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 Global mobile communication necessitates improved capacity and proper 

quality assurance for services. To achieve these requirements, small cells 

have been deployed intensively by long term evolution (LTE) networks 

operators beside conventional base station structure to provide customers 

with better service and capacity coverage. Accomplishment of seamless 

handover between Macrocell layer (first tier) and Femtocell layer (second 

tier) is one of the key challenges to attain the QoS requirements. Handover 

related information gathering becomes very hard in high dense femtocell 

networks, effective handover decision techniques are important to minimize 

unnecessary handovers occurred and avoid Ping-Pong effect. In this work, 

we proposed and implemented an efficient handover decision procedure 

based on users’ profiles using Q-learning technique in an LTE-A macrocell-

femtocell networks. New multi-criterion handover decision parameters are 

proposed in typical/dense femtocells in microcells environment to estimate 

the target cell for handover. The proposed handover algorithms are validated 

using the LTE-Sim simulator under an urban environment. The simulation 

results showed noteworthy reduction in the average number of handovers. 
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1. INTRODUCTION  

Dependency on using the handover procedure in long term evolution advanced (LTE-A) networks 

for the User Equipment UE mobility results in the reduction in wireless network complexity [1]. In spite of 

this advantage, the handover still experiences multifunction. For example, the handover decision is affected 

by carrier interferences and inflexibility [2-4]. This keeps us with the QoS requirements in high delay and 

loss during handover among cells [5]. The handover procedure will become more critical when the UE starts 

moving from the serving station to the target station [6]. Furthermore, the smooth handover technique needs 

to be periodic and fast, and the data transfer should not be lost and delayed. Even more, the increasing 

demands for using wireless broadband has led to the mobile network operators deploying more wireless cells 

of various types (macrocell (eNB) and femtocell (HeNB)) to fulfil the data traffic rate [7]. Thus, a handover 

between the two-tier networks will cause an unnecessary handover effect, handover failure and a drop in 

the performance of the wireless network. The Figure 1 shows eNB and HeNBs cells in E-UTRAN LTE-A 

architecture. 

The standard handover decision in LTE-A is based on the received signal strength (RSS) and 

received signal quality (RSQ) parameters. Thus, the deployment of dense HeNBs inside the eNB cell would 

increase the interference. This interference reduces the RSQ by decreasing the RSS ratio in comparison to 

the Received Signal Strength Indicator RSSI. As a result, a degradation in handover performance is 
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observed [8]. Moreover, the variation in transmitting power between the two types of wireless networks 

(eNB and HeNB) is another issue. When the HeNB location is near the eNB tower, the RSS of the HeNB will 

always be less than the eNB [9-12].  

 Many researches have worked on enhancing the handover procedure in the wireless networks in 

LTE-A. This has been achieved by reducing packet loss and packet delay and simultaneously increasing 

network throughput. LTE-A promises improvement in handover performance and guarantee of a satisfactory 

QoS for real time applications. However, there are still many concerns regarding the capability of adopting 

these schemes in real environments. This real environment deployment issue can be solved by minimizing 

the extra overhead of corresponding mechanisms and thus minimize calculation time. 

The drawbacks that must be addressed in LTE-A handover technique could be summarized in three 

points: Firstly, current selection of handover decision parameters is based on RSS and RSQ parameters, 

which are inappropriate for high-density HeNB deployment in LTE-A networks. Secondly, long searching 

time/frequent handovers due to presence of multiple target cells which cause degradation of handover 

performance. Thirdly, inefficient in the standard handover scheme in the presence of HeNB cells yields to 

unnecessary handovers, handover failure and dropping the network performance.   

Various works in the handover decision were proposed in [13-16] to find out the target station. 

In [15, 16], the mobility forecast of a user equipment is based on keep tracking of its previous three locations. 

