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 In this paper, the modern nonlinear theory is applied to a third order phase 

locked loop (PLL) with a feedback time delay. Due to this delay, different 

behaviors that are not accounted for in a conventional PLL model are 

identified, namely, oscillatory instability, periodic doubling and chaos. 

Firstly, a Pade approximation is used to model the time delay where it is 

utilized in deriving the state space representation of the PLL under 

investigation. The PLL under consideration is simulated with and without 

time delay. It is shown that for certain loop gain (control parameter) and time 

delay values, the system changes its stability and becomes chaotic. 

Simulations show that the PLL with time delay becomes chaotic for control 

parameter value less than the one without time delay, i.e., the stable region 

becomes narrower. Moreover, the chaotic region becomes wider as time 

delay increases. 
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1. INTRODUCTION  

A phase-locked loop (PLL) is a versatile device used mainly in carrier synchronization, frequency 

synthesis, clock recovery, wireless communications and phase inverters [1-4]. When the PLL operates in the 

phase-locked state, the dynamic behavior of the loop is studied using linear theory. Unfortunately, the PLL 

may operate in the out-of-lock and in this case the dynamics behavior of the loop follows the nonlinear 

theory and analyzing this behavior becomes tedious [5-12]. Chaos and complex bifurcations are inherent to 

nonlinear systems due to dynamical instabilities. Chaos induced in phase locked loop was investigated by 

many researchers. Endo and Chua [13] proved the existence of horseshoe chaos in second order PLL using 

Melnikov's method. Later, Bradley and Straub [14] showed that chaotic PLL circuits sometimes can be 

useful. In fact, they utilized chaotic PLL to broaden the capture range of the PLL. Harb and Harb [15] applied 

modern nonlinear theory to analyze the chaotic behavior observed in a third order PLL with sinusoidal phase 

detector characteristics. Sarkar and Chakraborty [16] studied self-oscillations of a third order PLL in periodic 

and chaotic mode. Fortuna, et al. [17] used chaotic pulse position modulation to improve the efficiency of 

sonar sensors. 

In recent years, many researchers studied the dynamic instabilities induced in feedback systems due 

to the time delay of signals [18-20]. This delay effect causes an oscillatory behavior which has been reported 
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in nonlinear systems especially in radio engineering. Later, numerous experimental and theoretical studies 

have demonstrated that many nonlinear delay systems experienced a chaotic behavior as a result of dynamic 

instabilities. Such instabilities include period-doubling route to chaos, quasi periodicity and intermittency [21-24]. 

Moreover, studies have shown that the dimension of the resulted chaotic attractor is directly proportional to 

the time delay induced in the system independent of the form of the system. In this case, one can obtain high-

dimensional chaotic attractors by increasing the time delay in the system [25-27]. This method should be 

performed with caution since the state space representation of a nonlinear delay system constitutes a finite-

dimensional space, whereas, the dynamics span an infinite-dimensional space. 

Delay effect in phase locked loops was firstly investigated by Schanz and Pelster [28] where they 

proved the existence of a hopf bifurcation in first order PLL with time delay using the method of multiple 

scale. Buckwalter and York [29] studied time delay in high-frequency phase-locked loop. Grant et al. [30] 

investigated the performance of optical phase-locked loops in the presence of non negligible loop 

propagation delay. 

In this paper chaos and bifurcation theory will be applied to a third order phase locked loop 

considering a feedback time delay. Pade approximation will be used to derive the state space representation 

of a third order PLL. The chaotic behavior of the third order PLL with and without delay will be compared, 

and delay will be used as a control parameter. Unlike first and second order PLLs, third order PLL exhibit a 

chaotic behavior in the absence of delay [15] since the order condition for chaotic behavior in nonlinear 

system is valid. This paper is organized as follows: Section 2 contains the mathematical model of the PLL 

under consideration without delay, where the main results from previous work are presented. Also, the 

mathematical model and the derivation of the nonlinear differential equation describing the dynamics of the 

PLL under consideration with time delay is presented in this section. Simulation and discussion of the results 

is presented in section 3 and section 4 contains the conclusions and future work. 

 

 

2. RESEARCH METHOD 

2.1.  Mathematical model of third order PLL without delay 

The classical model of a third order phase locked loop is shown in Figure 1. It consists of a 

sinusoidal phase detector, a second order loop filter and a voltage controlled oscillator (VCO). 

 

 

 
 

Figure 1. Block diagram of a phase-locked loop without time delay 

 

 

The differential equation that describes the closed loop phase error in the PLL under consideration is 

given by [15]: 
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A simplified form of (1) can be written as: 

 

 (2) 
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where p1, p2, z1,  and z2  are the loop filters time constants, k is the overall closed loop gain and  is the 

closed loop phase error. Assume the input frequency is constant and normalize the time variable using 

t'=(k/p1p2)1/3 t , the above equation becomes; 
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Harb and Harb [15] showed that the system had a chaotic oscillation at normalized gain value of 

𝑘 = 76300 as shown in Figure 2. The system remains in chaotic region for gain value up to 𝑘 = 100000. 

