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 Today’s popularity of the internet has since proven an effective and efficient 

means of information sharing. However, this has consequently advanced the 

proliferation of adversaries who aim at unauthorized access to information 

being shared over the internet medium. These are achieved via various means 

one of which is the distributed denial of service attacks-which has become a 

major threat to the electronic society. These are carefully crafted attacks of 

large magnitude that possess the capability to wreak havoc at very high 

levels and national infrastructures. This study posits intelligent systems via 

the use of machine learning frameworks to detect such. We employ the deep 

learning approach to distinguish between benign exchange of data and 

malicious attacks from data traffic. Results shows consequent success in the 

employment of deep learning neural network to effectively differentiate 

between acceptable and non-acceptable data packets (intrusion) on a network 

data traffic. 
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1. INTRODUCTION 

The rapid advancement in technology over the years- has been geared towards effectively improving 

the way and how we live in a bid to meets specific targeted human needs. Technology seeks to better advance 

our living existence unto higher plains cum levels of sophistication with ease. Tremendous adoption and 

integration of the Internet has significantly advanced the use of data sharing programs that seeks to 

effectively disseminate data froom one user to another [1]. This adoption and integration has been attributed 

to its usage ease, ubiquity of its nature, low-cost of transaction and trust in communication channel-all of 

which continues to advance its popularity, adoption ease and usage. This growth has equally attracted spams [2, 3] 

an organized business aimed at making money via use of messages without the consent of users. Their 

services are unsolicited adverts, phishing and malware distribution called spams. Spams are 

unsolicited/unwanted messages sent to users. With spams on the rise, it has proven a great concern to security 

experts [4-7]. 

Such compromises designed to evade security, obscure data privacy and weaken network 

infrastructure have become a great concern with negative impacts on the adoption of technology. This 

includes (not limited to) attacks on data, stealing of private data, intrusion, service denial and outage [8]. 

Reports continues to stress of intrusion to networks that effectively attacks any given target at any given time 

[9-11]. The exponential rate of attacks is as broad as the range of constructive technology it self-leading to 
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denial of service attacks amongst others. This calls for urgent needs to terminate as close and as fast as 

possible to its source, the attacks. Many of these attacks on network resources are coordinated and targeted at 

a client system and launched against the server via a number of compromised systems [12-15]. DDoS 

threatens today’s network as they are carefully crafted to target a large number of users as well as wreaks 

havoc at various security levels. The ease with which they are perpetrated has also become a great concern, 

even with a plethora of available tools. Thus, most studies use of machine learning methods to effectively 

differentiate between good and malicious data-packets that attempts to perform intrusion [16-19]. 

Distributed denial of service (DDoS) is usually a carefully crafted attack, initiated to target network 

resource(s). Targeted directly at compromised clients on a network [12, 20, 21], an adversary gains access of 

such compromised client, seizing up resources such CPU time, bandwidth, memory etc- to exploit a 

network’s weakness. An adversary achieves this, by inserting malware that sought to overwhelm the network 

with requests [20-23]. Since the DDoS is carefully crafted and well-coordinated, the magnitude depends on 

the botnet size-which corresponds also to the severity of the attack [19-21]. A DDoS seeks to exhaust 

targeted resources, deny ‘uncompromised’ clients’ access to services and ensure a compromised network on 

a larger-scale. DDoS attacks are easy to fix by manually disconnecting affected clients from the network, 

when detected. Detection schemes seek to stop a detected attack as close and as fast as possible to its source 

[15, 20, 21, 24-27]. 

There are two common forms of a DDoS attack: (i) An adversary seeks by exploit design, to flood a 

network with client requests that exhausts or seize up CPU-time, power, bandwith etc- making it difficult for 

other clients to access these resources (i.e. flooding); and (ii) Adversary sends large volume of malicious 

packets to a server (i.e. protocol attack). A DDoS attack can evade detection if the adversary spoofs the 

source address to mask packets and make it difficult to differentiate genuine from malicious data [28, 29]. 