Nevertheless, the researchers did not explain their methodologies for choosing the locations of UE as well as 

the distances among them, they did not take into consideration macrocell load. Furthermore, in [13, 14], 

the target station was selected based on the probability of the UE movement activity in systematic directions 

with fixed speed, nevertheless, this suggested method cannot be realized in real conditions. In this work, 

a novel handover decision structure is proposed for choosing the target station based on UE mobility history 

by applying a Q-learning based technique that takes a handover decision according to the current and past 

history of the environment. We compared our handover proposed algorithm with Suman work [17] in terms 

of average number of handovers. LTE-Sim simulator has been developed to evaluate the system 

performance. The remainder of the paper is structured as follows: Section 2 shows and discusses 

the Q-learning environment used. The proposed model has been discussed in section 3. Section 4 condenses 

the performance evaluation of the proposed work. Finally, section 5 summaries the paper. 

 

 

 
 

Figure 1. HeNBs in E-UTRAN architecture 

 

 

2. Q-LEARNING ALGORITHM 

Q-Learning is a type of machine learning technique where an agent attempts to find an ideal strategy 

from its history of movement inside a dynamic framework [18]. In Q-learning technique, an agent studies 

ideal activities/actions via experimentation communication with its surrounding. On each progress, the agent 

picks an activity that modifies the condition of the framework via a progress stage, at that point it gets  

a reward showing how positive or negative the activity was. The agent objective is to strengthen this reward 

by calculating the ideal approach and picking the best activity for each condition of the framework.  

The objective of Q-Learning is to gain proficiency with an approach that advises an agent which 

activity/actions to make under which conditions. 

Definition: In Q-learning procedure, an agent attempts to discover the strategy that maximizes  

the Q-value function which offers the expected utility of choosing an action a in an existing state s. 
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Formulation: The objective of a Q-learning process is to discover the best strategy Πopt that 

maximizes the cumulative expected reward (over many trials) in the learning process (𝑛 is the number  

of trials): 

 

∏ 𝑜𝑝𝑡 (𝐸 [∑ 𝛾𝑅(𝑠𝑘 − 𝑎𝑘)𝑛
𝑘=0 ])  (1) 

 

γ which is (0 ≤ γ ≤ 1) represents a discount factor. At learning trial 𝑘, with an action 𝑎𝑘 taken in state 𝑠𝑘,  

the received reward is represented as 𝑅(𝑠𝑘 − 𝑎𝑘). For γ = 0 upcoming rewards have no effect on  

the state value, whereas for γ close to 1, upcoming actions are considered as important as the immediate 

rewards. A Q-function is defined for a given policy Π as: 

 

𝑄(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑃𝑠,𝜐 (𝑎)𝑄(𝜐, 𝑏)𝜐∈𝑆  (2) 

 

where: 

𝑅(𝑠, 𝑎) is the expected reward of the current pair of state-action, which represents an action a taken in state 

environment s.  

𝑃𝑠,𝜐 (𝑎) is the probability of transition from the current state s to the next state υ as an outcome of action a. 

𝑄(𝜐, 𝑏) is the new state-action pairs Q-function value. 

To ensure that there is at least one optimal strategy Π* in a single agent environment, we apply 

Bellman’s optimality [19]. Q-function maximum value which indicates the optimal action 𝑏 for every 

possible next pair (𝜐, 𝑏) is denoted as 𝑄∗(𝑠, 𝑎) . 
 

𝑄∗(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑃𝑠,𝜐 (𝑎) 𝑚𝑎𝑥𝑏∈𝐴  𝑄∗(𝜐, 𝑏)𝜐∈𝑆  (3) 

 

In an iterative procedure, Q-learning determines the optimal 𝑄∗(𝑠, 𝑎). At each stage during the learning 

procedure, the Q-value function should be updated using the (4): 

 

𝑄𝑡(𝑠, 𝑎) = (1 − α)𝑄𝑡−1(𝑠, 𝑎) + α(𝑅𝑡(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑏  𝑄𝑡−1(𝜈, 𝑏)) (4) 

 

where α represent the learning rate. 

