracked by vpv under the desired ts = 500 µs. The figure at the
bottom-right presents the switching function of the SMC at 400 W/m2, which again is constrained inside the
±500 mA hysteresis band. Therefore, the simulations reported in Figure 5 verify the stability of the SMC
under both dynamic and static conditions. Moreover, the simulation also verifies the correctness of the design
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equations, and the ability of the SMC to impose the same dynamic performance to the PV voltage under
different irradiance conditions.

Figure 6 presents another simulation of the PV system, which considers changes on the irradiance
conditions: the irradiance reaching the BP585 changes from 1000 W/m2 to 400 W/m2 at 13 ms. The PV
voltage exhibits the classical three-point behavior that ensures a stable operation of the P&O algorithm, hence
it reports that the PV system operates at the MPP. In fact, Figure 4 confirms that the MPP power of the BP585
is equal to 85.17 W at 1000 W/m2 and 31.66 W at 400 W/m2. Hence, the simulation results reported in
Figure 6 validates the design of both the P&O algorithm and SMC.
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Figure 6. PV system performance under irradiance changes

In addition, that simulation also considers a sinusoidal perturbation at the dc/dc converter output
terminals. Such a perturbation is present in any PV system featuring an inverter connection, which is caused
by the difference between the DC power extracted from the PV source and the AC power injected by the
inverter; further details of such a phenomenon are given in [38]. The simulation results given in Figure 6
show a satisfactory rejection of the perturbations at the dc/dc converter output terminals, hence the stability
and performance of the SMC under perturbations is verified. In conclusion, the performance of both the P&O
algorithm and SMC are validated by the results given in Figure 6, the PV voltage tracks the MPP of the
PV source after the irradiance changes, and at the same time, perturbations imposed at the converter output
terminals are rejected. Moreover, the simulations were performed for both step-down and step-up voltage
operations since the converter output voltage reaches values lower and higher than the PV voltage.

4. EXPERIMENTAL VALIDATION
An experimental prototype was developed to validate the proposed solution. The prototype is formed

by a PV source, a Ćuk power converter, the control stage and a DC bus; the circuital scheme of the prototype is
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depicted in Figure 7. The PV source is emulated using a 62050 H-600 S PV emulator from CHROMA, which
is configured with the characteristics of a BP585 PV panel. The DC link is emulated using a four quadrant
electronic load BOP 50-20GL from KEPCO, which was configured in controlled voltage mode to emulate the
perturbations imposed at the converter output terminals by a traditional grid-connected inverter. This proof-
of-concept platform includes an additional capacitor Co connected in parallel between the converter and the
electronic load; such a capacitor is needed to avoid damages in the electronic load due to the high-frequency
current ripple generated by the switching converter. However, the voltage of that capacitor is imposed by the
electronic load, therefore it does not introduce an additional state and it is not considered into the mathematical
and circuital analyses.
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Figure 7. Circuital scheme of the experimental prototype

The elements used to construct the Ćuk converter were: 2318−V −RC inductors from Bourns Inc [47]
with L1 = 330 µH; B32524R0476K000 capacitors from EPCOS AG [48] with Cpv = Ci = Co = 22 µF ;
IRF3710 MOSFETs from International rectifier [49]; and MOSFET drivers A3120 from avago technology.
PV current and capacitor current sensors were implemented with WSL12065L000FEA18 shunt-resistors
from Vishay Dale [50], and using current shunt monitors AD8210 from analog device [51] to provide a high-
bandwidth measurement. In addition, the PV voltage was measured using a voltage divider.

The control stage of the SMC was formed by both analog and digital components. The digital compo-
nent was formed by a digital signal processor (DSP) F28335 controlCARD from Texas instrument [52], which
has analog-to-digital converters (ADC) to acquire the PV voltage and current measurements, both necessary
to process the MPPT algorithm and to calculate part of the switching function (13): inside the DSP the term
K ·(vpv−vr) is calculated. Finally, theMPC4822 digital-to-analog converter (DAC), with SPI interface from
microchip [53], was used provide this component of the switching function, as an analog value named iCRef

,
to the analog stage.