Detection schemes are usually grouped based on their locality of deployment as [14, 20, 21, 30]: 

− When a client system (known as source device) has security mechanism that helps it identify a 

malicious message in an outgoing packet and filters it. Such detection is said, to have been launched at 

the source of the attack-oreventing network clients generating a DDoS attack. This detection tries to 

stop a DDoS as close and as fast as possible to the source of the attack (a best practice) and minimizes 

havoc on the network as well as on other uncompromised legitimate packets cum traffic [20, 21]. 

− When a compromised system detects incoming malicious packet, it can clearly distinguishing genuine 

‘uncompromised’ packets from ‘compromised’ attack packets from either the misuse of intrusion, or via 

an anomaly-intrusion detection scheme. This is called a victim-end detection. And an attack packet that 

reaches a victim may denied/degraded services and bandwidth saturation [20, 21]. 

− When a network router can independently attempt to identify a malicious packet by rate-limit on data-

trying to balance between the accuracy of the detection and the consumption bandwidth of an attack. 

Such detection trace-back becomes easy-because the packet traffic are then aggregated by placing a 

rate-limit on all traffic data since both genuine and attack packets arrive at the router [20, 21]. This is 

usually called the core-end detection. 

Knowledge-driven methods of detection-resources are a stream of events, checked on the backdrop 

of predefined attack rules and patterns. A general view of known attacks are formulated, so a system easily 

identifies occurrence of an attacks using either of signature/anamolay analysis, self-organizing maps, and 

state transition analysis. Gil and Poletto [31] used a multi-level tree for online packet statistics to monitor 

traffic feats on devices, and to detect/eliminate DDoS. It aggregates and rates packets statistics at various 

levels, expand/contract packets to successfully detect ongoing attack via a disproportional difference between 

the rates in/out a network. It is setup at locations that allows the equipped device to either detect, or fail to 

monitor bandwidth attack. Shrivaraj [32] Attackers can evade such detection mode by randomizing the 

source address IP for such malicious data and/or packets. 

Thomas et al. [33] used NetBouncer to distinguish ‘uncompromised’ from ‘compromised’ clients. 

The client are updated on a list-so that only clients on this list are allowed access to network resources. If a 

client not in the list send a packets, the NetBouncer test for legitimacy if such a client is compromised. If the 

client passes the tests, it is added to the legitimacy list and such client is granted access to resources until the 

window for legitimacy expires. With the list’s expiration, clients are revalidated. 

Evolutionary driven and machine learning (ML) frameworks-learning algorithms effectively classify 

attacks with heuristics that can tolerate uncertainty, noise, ambuities, and imprecision while yielding an 

optimal solution. It models traffic data as a set of test for statistical inference, which seeks to determine if a 

new instance belongs to the class. Instances that do not conform to the trained model is classified as an 

anomaly. Nguyen [34] used a proactive detection to classify network status, which break an attack into 

phases-so that it can be investigated based on selected feats of interest. It then uses k-nearest neighbor (KNN) 

to group data feats of the network status into each phase of the DDoS attack. 
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Wu et al. [35] used a decision trees that detects attack using 15 parameters to monitor packets and 

flag rates in and out a system, to describe a traffic flow pattern. It detects abnormal traffic flow via a match 

scheme that identifies traffic flow similar to an attack flow as well as to trace back the origin of an attack 

based on this similarity. Lee et al. [36] used cluster analysis on DARPA 2000 dataset. Their results showed 

that each attack was partitioned, and their method can effectively detect precursors of a DDoS, and the attack 

itself. Ojugo et al. [37] used a signature-based memetic algorithm to detect attack as a classification problem. 

It uses seven parameters to monitor packet rate and traffic pattern. It uses a match method to identify traffic 

flow(s) into classes and trace them back to an attack’s origin via the similarity. Karinmazad and Faraahi [38] 

used anomaly-based detection with packet feats, analyzed via a radial basis function network that was applied 

to an edge-routers on a victim networks. It uses seven-feats to train a RBF-net and classifies data into normal 

and attack classes. If model recognizes an incoming traffic as attack, its source packets are sent to a 

filter/attack-alarm routine for further actions. Else, it is sent to its destination. 