 

 

 
 

Figure 2. Chaotic behavior at normalized gain k=76300 

 

 

2.2. Mathematical model of third order pll with time delay 

Due to the present of the delay element, the differential equation that describes the closed loop phase 

error becomes: 
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and after simplifications, the nonlinear ordinary differential equation becomes: 
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then (6) becomes: 

 

 (7) 
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The first five state equations are directly derived from (7) and the state variables defined above. The 

last state equation will be derived using Pade approximation. Using the state variables defined above, (7) 

becomes: 
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In time domain, this equivalent to: 
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By differentiating (10), and using (8) we get: 
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By combining (8) and (12), the third order PLL with delay is transformed into a system of sixth 

order ordinary differential equations with a state space representation given by:  
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3. RESULTS AND DISCUSSIONS 

In this section, the equilibrium and dynamic solutions of the system are obtained. Firstly, by setting 

the right hand side of (13) to zero, the equilibrium solution (t) is obtained. The dynamic solution is found by 

varying the control parameters (k is used here) and using the continuation scheme method. The stability of 

the solutions will be studied using the Jabcobian matrix. The eigenvalues of the Jacobian matrix evaluated at 

the equilibrium point ( as a function of k) determine the stability of the solution and the type of bifuractions 

occur as the controlling parameter is varied. In this paper, we wrote our own program for calculating the 

equilibrium points and the type of bifurcations occurred as the controlling parameter varied. 

Simulation is prformed with time delay of 0.15 μsec and different values of normalized control 

paprameter, k. for k = 2.5, the equlibrium solution (constant solution) is obtained as shown in Figure 3(a) 

below. As k increases, the system will lose its stability via a Hopf bifurcation point H at 𝑘𝑜 = 3.28, and a 

periodic solution is born as shown in Figure 3(b). This Hopf bifurcation point is found to be a supercritical 

point based on the eigenvalus of the Jacobiam matrix. For k>3.28, a sequence of deformed (asymetric) 

periodic solutions are observed, as shown in Figures 3(c) and (d) leading to chaos at k = 23 as shown in  

Figure 4. Table 1 shows the instability of phase error for different values of the open loop gain at constant 

time delay of 0.15 μ sec. 

 

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

Figure 3. Phase plane plots of time delay third order PLL for different normalized loop gain (k) with  

 = 0.15 sec, 𝑥 = 𝑥1, 𝑦 = 𝑥2, (a) Stable solution for 𝑘 = 2.5, (b) Oscillatory solution for 𝑘 = 3.28,  

(c) Period -2 bifurcation for 𝑘 = 6, (d) Period -4 bifurcation for 𝑘 = 9.6 
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Figure 4. Phase plane plot for chaotic behavior at normalized gain 𝑘 = 23,  = 0.15 sec with 𝑥 = 𝑥1 and 

𝑦 = 𝑥2 

 

 

Table 1. Instability of phase error for different values of the open loop gain for third order PLL with constant 

time delay (0.15 μsec) 
 Normalized Open Loop Gain(k) Instability 

<3.28 Dc output 

3.28 Oscillatory instability 
6 Period-2 bifurcation 

9.6 Period-4 bifurcation 

13.73 Period-8 bifurcation 
23 Chaos 

 

 

Tables 2 shows the effect of time delay on the instabilities of the solution and its effect on the 

chaotic region. Without delay, the oscillatory behavior of the system starts at open loop gain of 7.341 and the 

chaotic behavior begins to appear at open loop gain equal of 76.3 and remains at this for values up to 
k = 100. On the other hand, for time delay = 0.15 𝜇𝑠𝑒𝑐, the oscillatory behavior starts at k=3.28 and chaos 

starts at 23 and remains in this state for values of k up to 118.2. It is clear that the stable region becomes 

narrower and the chaotic region becomes wider as time delay increases. 

 

 

Table 2. Instability of phase error for different values of the open loop gain for third order PLL with different 

time delay 
Open loop gain (k) 

delay (1.3 μs) 

Open loop gain (k) 

delay (0.5 μs) 

Open loop gain (k) 

delay (0.15 μs) 

Open loop gain (k) (no delay) Instability 

<0.57 <1.13 <3.28 <7.341 Dc output 

0.57 1.13 3.28 7.341 Oscillatory instability 

1.8 3.78 6 23.1 Period-2 bifurcation 
3.5 6.2 9.6 40 Period-4 bifurcation 

6 8.9 13.73 68.30 Period-8 bifurcation 

9.22 13.1 23 76.300 Chaos 
9.22-156 13.1-142 23-118.2 76.3-100 Chaotic region 

 

 

4. CONCLUSION 

In this paper, new results on nonlinear analysis of third order phase locked loop (PLL) with 

feedback time delay are reported. We used the modern nonlinear theory to study the effect of time delay on 

the stability of the solution and chaotic behavior of the PLL under investigation A first order Pade 

approximation was used to derive the state space representation of third order PLL. Different behavior were 

identified for this class of PLL's, namely, oscillatory instability, periodic doubling and chaos. It was shown 

that for different values of gain and time delay, the system changes its stability that leads to chaos. The study 

showed that as time delay increases, the PLL loses its stability faster and hence drives the PLL into chaos and 

broaden the chaotic region. Finally, one concluded that the effect of the time delay is really bad on the 

stability of the third order PLL. This study could be extended to show the effect of time delay on the capture 

range, pull-in range and other design parameters of third order phase locked loop with a higher order of Pade 

approximation. 
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