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 In this article, we plan to use Bezier curves method to solve linear fuzzy 

delay differential equations. A Bezier curves method is presented and 

modified to solve fuzzy delay problems taking the advantages of the fuzzy 

set theory properties. The approximate solution with different degrees is 

compared to the exact solution to confirm that the linear fuzzy delay 
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1. INTRODUCTION  

Fuzzy set theory is a powerful instrument for modeling uncertainty in a wide range of real issues and 

for processing vague or subjective information in mathematical patterns. DDEs are a type of differential 

equation in which the derivative of the unknown function at a certain time is given in terms of the values of 

the function at a previous time. Often called DDEs time–delay systems with or with dead impact–time, 

inherited process equations with deviating argument [1, 2]. 

The fundamental theory of steady works and key theory variables such as unique solutions are found 

in [1-3]. Next, a large number of the Delay Differential Equation have been extensively investigated in  

the novel, and monographs were published, including considerable on in [4], and so forth. The research 

advantage of the differential delays is because many systems have been the prototype of better differential 

delays in engineering, economics, science, etc. The difference equations of delays are delayed. Nevertheless, 

they are not realistic to regulate problems. Most of these equations obviously cannot be precisely solved. 

Efficient numerical methods must therefore be designed to approach their solutions. Ishiwata et al. used  

the rational approximation method and the collocation method [5-7] to compute numerical solutions of DDEs 

with proportional delays. Hu et al. [8] applied linear multi-step methods to compute numerical solutions for 

neutral DDEs. Other method obtained approximate solutions for variety of DDEs such as Runge Kutta 

methods, block methods and one- leg θ-methods in [8-12]. Moreover, the DDEs solved approximately via 

some approximation methods in many fields of mathematics using approximation methods: for example,  

the homotopy analysis method [13, 14], Adomian decomposition method [15] and homotopy perturbation 
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method [16]. Fuzzy DDE problem will model when the crisp model is not complete and its premasters or 

conditions under fuzzy properties. FDDEs were solved by multiple researchers in recent years with an 

approximate solution in [17, 18]. We will present in this article new plans for the approximate solution of 

FDDEs by means of the curves of Bezier method in fuzzy domain and analyzed the fuzzy solutions in 

different degree of approximations. 

The outline of this paper will be as follows: FDDEs will be introduced in section 2. In section 3, 

Problem of Fuzzy Delay System will be declared. Introduced proportional delay with FDDEs in section 4.  

In sections 5 and 6 respectively degree elevation and Bezier curves and will be declared. Using Bezier 

control points for Solving FDDE aforementioned method and suggested will be implemented on it in 

section 7. In section 8 solved numerical problems, appeared the accuracy and adequacy of the method. 

Lastly, the conclusion briefly will be given in section 9. 

 

 

2. DESCRIPTION OF DELAY FUZZY DIFFERENTIAL EQUATIONS 

Many DDEs are increasing, fundamentally optimistic in the models of epidemiology and population 

dynamics. It is therefore worth noting that positive initial data lead to positive solutions [15]. Consider  

the following FDDE: 

 

𝐷�̃�(𝑥)  =  �̃�(𝑥, �̃�(𝑥), �̃�(𝑥 –  𝑘))        (1)  

 

where for all fuzzy level sets 𝑟 ∈ [0,1] we have the following defuzzifications: 

- The fuzzy functions �̃�(𝑥) [19] is denoted as   �̃�(𝑥; 𝑟) = [𝑣(𝑥; 𝑟), 𝑣(𝑥; 𝑟)],  

- The fuzzy delay functions �̃�(𝑥 − 𝑘)  is denoted as  �̃�(𝑥 − 𝛼; 𝑟) = [𝑣(𝑥 − 𝛼; 𝑟), 𝑣(𝑥 − 𝛼; 𝑟)] 
- The fuzzy first order H-derivative, see [19] 

 

𝐷�̃�(𝑥; 𝑟) = [𝐷𝑣(𝑥; 𝑟), 𝐷𝑣(𝑥; 𝑟)], 
 

Next, assume that the fuzzy function in (1) can be written as: 

 

�̃�(𝑥, �̃�(𝑥), �̃�(𝑥 − 𝛼)) = �̃� (𝑥, �̃�(𝑥)) such that  

 