 

 

3. RESEARCH METHOD 

All parameters related to handover decision phase based on Q-learning technique are defined  

as follows: 

a. Environment: involves all components besides the agent  

In our framework, it contains the macrocell eNB and all femtocells HeNBs in the UEeNB’s 

neighboring cell list (NCL). We consider that the environment is a discrete-time, finite-state and stochastic 

dynamic system. 

b. Agent: is the decision maker  

In our case, the agent involves the macrocell mobile user UEeNB executing a handover process from 

its serving cell to another neighboring cell that provide better performance. 

c. State: is the environment’s current state 

In our framework, it involves the current UEeNB serving cell, which is the macrocell eNB. The state 

set S is defined as 𝑆 =  {𝑠 = 1,2, … , 𝑁𝑁𝐶𝐿 + 1} where 𝑁𝑁𝐶𝐿  is the number of neighboring femtocells. (𝑠 = 1) 

refers to the initial state where the mobile user UEeNB is connected to the macrocell eNB. To select  

the target cell in a short time we have to short-list the neighboring femtocells, to optimize the candidate 

neighboring cell list we propose Distance and moving Direction Q-learning based technique (D2Q technique). 

The UE direction assists the handover decision through avoiding signaling measurement controls with 

neighbor cells that are not ahead of the UE trajectory as well as in selecting the neighbor cell that fits as  

the target cell. The distance between UE and target cell is important, which should not exceed the cell radius, 

in order that cells which are far away from the mobile user are not involved in the candidate neighboring list. 

Neighbor cells location and each user equipment UE position are determined using GPS [20]. 
|∓𝜃𝑡ℎ°| is the range that all nominee cells should be situated ahead of the user equipment UE direction,  

and each cell that is located inside this zone will have the priority to be combined into the candidate cell 

list [20]. Assume that a UE is moving from location P1 to location P2 as shown in Figure 2, P3 is the neighbor 

cell location. Every neighbor cell of the user equipment is tested via calculating the angle 𝜃 of ∠𝑃2, 𝑃1, 𝑃3  

as following: 
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𝜃𝑝2,𝑝1, 𝑝3
= cos−1 (𝑃3−𝑃1 ).(𝑃2−𝑃1 )

|𝑃3−𝑃1 ||𝑃2−𝑃1 |
  (5) 

 

where 𝑃1 , 𝑃2  and 𝑃3 are 𝑃1 (𝑥1 , 𝑦1 ), 𝑃2 (𝑥2 , 𝑦2 ) and 𝑃3 (𝑥3, 𝑦3 ) respectively.  

The distance between the user equipment and the neighbor cell is applied, which should not exceed 

the neighbor cell radius, in order that cells which are far away from the user equipment are not involved in 

the candidate cell list [21-23]. The distance between the user equipment at position  𝑃2 and the cell at 

location 𝑃3 is calculated by (6): 

 

𝑑𝑝3,𝑝2 = √(𝑥3 − 𝑥2)2 + (𝑦3 − 𝑦2)2    (6) 

 

For UE moves from position P2  towards neighbor cell located at P3 , we consider the neighbour cell 

to be a candidate cell if(θ ≤ |∓θth°|) and(dp3,p2  
≤  neighbor cell radius dth ). The next stage contains 

selecting the target cell from the nominee candidate list by utilizing the Weight Adjustment algorithm [20]. 

In our work, the shortest distance to the user equipment’s current position and the narrowest θ from  

the candidate cell list would be the most appropriate target cell. The Weight Adjustment algorithm is shown 

in Algorithm 1. 