The analog stage was using operational amplifiers to calculate the difference between the capacitor
current and the switching function component iCRef

generated by the digital stage, which produces the switch-
ing function ψ. This stage also generates the control action u by using the integrated circuit CD4043N , two
comparators and a set of resistors as it is presented in Figure 7. Finally, the SMC and MPPT parameters were
the same ones adopted for the simulations. Figure 8 shows the experimental setup, which depicts the connection
between the Ćuk converter, PV emulator, four quadrant electronic load, SMC and P&O implementations.

Figure 9 shows the experimental measurements of the first test performed to the prototype, where
the PV panel operates under a constant irradiance condition (1000 W/m2) and a sinusoidal perturbation is
imposed at the converter output terminals with a frequency of 120 Hz, centered at 18 V, and with a peak to peak
amplitude of 6 V. Under those conditions, the P&O imposes a stable three-point profile to both the PV voltage
(vpv) and current (ipv), which put into evidence the operation at the MPP. This is confirmed by the PV power
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(ppv) waveform, which is around 85 W. Moreover, the experimental waveform of the switching function ψ is
always constrained into the hysteresis band H , which confirms the global stability of the power system, hence
it confirms the correct tracking of the MPPT reference and the rejection of the perturbations introduced at the
converter output terminals.

Electronic Load

Cuk converter

Panel Emulator

DSP with MPPT

Analog Sliding 

mode control

Instrumentation

Voltage Supply 

Current probe

Figure 8. Experimental setup

vpv

ipv

ppv

vdc

Stable MPPT profile

Figure 9. Experimental test at constant irradiance and output voltage perturbations

A second test was performed to evaluate the system performance to changes on the irradiance condi-
tion. Figure 10 reports the experimental results, where the P&O accurately tracks the MPP at all the irradiance
conditions: the PV emulator starts operating at 1000 W/m2, then the irradiance changes to 500 W/m2 (50%
step-down perturbation), and later returns to operate at 1000 W/m2 (50% step-up perturbation). The PV
voltage is accurately regulated by the SMC, which is evident in the stable waveform at the moments when
the irradiance changes. Similarly, the PV voltage and current waveforms converge to the MPP following the
P&O command, which ensures a stable and optimal power production, as it is reported in the waveform of
ppv . Moreover, this experiment also considers the perturbation at the converter output terminals, which is ob-
served in the vdc waveform. Finally, this experimental results are in agreement with the simulations reported in
Figure 6. In conclusion, the experimental results reported in this section confirm the ability of the proposed
PV system to interact with dc-links (or loads) requiring voltages lower, equal or higher than the PV voltage.
Moreover, the designed SMC provides global stability under both environmental and load perturbations.
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Figure 10. Experimental test with perturbations in both the irradiance and output voltage

5. CONCLUSIONS

A sliding mode controller for regulating dc/dc Ćuk converters in both classical and DMPPT PV sys-
tems has been designed and tested. The proposed switching function consists of a combination of the voltage
error and the input capacitor current that ensures a stable and robust sliding regime when the dynamic restric-
tions on the reference voltage, provided by the MPPT algorithm, fulfills the limits calculated in the mathe-
matical analysis. Simulated transient responses at different time scales verified the accurate dynamic response
provided by the controller; in particular, the perturbations at twice the grid frequency that are usually found in
two-stage grid-connected PV systems are completely mitigated. Moreover, an experimental proof-of-concept
prototype was developed, which confirmed the applicability of the proposed solution for practical PV installa-
tions. The experiments also put into evidence that non-idealities such as losses and signal delays do not affect,
significantly, the performance and stability of the proposed controller. A future improvement of this solution
could be based on integrating into a single device all the controller parts; such an implementation will remove
the need of costly DAC circuits. Such a digital implementation of the fast-switching SMC is a topic under
development.
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