�̃� (𝑡, �̃�(𝑥)) = [𝑦 (𝑡, �̃�(𝑥)) , 𝑦 (𝑡, �̃�(𝑥))]  

 

By using Zadeh extension principles [20], we have the following membership function 

 

𝐹 (𝑥, �̃�(𝑥; 𝑟)) = 𝑚𝑖𝑛{𝐷�̃�(𝑥; 𝑟): 𝜇|𝜇 ∈ [�̃�(𝑥)]𝑟},    

 

𝐺 (𝑥, �̃�(𝑥; 𝑟)) = 𝑚𝑎𝑥{𝐷�̃�(𝑥; 𝑟): 𝜇|𝜇 ∈ [�̃�(𝑥)]𝑟}, 

 

where   

 

{
𝑦 (𝑥, �̃�(𝑥; 𝑟)) = 𝐹 (𝑡, 𝑉(𝑥; 𝑟), 𝑉(𝑥; 𝑟)) = 𝐹 (𝑥, �̃�(𝑥; 𝑟))

𝑦 (𝑥, �̃�(𝑥; 𝑟)) = 𝐺 (𝑡, 𝑉(𝑥; 𝑟), 𝑉(𝑡; 𝑟)) = 𝐺 (𝑥, �̃�(𝑥; 𝑟))
                                                     (2) 

 

with a single delay 𝑘 >  0. For each 𝑟 ∈ [0,1], suppose that [�̃�(𝑥, �̃�)]𝑟 and[�̃�𝑣(𝑥, �̃�)]𝑟 , are continuous on ℝ3. 

Let 𝜑: [𝑧 − 𝑘, 𝑧] → ℝ be continuous where 𝑧 ∈ ℝ be given. Require the solution 𝑣(𝑥) of (1) satisfying 

 

�̃�(𝑥; 𝑟)  =  �̃�(𝑥; 𝑟),𝑧 − 𝑘 ≤ 𝑥 ≤ 𝑧                                                          (3) 

 

and satisfying (1) on 𝑧 ≤ 𝑥 ≤ 𝑧 + 𝛼 for some 𝛼 > 0. Note: should be explain 𝐷�̃�(𝑥; 𝑟) as the right-hand 

derivative at z. Now demonstrate a material system design problem that shows phenomenon of time delay. 

The question picked in this section is exactly the right one in the test (1). 
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3. PROBLEM OF TIME FUZZY DELAY SYSTEM 
The existence of lags in economic systems is completely normal since a decision for the results of 

article should be given a fixed period after. In one sample [21] of total economy and suppose 𝑈(𝑥) be  

the proceeds which can divide into autonomous expenditure, consumption �̃�(𝑥), and investment �̃�(𝑥).  
From section 2, we have:  

 

�̃�(𝑥; 𝑟)  =  �̃�(𝑥; 𝑟)  +  �̃�(𝑥; 𝑟)  +  �̃�(𝑥; 𝑟)        (4) 

 

�̃�(𝑥; 𝑟)   =  �̃� 𝑈(𝑥; 𝑟)             
 

where �̃� is a consumption fuzzy coefficient following the properties of triangular fuzzy number [17].  

From (4), 

 

𝑈(𝑥; 𝑟) =
�̃�(𝑥;𝑟) + 𝐶(𝑥;𝑟)

1 − �̃�
{

𝐵(𝑥;𝑟) + 𝐶(𝑥;𝑟)

1 − 𝑏(𝑟)

𝐵(𝑥;𝑟) + 𝐶(𝑥;𝑟)

1 − 𝑏(𝑟)

                                                     (5) 

 

Assuming that, following a decision to run �̃�(𝑥) there is limited time between the production and 

ordering of capital instruments. In expression of the paper of capital savings 𝐽(𝑥), we have  

 

𝐽′(𝑥; 𝑟) = �̃�(𝑥 − 𝑘; 𝑟)                                                                               (6) 

 

�̃�(𝑥; 𝑟)  = 
1

𝑘
 ∫ �̃�(𝑇; 𝑟)𝑑𝑇
𝑥

𝑥−𝑘
                                                                     (7) 

 

For each fuzzy level set 𝑟 ∈ [0,1] in crisp domain the economic rationale suggests that �̃�(𝑥; 𝑟) is 

given by rate of saving proportionate to 𝑈(𝑥; 𝑟) and by the capital paper 𝐽(𝑥; 𝑟) such that  