 

Algorithm 1. Weight adjustment 
1: Input  𝜃𝑃2,𝑃1,𝑃3

 and 𝑑𝑃3,𝑃2
 

2: Output: 𝑤𝑛𝑜𝑟𝑚 

3: 𝜃𝑛𝑜𝑟𝑚 = 1 −
 𝜃𝑃2,𝑃1,𝑃3

𝛼
 

4: 𝑑𝑛𝑜𝑟𝑚 = 1 −
 𝑑𝑃3,𝑃2

2𝑟
 

5: 𝑤𝑛𝑜𝑟𝑚 =  𝜃𝑛𝑜𝑟𝑚 + 𝑑𝑛𝑜𝑟𝑚 

 

            𝑤𝑛𝑜𝑟𝑚  is used for choosing the target cell. Furthermore, normalization is also implemented for both 

distance and angle, in order that both will be according to standard integration. For normalization we use 𝜶 as 

the angle value. 𝜃𝒏𝒐𝒓𝒎  involves the result of angle normalization as all angles of the candidate cells are less 

than or equal |∓𝜃𝑡ℎ°|, this angle (𝜶) is used for normalization procedure. 𝒅𝒏𝒐𝒓𝒎 involves the result of 

distance normalization which is normalized via cell transmission range (𝟐𝒓) to enhance the priority of  

the angle value, as the distance of all nominee cell list is less or equal to 𝒓.  These methodologies for choosing 

the candidate cell list and selecting the target cell are illustrated in Algorithm 2. 

 

Algorithm 2. Choosing the candidate cell list and selecting the target cell 
Input: 𝑷𝟏 (𝒙𝟏 , 𝒚𝟏 ), 𝑷𝟐 (𝒙𝟐 , 𝒚𝟐 ) and 𝑷𝟑 (𝒙𝟑, 𝒚𝟑 ) 
Output: 𝑪𝒆𝒍𝒍𝒕𝒂𝒓𝒈𝒆𝒕  

N is an empty array which will include the candidate cell list 

1:     for each neighbor cell do 

2:              𝜽𝒑𝟐,𝒑𝟏, 𝒑𝟑
= 𝐜𝐨𝐬−𝟏 (𝑷𝟑−𝑷𝟏 ).(𝑷𝟐−𝑷𝟏 )

|𝑷𝟑−𝑷𝟏 ||𝑷𝟐−𝑷𝟏 |
 

3:             if (𝜽𝒑𝟐,𝒑𝟏, 𝒑𝟑
≤ |∓𝜽𝒕𝒉°|) then 

4:                  add cell to N 

5:               end if // line 3 

6:      end for // line 1 

7:     if  N is not empty then 

8:        for each cell ⊂ 𝑵 do 

9:         𝒅𝒑𝟑,𝒑𝟐 = √(𝒙𝟑 − 𝒙𝟐)𝟐 + (𝒚𝟑 − 𝒚𝟐)𝟐 // cell position is (𝒙𝟑 − 𝒚𝟑) 

10:          𝒘𝒄𝒆𝒍𝒍 =  𝒘𝒄𝒆𝒍𝒍 + 𝒘𝒏𝒐𝒓𝒎(𝜽𝒏𝒐𝒓𝒎 +  𝒅𝒏𝒐𝒓𝒎) 
11:       end for // for line 8 

12:       𝑪𝒆𝒍𝒍𝒕𝒂𝒓𝒈𝒆𝒕 = 𝑻𝒉𝒆 𝒄𝒆𝒍𝒍 𝒘𝒊𝒕𝒉 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒘𝒄𝒆𝒍𝒍 

13:       rest 𝒘𝒄𝒆𝒍𝒍  of all cells by 0 

14:     else // line 7 

15:            𝑪𝒆𝒍𝒍𝒕𝒂𝒓𝒈𝒆𝒕 = 𝟎 
16:     end if //line 7 

17:  return 𝑪𝒆𝒍𝒍𝒕𝒂𝒓𝒈𝒆𝒕  

 

d. Action: is the agent decision result 

In our framework, it refers to the handover decision results: the UEeNB may keep its  

connection with the serving macrocell eNB (action1) or select one of the femtocells HeNBs from its NCL 

(action 2, …, action NNCL + 1). In our proposal algorithm, we use the ϵ-Greedy technique with an adaptive ϵ 

scheme by presenting RSRQ-dependent exploration instead of a fixed or a hand-tuning ϵ parameter  

(RSRQ Q-learning based technique (Q2 technique)) [24, 25]. Unlike the traditional ϵ-Greedy method,  
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which use a fixed ϵ parameter, the required action of Q2 technique is to make the agent more explorative  

in circumstances when the information about the environment is unclear. Q2 technique algorithm is  

shown in Algorithm 3. 