Moore [26] proposed a detection scheme where each router detects traffic anomalies using profiles 

of a normal traffic constructed via stream sampling algorithms. Their results indicates: (i) we can profile a 

normal traffic reasonably accurately; (ii) identify anomalies with low false-positive and false-negative rates; 

and (iii) be cost effective with memory consumption per packet computation. Also, the routers exchanges 

data with each other to increase confidence in their detection. Results show that each router profiles capture 

key characteristics of the traffic effectively and identify anomalies with low false positive and false negative 

rate. Ojugo et al. [15] extended Ojugo et al. [37] via a genetic algorithm signature rule-based model, with  

10-feats to monitor in/out packet rates. Jalili et al. [39] advanced this position using SPUNNID-an 

unsupervised neural net to extract traffic feats, analyse and classify traffic patterns as either a normal or 

DDoS attack. 

Chen and Delis [40] used a distributed change point (DCP) detection that adopts change aggregation 

trees (CATs). This non-parametric model describes distribution of pre/post change in traffic. When a DDoS 

flood-attack is launched, the cumulative deviation is noticeably higher than random fluctuations. The CAT is 

designed so a router detects abrupt changes in traffic. A domain server uses the traffic change patterns 

detected at attack-transit routers to construct CATs. It works in inline-mode to inspect and manipulate 

ongoing traffic in real time. It continuously monitors both attacks and legitimate traffic by inspecting packets 

and correlating events among different sessions. It proactively terminates a session when it detects an attack. 

Intrusion schemes have been devised to minimize the havoc by intrusion activities [41, 42], and for 

networks, some behavior exists with an external event. The architecture of intrusion detection systems (IDS) 

seeks to unmask malicious processes either via the signature of such attack, or via an anomaly on the network 

traffic. An IDS goal is to secure network resources and grant a user sytem confidentiality, data integrity, and 

resource availability [15, 16]. An IDS can retrieve data from a network section for analysis to iunveil 

intrusion affected component(s) using a various techniques. These techniques are characterized to depend on 

3-main aspects [15, 25, 43, 44] in Figure 1: 

 

 

 
 

Figure 1. Structural architecture and classification of an IDS 

 

 

- Data source-a network IDS examines the traffic; while, a host IDS examines network components such 

as the operating system. Conversely, a hybrid IDS supports both sources of data. 

- Intrusion model deals with misuse detection. Signature detection aims to verify the signature on data 

traffic; While, anomaly detection seeks to verify the system behavior. Hybrid IDS monitors both 

detection modes. 

- Audit collection and analysis is implemented using 2-methods namely: (i) centralized-controlled 

resource IDS; and (ii) decentralized IDS is controlled from a local control node with hierarchical 

reporting to one or more central location(s). 
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Motivation for the study: 

- DDoS attacks are rising with ease at an alarming growth rate of malicious tasks guised to exploit users. 

They have caused user’s loss in trust-level of tech adoption and finances. Using particular technique to 

resolve DDoS with IDS [2], and statistical models [44] have proven successful on malicious traffics. 

However, combating DDoS is an ‘inconclusive’ and continuous task as many of models’ performance 

are hampered by selection of parameters that often results in model over-fitting and over-training [*]. 

- Many model(s) employ hill-climbing methods; and thus, often gets trapped at local maxima. 

- DDoS attack prevents legitimate users from accessing resources. It consumes all available resources, 

overwhelms the network with requests overload, blocks uncompromised users’ access to provisioned 

services with a view to compromise the entire network until countermeasures are employed. Thus, the 

urgent need to identify their source, manage and prevent them. This is effectively achieved via 

statistical means and guides a user to efficiently differentiate between legitimate and malicious acts. 

- Formulating an effective detection scheme has its setback(s)-as malicious traffics are poised by their 

design architecture to evade filters, whose performance are hindered by the limited size of characters, 

non-availability of malicious traffic data etc-creating impediments in selecting parameters for training. 

And, ultimately, leading to both poor learning and classification of the learning algorithm. 

To overcome these shortfalls in detecting malicious traffics, we adopt a deep neural network to 

reduce noise via pre-processing of traffic packets and fine-tuning messages sent as requests sent to/from a 

server, to enhance adequate classification. 