 

�̃�(𝑥; 𝑟)  =  𝛾(1 − �̃�) 𝑈(𝑥; 𝑟) −  𝛿 𝐽(𝑥; 𝑟) +  𝜌        (8) 

 

where 𝛾 > 0, 𝛿 > 0 and 𝜌 is direction factor. Combining (6) and (7) to obtain the following 

 

�̃�(𝑥; 𝑟)    =  
1

𝑘
 [ 𝐽(𝑥 + 𝑘; 𝑟) − 𝐽(𝑥; 𝑟)]   (9) 

 

From (6) and (9), we get 

 

𝑈(𝑥; 𝑟) =  
1

𝑘(1− �̃�)
 [  𝐽(𝑥 + 𝑘; 𝑟) − 𝐽(𝑥; 𝑟)] +

𝐶(𝑥;𝑟)

1− �̃�
          (10) 

 

By combining (8)-(10), we can yield  

 

𝐽(̇𝑥; 𝑟) =
𝛾

𝑘
𝐽′(𝑥; 𝑟) − (𝛿 +

𝛾

𝑘
) 𝐽(𝑥 + 𝑘; 𝑟) + [𝛾�̃�(𝑥; 𝑟) + 𝜌]          (11) 

 

Express acceptance rate new appointment information. It is a delayed-type template operational FDDE. 

 

 

4. FDDES WITH PROPORTIONAL DELAY 

In this research, the Bezier control point method can finish off approximate analytical solutions with 

a high level of reliability. Consider the following neutral functional FDEE with proportional delays [21, 22], 

 

(�̃�(𝑥; 𝑟) + �̃�(𝑥; 𝑟)�̃�(𝑝𝑘𝑥; 𝑟))
𝑛
= 𝛽�̃�(𝑥; 𝑟) + ∑ �̃�𝑘(𝑥; 𝑟)�̃�

(𝑘)(𝑝𝑘𝑥; 𝑟) + �̃�(𝑥; 𝑟)
𝑛−1
𝑘=0    (12) 

 

with the fuzzy initial conditions 

 

∑ �̃�𝑖𝑘 �̃�
(𝑘)(0; 𝑟) = 𝛿𝑖

𝑛−1
𝑘=0 (𝑟),   (13) 

 

𝑖 = 0, 1, … , 𝑛 − 1.                             
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Here, �̃�(𝑥; 𝑟) and�̃�𝑘(𝑥; 𝑟) (𝑘 = 0, 1, … , 𝑛 − 1) k are given analytical fuzzy functions, and 𝛽, 𝑝𝑘, �̃�𝑖𝑘, 

and �̌�𝑖  denote given fuzzy constants with  0 < 𝑝𝑘 < 1, (𝑘 = 0, 1, … , 𝑛). The presence and singularity of  

the multi pantograph equation analytical solution is demonstrated [21], the solution Dirichlet sequence is 

constructed and the asymptotic stability of the analytical solution is sufficiently defined.. It is proved that  

the θ-methods with a variable step size are asymptotically stable if 
1

2
< 𝜃 ≤ 1. There are several examples 

that show the properties of the θ-methods. In order to apply the Bezier control point method,  

we rewrite (12) as 

 

(�̃�(𝑥; 𝑟))
𝑛
= 𝛽�̃�(𝑥; 𝑟) − (𝑎(𝑥)𝑣(𝑝𝑘𝑥))

𝑛
 +∑ 𝑏𝑘(𝑥)𝑣

(𝑘)(𝑝𝑘𝑥) + 𝑦(𝑥)
𝑛−1
𝑘=0 ,  𝑥 ≥ 0.     

 

A particular class of crisp DDE represents neutral functional DEEs with proportional delays. The mathematical 

modeling of real-world phenomena takes such functioning DEEs on a significant role [12].  

 

 

5. BEZIER CURVES IN FUZZY DOMAIN 

From the definition of Bezier curve polynomial of 𝑚 degree [23] and according to sections 2-4,  

we have the following fuzzy analysis  

 

�̃�(𝑥; 𝑟) = ∑ �̃�𝑗�̃�𝑗
𝑚 (

𝑥−𝑏1

𝑏2−𝑏1
; 𝑟)𝑚

𝑗=0 , 𝑥 ∈ [𝑏1, 𝑏2].      (14) 

 

�̃�𝑗
𝑚 (

𝑥−𝑏1

𝑏2−𝑏1
; 𝑟) =

𝑚!