 

Algorithm 3.  Q2 technique 
Δϵ: the amount of  decrease or  increase of ϵ, 0 < ϵ < 1 

Stage 1: Set Δϵ to 0.01 and ϵ to 0.1 

Stage 2: At each trail, we compare RSRQt-1 and RSRQt. 

-if RSRQt-1  < RSRQt , then  ϵ =  ϵ -  Δϵ 

-else  ϵ =  ϵ +  Δϵ 

 

e. Reward: It indicates the quality or goodness of the action a in the state s, considered as a utility function 

and denoted by R  

In our framework, the reward is the earned capacity after connecting to the target cell (eNB or 

HeNB). Our objective is to maintain and maximize the capacity of UEeNB connecting to a new cell after 

a handover process (Capacity Q-learning based technique (CQ technique)). Thus, if UEeNB selects 

the macrocell eNB as a serving cell, the utility function R which is a perceived reward (capacity) of the target 

cell is expressed as 1. Else if UEeNB selects to connect to one of the femtocells HeNBs in its NCL, the utility 

function R is expressed as 2 [26, 27].  

Let 𝑃𝑒𝑁𝐵  be the transmitted power by the macrocell eNB and ℎ𝑒𝑁𝐵,𝑘 the gain of the channel between 

the macrocell eNB and its serving kth macrocell user UEeNB. Similarly, hi,j represents the gain of the channel 

between the ith  femtocell HeNB and the jth femtocell user UEHeNB. Lastly, Pi represents the transmit power of 

the ith femtocell HeNB. An Additive White Gaussian Noise (AWGN) is considered at macrocell user UEeNB 

with 𝜎2 power. Macrocell user UEeNB k capacity from its serving macrocell eNB is calculated by (7): 

 

𝐶𝑘 =
𝐵

𝑁 𝑈𝐸𝑒𝑁𝐵

log2 (1 +
|ℎ𝑒𝑁𝐵,𝑘 |

2
𝑃𝑒𝑁𝐵

𝜎2+𝐼
)  (7) 

 

where 𝐵 is the available bandwidth, 𝐼 =  ∑ |ℎ𝑖,𝑘  |
2

𝑃𝑖
𝑁𝐻𝑒𝑁𝐵
𝑖=1   is the interference from neighboring femtocells 

HeNBs, and 𝑁𝐻𝑒𝑁𝐵 is the number of neighboring femtocells HeNBs. We consider that the bandwidth is 

equally allocated to all users (UEeNB and UEHeNB). The capacity at femtocell user j (UEHeNB)  j from femtocell 

(HeNB) i is given by (8):  

 

𝐶𝑗 =
𝐵

𝑁 𝑈𝐸𝐻𝑒𝑁𝐵

log2 (1 +
|ℎ𝑖,𝑗 |

2
𝑃𝑖

𝜎2+𝐼𝑒𝑁𝐵+ 𝐼𝐻𝑒𝑁𝐵
) (8) 

 

where 𝐼𝑒𝑁𝐵 =  |ℎ𝑒𝑁𝐵,𝑗  |
2

𝑃𝑒𝑁𝐵 is the interference from macrocell eNB, ℎ𝑒𝑁𝐵,𝑗 is the gain of the channel 

between macrocell eNB and user j. Also, 𝐼𝐻𝑒𝑁𝐵 =  ∑ |ℎ𝑙,𝑗  |
2

𝑃𝑙𝑙≠𝑖  is the interference from other femtocells 

HeNBs and ℎ𝑙,𝑗 is the gain of the channel between HeNBl , transmitting with power 𝑃𝑙  , and user j. 