 

 

2. RESEARCH METHOD  

2.1. Deep neural networks (DNN) 

DNN uses deep learning to adapt useful selected feats of interest and parameters, carefully 

constructing a multi-layer network from vast amount of data. Its deep architecture at its input, hidden and 

output layers-helps to improve its prediction accuracy. Its hidden layer transforms non-linearly from a 

previous layer to the next [21, 45]. Proposed by Hinto et al. [46], a DNN is trained via two phases: pre-

trained, and fine-tuned processes [21, 47]. 

The auto-encoder is an unsupervised multi-layered neural network consisting both an encoder and a 

decoder network. Its encoder seeks to transform inputs data-points from a high unto a low-dimension via an 

encoding function fencoder as in (1) where xm is a data point, and hm is the encoding vector obtained. 

Conversely, its decoder network seeks to reconstruct the function using fdecoder as in (2) with xm as decoding 

vector from hm. Thus, reverts the operations of the encoder [48]. Ojugo and Eboka [21] in Gilrot and Bengio [47] 

details specific algorithms for encoding and decoding functions respectively. 

 

ℎ𝑚 =  𝑓𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑋𝑚) (1) 

 

𝑋𝑚 =  𝑓𝑑𝑒𝑐𝑜𝑑𝑒𝑟(ℎ𝑚) (2) 

 

At the pre-training phase, N autoencoders can be stacked on to an N-hidden-layer so that with input 

accepted, the input layer and first hidden layer acts an encoder of the first auto-encoder. They are trained as 

thus, to minimize the reconstruction error. Training parameter(s) of the encoder are used to initialize first 

hidden layer before proceeding to second hidden layer. There, the first and second hidden layers are selected 

as encoder(s) and as in the earlier stage, the second hidden layer is initialized by the second trained auto-

encoder. This process continues till the 𝑁𝑡ℎ auto-encoder is trained and initializes the final hidden layer. 

With all hidden layers stacked in the auto-encoder at each training N-times, they are thus regarded as pre-

trained. This feat has proven to be significantly better than random initialization. It also achieves better 

generalization [20, 21, 46, 49]. 

Fine-tuning is a supervised phase that seeks to optimize a DNN’s performance by retraining the network 

labeled training data. It computes the errors as a difference in real versus predicted values via back-

propagated stochastic gradient descent (SGD), which randomly selects data, and iteratively updates gradient 

direction with the weight parameters. A merit of the SGD is that it converges faster and does not require the 

entire dataset. This makes it suitable for complex neural networks as given in (3) with E as loss function, y is 

label and t is output of the network [20, 21]: 
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The gradient of the weight w is obtained as a derivative of the error equation-so that an updated 

SGD is given by (4) with ŋ is step-size, h is number of hidden layers [20, 21]: 

 

( ) ( )   . . 1 .new old
ij ij j j j i iW W y t y y h= − − −ŋ  (4) 

 

This process is optimized by the weights and threshold based on correctly labelled data. Thus, a 

DNN can learn accurately at its final output and direct thus, task all network parameters to perform correct 

classifications [20, 21]. 

 

2.2. The deep learning framework/algorithm 

Deep learning solves tasks by: (a) dividing training data into clusters, computing center points from 

each cluster point, (b) each cluster is trained and scaled so that each DNN learns the various attributes of each 

subset, (c) the test data applies the previous cluster centers in its first step to detect outlier(s) by the pre-

trained DNNs, and (d) output of each DNN is aggregated for the final result data/outliers [7, 20, 21]. 

Proposed solution is divided into 3-steps [10, 20, 21, 50]: 

− Step 1 divides data into train and test clusters or partitions. DNN stores computed cluster centers, used 

as initialization center(s) to generate test datasets. Dataset attributes are formatted as data-points for 

selected parameters, and the data-points in the training dataset are aligned into groups of same class. To 

improve the performance of the DNN, model revises cluster numbers (to between 2 to 6) and sigma 

values (i.e. 0.1 to 1.0). The minimum distance from a data point to each cluster center is measured, and 

a data-point’s nearness to a cluster, assigns it to that cluster-class. Training sets generated by clusters 

are taken up as input to DNNs. For training, the number of DNNs should equal the number of clusters. 