𝑗!(𝑚−𝑗)!
(
𝑥−𝑏1

𝑏2−𝑏1
; 𝑟)

𝑗

(
𝑏2−𝑥

𝑏2−𝑏1
; 𝑟)

𝑚−𝑗

  

 

𝑃𝑗 is control points of Bezier coefficient and �̃�𝑗
𝑚 are the polynomial of Bernstein on interval [a1, a2] 

per each fuzzy level set 𝑟 ∈ [0,1], see Figure 1. In particular 

 

�̃�(𝑥; 𝑟) = ∑ 𝑃𝑗�̃�𝑗
𝑚(𝑥; 𝑟)𝑚

𝑗=0 , 𝑥 ∈ [0,1].             (15) 

 

�̃�𝑗
𝑚(𝑥; 𝑟) =

𝑚!

𝑗!(𝑚−𝑗)!
(𝑥; 𝑟)𝑗(1 − 𝑥; 𝑟)𝑚−𝑗     (16) 

 

where �̃�(𝑥; 𝑟) is a fuzzy parametric Bezier curve when it’s polynomial of vector valued. Figure 1 shows 

the comprise line segments with control polygon of a Bezier curve 𝐶𝑗 − 𝐶𝑗+1, j =  0, 1, … ,m − 1. If �̃�(𝑥; 𝑟) 

polynomial of a scalar valued, the function is call �̃� = �̃�(𝑥; 𝑟) then from [23, 24] an explicit Bezier curve 

denoted by (𝑥, �̃�(𝑥; 𝑟)).  

 

 

 
 

Figure 1. Degree 5 bezier curve with control polygon 

 

 

6. SOLUTION OF FDDE USING BEZIER CONTROL POINTS 

Consider the following boundary value problem 

 

𝐿(�̃�(𝑥; 𝑟), �̃�(𝑝0𝑥; 𝑟), … , �̃�(𝑝𝑛𝑥; 𝑟))�̃�
(𝑛)(𝑥; 𝑟) − 𝛽�̃�(𝑥; 𝑟) + (𝑎(𝑥)�̃�(𝑝𝑛𝑥; 𝑟)

(𝑛) −

 ∑ �̃�𝑘(𝑥; 𝑟)�̃�
(𝑘)(𝑝𝑘𝑥; 𝑟) + �̃�(𝑥; 𝑟)

𝑛−1
𝑘=0  , ,  𝑥 ≥ 0                                                              (17) 

  
𝑑𝑗�̃�(0;𝑟)

𝑑𝑥𝑗
= 𝑎𝑗 ,

𝑑𝑗�̃�(1;𝑟)

𝑑𝑥𝑗
= 𝛽𝑗,  𝑗 = 0,1, … , 𝑛 − 1,   (18) 

 

P0

P1

P2 P3

P4

P5
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where 𝐿 is differential operator with proportional delay, is �̃�(𝑥; 𝑟) also a polynomial in x, 0 < 𝑝𝑘 < 1 and  

(k = 0, 1, ···, m) [24, 25]. We propose to represent the approximate solution of eq. (18) �̃�(𝑥; 𝑟) in fuzzy 

Bezier form. The preference between Bezier and B-Spline is that the Bezier form is easier to carry out 

multiplication, contrast and degree elevation operations symbolically than B-Spline. We choose the sum of 

squares of the Bezier control points of the residual to be the measure quantity. Minimizing this quantity gives 

the approximate solution. Therefore, the obvious spotlight is in the following, if the minimizing of  

the quantity is zero, so the residual function is zero, which implies that the solution is the exact solution.  

We call this approach the control point based method. By following [25] detailed steps of the method are  

as follows: 

Step 1. Choose a degree n and symbolically express the solution �̃�(𝑥; 𝑟)in the degree m (𝑚 ≥ 𝑛) Bezier form 

 

�̃� = �̃�(𝑥; 𝑟) = ∑ �̃�𝑗(𝑥; 𝑟)�̃�𝑗
𝑚(𝑥; 𝑟)𝑚

𝑗=0             (19) 

 

where the control points are 𝛼0, 𝛼1, … , 𝛼𝑚 to be de-termined. 

Step 2. Substituting the approximate solution 𝑣 = 𝑣(𝑥) into the (19), we obtain the residual function 

 

�̃�(𝑥; 𝑟) = 𝐿(�̃�(𝑥; 𝑟),  �̃�(𝑝0 𝑥),  �̃�(𝑝1 𝑥; 𝑟), … ,  �̃�(𝑝𝑛 𝑥; 𝑟)) − �̃�(𝑥; 𝑟).  
 

This is a polynomial in 𝑥 with degree ≤ h, where 

 

ℎ = max {𝑚 − 𝑛 + deg (�̃�(𝑥; 𝑟),𝑚 + deg (�̃�0(𝑥; 𝑟)) ,𝑚 − 1 + deg (�̃�1(𝑥; 𝑟)) , … ,𝑚 − 𝑛 + 1 +

deg (�̃�𝑛−1(𝑥; 𝑟)) , deg(�̃�(𝑥; 𝑟))}.    

 

So the residual function �̃�(𝑥; 𝑟) can be expressed in fuzzy Bezier form as well, 

 

�̃� = �̃�(𝑥; 𝑟) = ∑ �̃�𝑗�̃�𝑗
ℎ(𝑥)ℎ

𝑗=0                                                                              (20) 

 

where for each fuzzy level set 𝑟 ∈ [0,1]the control points �̃�0, �̃�1, … , �̃�ℎ are linear functions in the unknowns 

�̃�𝑗. These functions are derived using the operations of multiplication, degree elevation and differentiation for 

Bezier form. 

Step 3. Construct the objective function 

 

 �̃�(𝑥; 𝑟) = ∑ �̃�𝑗
2(𝑥; 𝑟)ℎ

𝑗=0 .  

 

Then �̃�(𝑥; 𝑟) is also a fuzzy function of 𝑎0, 𝑎1, … , 𝑎𝑚. 

Step 4. Solve the constrained optimization problem: 

 

             min �̃�(𝑥; 𝑟) = ∑ �̃�𝑗
2(𝑎0, 𝑎1, … , 𝑎𝑚; 𝑟)

ℎ
𝑗=0 , 

 
𝑑𝑗�̃�(0;𝑟)

𝑑𝑥𝑗
= 𝑎𝑗 ,

𝑑𝑗�̃�(1;𝑟)

𝑑𝑥𝑗
= 𝛽𝑗,𝑗 = 0,1, … , 𝑛 − 1,       (21) 

 

by some optimization techniques, such as Lagrange multipliers method, we can be used to solve (21). 

Step 5. Substituting the minimum solution back into (19) arrives at the approximate solution to 

the differential equation. 

 

 

7. NUMERICAL EXAMPLE 

In this part, we used the mentioned control-point-based method on Bezier control points to solve 

DDE’s and system of DDE’s. As a practical example, we consider Evens and Raslan [6] the following 

pantograph delay equation in fuzzy form:  

 

�̃�′(𝑥) =
1

2
exp (

𝑥

2
) �̃� (

𝑥

2
) +

1

2
�̃�(𝑥), 0 ≤ 𝑥 ≤ 1,           (22) 

 

�̃�(0) = [𝑟. 2 − 𝑟].  
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The exact solution is given by .)2();(,);( xx errxurerxu   

According to [5] (21) can be written in defuzzfication form  
 

{
 
 

 
 𝑢

′(𝑥; 𝑟) =
1

2
exp (

𝑥

2
; 𝑟) 𝑢 (

𝑥

2
; 𝑟) +

1

2
𝑢(𝑥; 𝑟),

𝑢(0; 𝑟) = 𝑟 

𝑢
′
(𝑥; 𝑟) =

1

2
exp (

𝑥

2
; 𝑟) 𝑢 (

𝑥

2
; 𝑟) +

1

2
𝑢(𝑥; 𝑟),

𝑢(0; 𝑟) = 2 − 𝑟

                                                           (23) 

 

For numerical implementation, we consider the approximate solution using Bezier curves of  

degree 3 (m=3) and 8 (m=8) respectively as given in (15). In order to obtain the residual function, we also 

approximate ex in Taylor polynomial of order 6. The detail results are as follows.  