DNN architecture consists of five layers: an input, two hidden, a softmax and an output layer 

respectively. The hidden layers learn feats from each training subset, and the top layer is a five-

dimensional output vector. Each training subset generated from the kth cluster center is regarded as 

input data to feed into kth DNN respectively. Trained sub-DNN models are marked sub-DNN  

1 to k [20, 21, 50]. 

− Step 2 uses test dataset to generate k-datasets with the previous cluster center obtained from clusters in 

Step 1. The test sub-dataset are denoted as test 1 through test k [20, 21, 50]. 

− Step 3: The k-test data subsets are fed into k sub-DNNs, which were completed by the k training data 

subsets in Step 1. Output of each sub-DNN is integrated as final output and employed to analyse 

positive detection rates. Then, confusion matrix is used to analyse mining performance of generated 

rules [20, 21, 50]. 

Proposed DNN classifies data via back-propagation learning that maps input signals to low-

dimensional space that seeks to discover patterns in the datasets. Algorithm is thus [20, 21, 50-56]: 

Input: Dataset, cluster number, number of hidden-layer nodes HLN, number of hidden layers HL. 

Output: Final prediction results 

- Divide raw dataset into two components: training and a testing dataset.  

/*get the largest matrix eigenvectors and training data subsets*/ 

- Obtain cluster center and cluster results. Here, the clustering results are regarded as training data 

subsets.  

/*Train each DNN with each training data subset*/  

- Learning rate, de-noising and sparsity parameters are set and the weight and bias are randomly 

initialized. 

- HLN is set 40-nodes for first and 20-nodes for second hidden layer. 

- Compute sparsity cost function 

- Parameter weights and bias are updated 

- Train k sub-DNNs corresponding to the training data subsets. 

- Fine-tune the sub-DNNs by using backpropagation to train them. 

- Final structure of trained sub-DNNs is obtained and labelled with each training data subset. 

- Divide test dataset into subsets with SC. Cluster center parameters from the training data clusters are 

used. 

- Test data subsets is used to test corresponding sub-DNNs, based on each cluster center between the 

testing and training data subsets 

/*aggregate each prediction result*/ 

- Results are generated by each sub-DNN, are integrated and the final outputs are obtained. 

- return classification result=final output 
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2.3. Model optimization 

A major issue in ML implementation is fine tuning features that live outside the model. These feats 

often influence the model’s behavior-rippling effects acros hidden elements called hyper-parameters. Hyper-

parameters are critical settings that can be tuned to control a model’s behavior. They are parameters which 

are specific to the type of learning model we wish to optimize [7]. If a model seeks to learn these settings 

directly from a training dataset-there is the likelihood for the model to try to maximize these parameters-

which will lead to over-fitting. And thus, will result in poor generalization [57, 58]. Major criteria of hyper-

parameters are [59-61]: 

− Learning rate is a hyper-parameter that controls how much and what weights needs to be adjusted on our 

network in lieu of gradient loss. The lower the value, the slower we travel on downward slope. Learning 

rate connotes how quickly a net abandons old beliefs for new ones. It can either be unsupervised and/or 

supervised learning. Also, with small/large learning rate, the net quickly differentiates between important 

feats and otherwise. Higher learning rate means the network can change and adapts flexibly, more easily. 

The model must be able to adequately adjust its learning rate to avoid over-fitting and overtraining.  

− Batch size is the number of training utilized in one iteration. We can adopt one-of-three options: (i) batch 

mode where the iteration and epoch values are equal; (ii) mini-batch uses a batch size greater than one; 

(iii) stochastic in which the gradient and the neural network parameters are updated after each sample. 

− Epoch measures the number of times all of the training vectors are used once to update the weights. It is a 

single step in training a network. Thus, if a network is trained on every training dataset samples in just 

one-pass, then an epoch is exhausted. A training may consist of more than one epochs. In batch training, 

all samples filter through the learning model simultaneously in one epoch with weights updated. 

Conversely, in sequential training, all weights are updated after each training. 