 

7.1. Degree-3 Bezier curve 

Let, 

























3

1

3

3

1

3

)();(

)();(

i

ii

i

ii

xBarxu

xBarxu

,                                                                                (24) 

 

where 10  x  and 3...,,0,and iaa ii
are the Bezier control points need to be determined. Substitute 

into (23) and the residual functions can be obtained, i.e. 
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The right-hand side of (25) is a polynomial of degree 8 and therefore the residual function can be 

represented in the form of (20) with ℎ = 8  as follows. 
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To obtain the Bezier control points in (24), we follow the step 3 to step 5 as stated in section 6.  

The approximate solutions are available in Tables 1 and 2 and the comparsion of degree 3 bezier curve 

solution with exact solution of equation (22) is illustrated in Figure 2 such that: 
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Table 1. Appoximate and exact values for lower solution,  

);( rxu (degree 3 bezier curve) 

r approx exact abs. error 

0 0 0 0 

0.2 0.5436420472 0.5436563657 1.4318499128x 10-5 

0.4 1.0872840944 1.0873127314 2.8636998257x10-5 

0.6 1.6309261416 1.6309690971 4.2955497386x 10-5 

0.8 2.1745681888 2.1746254628 5.7273996514x 10-5 

1.0 2.718210236 2.7182818285 7.1592495642x 10-5 

 

 

Table 2. Approximate and exact values for upper solution,  

);( rxu  (degree 3 bezier curve) 

r approx exact abs. error 

0 5.436420472 5.4365636569 1.4318499128 x 10-4 

0.2 4.892778425 4.8929072912 1.2886649216x 10-4 

0.4 4.349136378 4.3492509255 1.1454799303 x 10-4 

0.6 3.805494330 3.8055945598 1.002294939 x 10-4 

0.8 3.261852283 3.2619381942 8.591099477  x 10-5 

1.0 2 .71821024 2.7182818285 7.159249564  x 10-5 

 

 

 
 

Figure 2. Approximate and exact solution of 𝑢(𝑡) at t = 1 (degree 3 bezier curves) 

 

 

7.2. Degree-8 Bezier curve 

Let, 
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where 10  x  and 8...,,0,and iaa ii are the Bezier control points need to be determined.  

Substitute into (23) and the residual functions can be obtained, i.e. 
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The right-hand side of (25) is a polynomial of degree 13 and therefore the residual function can be 

represented in the form of (20) with ℎ = 13 as follows. 
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To obtain the Bezier control points in (27), we also use the step 3 to step 5 as stated in section 6. 

The approximate solutions are in Tables 3 and 4 and the comparsion of degree 8 bezier curve solution with 

exact solution of equation (22) is illustrated n Figure 3 such that: 
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Table 3. Approximate and exact values for lower solution,  

);( rxu (degree 8 bezier curve) 

r approx exact abs. error 

0 0 0 0 

0.2 0.543655820 0.5436563657 5.45269859x10-7 

0.4 1.087311648 1.0873127314 1.090539719x 10-6 

0.6 1.630967461 1.6309690971 1.635809578x 10-6 

0.8 2.174623282 2.1746254628 2.181079437x 10-6 

1.0 2.718279102 2.7182818285 2.726349297x 10-6 
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Table 4. Approximate and exact values for upper solution,  

);( rxu  (degree 8 bezier curve) 

r approx exact abs. error 

0 5.4365582042 5.4365636569 5.452698593 x10-6 

0.2 4.8929023838 4.8929072912 4.907428734 x10-6 

0.4 4.3492465634 4.3492509255 4.362158874 x10-6 
0.6 3.8055907430 3.8055945598 3.816889015 x10-6 

0.8 3.2619349225 3.2619381941 3.271619156 x10-6 

1.0 2.7182791021 2.7182818284 2.726349297 x10-6 

 

 

 

 
 

Figure 3. Approximate and exact solution of u(t) at t = 1 (degree 8 bezier curves) 

 

 

8. CONCLUSION  

This work has successfully implemented and applied Bezier control points to overcome linear and 

fuzzy DDEs. A general method framework has been successfully developed and evaluated using fuzzy sets 

properties to obtain rough solutions for fuzzy DDEs. Details have been provided regarding the BCP 

convergence mechanism related to the approximate first-order fuzzy DDEs solution. Studies of first-order 

linear fizzy DDEs by BCP have shown that the system is capable and reliable studies are obtained that match 

the properties of the solution of the fizzy differential equation in the form of the triangle fuzzy numbers with 

varying degrees of precision. 
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