 

 

3. RESULTS AND DISCUSSIONS 

3.1.  Data sampling 

A major challenge is to get a dataset properly formatted for the task at hand. Dataset used for 

training (to fit the model) must be same for evaluating the model. Here, we adopt the Hochschule Coburg 

IDS datasets (CIDDS-2017)-a set of labeled anomaly-based IDS dataset, split as thus: training (70%) and 

testing (30%) [20, 21]. We then adopt 8-parameters to adjust weights and coefficients in minimizing errors as 

in Table 1: 

 

 

Table 1. Selected features and their data types 
Features Format Data Types 

Source IP a.b.c.d Object 

Source Port Numeric Integer 

Destination IP a.b.c.d Object 
Destination Port Numeric Float 

Protocol String Object 

Duration H:M:S Float 
Packets Numeric Integer 

Attack Name/Type String Object 

 

 

3.2.  Encoding schemes used 

Unclassified and unformatted data are often ambuiguos, incomplete, rippled with noise, imprecise 

and inconsistent. Encoding seeks to filter the dataset, mapping it unto the required format the model can 

easily understand. To encode the selected feats, we transform our dataset using the feats of interest as in 

Table 1. This mode will seek to modulate the raw data unto the require dataset-so that data gathered from 

varying sources, is adequate for analysis. We employ data type in Pandas library displayed by listing 1 

algorithm [20, 21]. 

 
Input: Selected Feature 

Output: Converted Feature Data type 

1. Select Feature 

2. For each Selected Feature 

3. If Selected Feature is Non-Numerical then 

4. Generate Category Data type 

5. End if 

6. End For each 

Listing 1: Algorithm to Convert Data type to Category 
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3.3.  Parameter tuning 

We modeled the network using 8-neurons at the input layer (a neuron for each feat). 2-neurons were 

used for output layer (a neuron for each possible class). The parameters for the deep learning are the number 

of epochs, the activation function, its learning rate and the hidden layer topology. We employed the rectified 

linear unit (ReLU) activation function with 500-epochs (though optimal values were reached at 100, 300 and 

500 epochs taking into account accuracy and time to train the model). There is no best practice in selecting 

the number of hidden layers/neurons therein and using more hidden layer(s) grants the model greater 

capability to perform more complex function on the data [1, 2]. We seek minimum training error that will 

also result in the best fit, selecting the number of hidden layers (and neurons for each layer) was established 

via a trail-and-error method, and examining the results. The best possible number of layers was determined 

by running tests on a single layer with 1 to 20 neurons at the first instances-which yielded the greatest f-score 

with the least (constant) amount of training loss time. Addition of a second hidden layer of neurons from 1 to 

20 yielded scores. Finally, the addition of a third hidden layer using the best possible number of neurons 

produced the greatest f-score and thus, was selected as the overall best possible hidden layer configuration. 

Results of the first hidden layer are seen in Table 2. Table 2 shows result of the first hidden layer with 

configuration of 9-neurons and f-score of 92% at 18th-iteration and training loss of 1.140. F-score shows 

accuracy of each run-since we used an unbalanced dataset to train/test model with more records in normal 

class than in malicious class. 

 

 

Table 2. First hidden layer configuration analysis 
Hidden Layer Precision Recall F1-Score Iteration Training Loss Epoch 

1 0.84 0.92 0.88 44 0.294 500 

2 0.84 0.92 0.87 24 0.278 500 

3 0.84 0.92 0.88 26 0.293 500 
4 0.84 0.92 0.88 9 0.501 500 

5 0.89 0.55 0.64 19 1.496 500 

6 0.94 0.94 0.92 18 1.400 500 
7 0.86 0.53 0.63 4 2.230 500 

8 0.90 0.84 0.86 16 2.071 500 

9 0.92 0.93 0.92 18 1.140 500 
10 0.92 0.92 0.90 16 1.779 500 

11 0.88 0.91 0.89 7 2.134 500 

12 0.91 0.92 0.89 8 2.320 500 

13 0.87 0.87 0.87 13 2.006 500 

14 0.92 0.92 0.90 8 1.970 500 

15 0.92 0.92 0.90 5 1.730 500 
16 0.85 0.85 0.85 10 1.540 500 

17 0.90 0.84 0.86 15 1.440 500 

18 0.91 0.92 0.90 8 2.320 500 
19 0.92 0.93 0.90 14 2.160 500 

20 0.91 0.91 0.91 5 1.772 500 

 

 

Table 3 shows first layer having 9-neurons and others neurons varying from 1 to 20. With hidden 

layer of 9 and 11 neurons yielding f-score of 93% and training loss of 0.39. The second hidden layer is 

favored as it yields greater f-score. Table 4 shows third configuration with first and second layer having 9 

and 11 nodes and varying third hidden layer. Best configuration is 9-11-14 neurons, yielding f-score of 92% 

with a training loss at 0.560. 

 

3.4. Model evaluation 

We use the accuracy, recall and error rate(s) to evaluate model performance as in (5) to (7): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (5) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (6) 

 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =  
𝐹𝑃+𝐹𝑁

𝐹𝑃+ 𝑇𝑃+𝑇𝑁+ 𝐹𝑁
 (7) 

 

On evaluating our parameters, result of the model is given in a confusion matrix and the 

classification report. The resulting classification report and confusion matrix is given in the Tables 5 and 6 

respectively. Table 5 shows model has prediction accuracy of 94-percent (0.94) with an improvement rate of 
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97-percent. It also has a misclassification error rate of 41-percent for data inclusion that were not originally 

used to train the model. 

 

 

Table 3. Second hidden layer configuration analysis 
Hidden Layer Precision Recall F1-Score Iteration Training Loss Epoch 

9, 1 0.84 0.92 0.88 25 0.293 500 

9, 2 0.84 0.92 0.88 29 0.292 500 

9, 3 0.91 0.92 0.91 15 0.583 500 
9, 4 0.87 0.87 0.87 5 1.058 500 

9, 5 0.92 0.92 0.90 13 1.628 500 

9, 6 0.91 0.92 0.89 10 1.996 500 
9, 7 0.84 0.92 0.88 24 0.281 500 

9, 8 0.93 0.93 0.92 11 1.884 500 

9, 9 0.92 0.92 0.89 12 1.590 500 
9, 10 0.90 0.92 0.90 12 1.731 500 

9, 11 0.95 0.94 0.93 14 0.390 500 

9, 12 0.93 0.93 0.91 12 1.130 500 
9, 13 0.91 0.92 0.91 20 1.929 500 

9, 14 0.92 0.93 0.90 13 2.237 500 

9, 15 0.94 0.94 0.92 7 1.765 500 
9, 16 0.85 0.52 0.62 7 2.010 500 

9, 17 0.94 0.94 0.94 6 1.620 500 

9, 18 0.93 0.94 0.92 7 1.760 500 
9, 19 0.86 0..74 0.79 13 2.059 500 

9, 20 0.92 0.92 0.89 8 2.421 500 

 

 

Table 4. Third hidden layer configuration analysis 
Hidden Layer Precision Recall F1-Score Iteration Training Loss Epoch 

9, 11,1 0.83 0.91 0.87 32 0.287 500 

9, 11,2 0.91 0.92 0.89 6 1.592 500 

9, 11, 3 0.83 0.91 0.87 29 0.280 500 
9, 11, 4 0.90 0.91 0.90 16 1.564 500 

9, 11, 5 0.92 0.92 0.90 18 0.741 500 

9, 11, 6 0.93 0.92 0.89 21 0.282 500 
9, 11, 7 0.92 0.93 0.90 6 1.322 500 

9, 11, 8 0.90 0.86 0.88 6 1.239 500 

9, 11, 9 0.90 0.91 0.90 7 1.886 500 
9, 11, 10 0.88 0.91 0.89 8 0.623 500 

9, 11, 11 0.92 0.93 0.91 5 2.000 500 

9, 11, 12 0.86 0.83 0.85 11 2.370 500 
9, 11, 13 0.86 0.83 0.84 8 2.350 500 

9, 11, 14 0.93 0.92 0.92 15 0.560 500 

9, 11, 15 0.93 0.93 0.91 8 1.204 500 
9, 11, 16 0.94 0.94 0.92 8 1.730 500 

9, 11, 17 0.87 0.54 0.63 12 1.730 500 
9, 11, 18 0.93 0.94 0.93 6 1.850 500 

9, 11, 19 0.93 0.93 0.90 9 0.660 500 

9, 11, 20 0.92 0.92 0.90 28 1.180 500 

 

 

Table 5. Classification report before pre-processing test dataset 
 Precision Recall F1-Score Support 

0 0.94 1.00 0.97 11411 

1 0.90 0.27 0.41 1.059 
Avg/Total 0.93 0.94 0.92 12.500 

 

 

Also, Table 6 shows that 11.410 instances of the dataset were correctly classified. That is, results of 

the test dataset (with 12.500 points) show that we have 11.411 benign instances in the first class (label 0). 

The model successfully identified 11.410 correctly classified and identified benign instances as true-

positives; but, 31-cases incorrectly identified benign instances were marked as false-positive. Similarly, on 

the second row, there were 1.059 malicious instances in second class (label 1); But, 776-incorrectly identified 

malicious instances were marked as false-negative, and 283 correctly identified malicious instances of them 

were marked as true-negative. These are further explained as: (i) For true positive, the model predicted 

positive and it was true; (ii) For true negative, the model predicted negative and it was true; (iii) For false 
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positive, the model predicted positive and it was false; and (iv) for false negative, the model predicted 

negative and it was false (as agreed by [62-64]). 

 

 

Table 6. Confusion matrix report 
 Actual Values 

Predicted 11.410 31 

Values  776 283 

 

 

Thus, we can say that the model predicts the results of either it’s a normal attack or DDoS attack 

92% accurately using the total value of the f-score. The neural network in Python may have difficulty 

converging before the maximum number of iterations allowed if the data is not standardized. For a more 

meaningful result, we decided to scale our test data. There are a lot of different methods for standardization 

of data, we will use the built-in StandardScaler for standardization. The result gotten after this process was 

done is slated as in Table 7 below: 

 

 

Table 7. Classification report after pre-processing test dataset 
 Precision Recall F1-Score Support 

0 1.00 1.00 1.00 11.449 
1 1.00 0.98 0.99 1.051 

Avg/Total 1.00 0.99 0.99 12.500 

 

 

From Table 8 (confusion matrix) i.e. the predicted results, using our test data with 12.500 points we 

have 11.449 benign instances in the first class (label 0). Out of this, the model successfully identified 11.449 

correctly identified benign instances as a True Positive but there was no incorrectly identified benign 

instances which is supposed to be marked as False Positive. Similarly, looking at the second row, there were 

1.051 malicious instances in second class (label 1) but 24 incorrectly identified malicious instances of them 

were marked as false negative and 1.027 correctly identified malicious instances of them were marked as true 

negative.  

 

 

Table 8. Confusion matrix report 
 Actual Values 

Predicted 11449 0 
Values  24 1027 

 

 

Thus, we can say that the model predicts the results of either it is a ‘normal’ attack or ‘DDoS’ attack 

99% accurately using the total value of the f-score. In turn, this resulted in predicting 1.027 points as 

malicious samples and 11.449 points as normal samples from our test data. Furthermore, the standardization 

of our test data proved to be more efficient than the previous test run that was not standardized. 

 

 

4. CONCLUSION  

Our DNN model solution has a total of 56-rules with top rules found to have classification accuracy 

range [0.8, 0.96]. This implies that an estimated over 80% of the rules can adequately classify the dataset. 

Achieving a set of good rules, is much better than a single optimum rule. This increases the chances of 

detecting malicious data packets as well as also improves the generality of rules, providing the ability for new 

dataset and their corresponding generated rules to be added to the knowledgebase. The impact of the DDoS 

attacks to users requires a concerted effort to detect intrusion. Detection schemes simply filter through the 

network request, analyze them to decide which clients are uncompromised and compromised, and ultimately 

met out intended safety measures for further actions. Their performance can be hindered as premised on their 

error rate for incorrectly classified and unidentified data-points that scheme/model generates. An ideal 

scheme will correctly classify all request and packets with almost zero error rates of false positive/negative 

through tradeoffs between the number of false positives and false negatives. 
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