 

 

 
 

Figure 2. User equipment distance and moving direction 
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4. RESULTS AND DISCUSSION 

The LTE-Sim simulator [28] is used to evaluate the performance of the proposed algorithm 

depending on the number of the handovers with compare to the algorithm introduced by Suman [17].  

The topology consists of two macrocells (eNB) with a radius of 1km each and various femtocells (HeNBs) 

density, the femtocell number is configured as 30, 50, 70 and 90 in each macrocell, and all femtocells are 

covered by open access type to allow the user equipment UE to handover to each femtocell. Each femtocell 

radius covers 30 meters. The UE number is configured as 15, 30, 45 and 60. The UEs are distributed 

randomly in each macrocell coverage area and each UE starts moving from the center of its serving eNB 

based on random mobility. 

 The handover decision in the proposed topology will cover three vertical handover types: Hand-in, 

Hand-between and Hand-out handovers based on the availability of each vertical handover type.  

Each femtocell will be randomly located between 50 meters to 1000 meters from the macrocell location in 

three dependent scenarios: close, middle and at the edge. Concerning femtocells distribution scenarios:  

close, middle and at the edge, femtocells are distributed in four different groups: 30, 50, 70 and 90 in each 

scenario. Figure 3 presents the average number of handovers for the proposed algorithm in each scenario for 

30 UEs. As shown in Figure 3, the relationship between the average number of handovers and femtocells 

density is positive relationship, which means that the average number of handovers increase when femtocells 

density increase. While it has the lowest average when the femtocells distribution is at the edge. This is 

because the mobile users start to move from the location of macrocell tower. In addition, the average of 

handovers number increases as the number of femtocells in all distribution scenarios increases.  

Furthermore, the results of the average number of handovers for the proposed algorithm and Suman 

handover algorithm were discussed in terms of femtocells that are distributed to groups of 30,50,70 and 90 

per each macrocell, and two groups of UEs (15 and 30) as presented in Figure 4. Based on each result, 

it is evident that by increasing the femtocells number, both algorithms show an increment in the average 

handovers number, because mobile users make additional handovers with respect to their movements in each 

mobile user group. 

The results emphasize that the best performance was achieved by our algorithm in all distributions 

of femtocells and all densities. This is because of utilizing Q-learning methodology which allow the mobile 

user to learn from his previous history, in addition to other supporting methodologies which do not allow  

the mobile user to connect to femtocells that are only close to the it, but to connect to those located in front of 

or approximately ahead of current mobile user position in order to avoid the redundant handover. 

The user equipment only nominates the femtocell whose tower location is less than |±25| and  

the distance between the UE and the candidate femtocell is less than or equal 28 meters. On the contrary,  

in the case of Suman handover decision the handover procedure is triggered when the RSS between the UE 

and its neighbor femtocells is higher than the RSS between the UE and its serving cell without any 

consideration of how long the target femtocell will serve the UE and its usefulness to do handover or not.  

 

 

 
 

Figure 3. Comparison of average number of handovers of the proposed algorithm in three scenarios:  

close, middle and at the edge 
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Figure 4. Comparison of average number of handovers for both algorithms 

 

 

Finally, regarding the total average number of handovers for each UE group, it is reduced in  

the proposed algorithm by (55.63%) compared to Suman handover algorithm for all various femtocells 

densities when the number of UE is 15. Moreover, the proposed algorithm reduces the total average number 

of handovers by (41.74%) compared to Suman handover algorithm for all various femtocells densities when 

the UEs number is 30. 

 

 

5. CONCLUSION AND FUTURE WORK 

The simulation results show that the proposed algorithm performs well in enhancing the handover 

decision in LTE-A networks. The simulation results examined the proposed algorithm for femtocells of  

the open access type in order to enhance the target femtocell selection in the vertical handover decision.  

The selection of suitable parameters to improve the handover decision still encompasses a wide area research. 

Therefore, the recommendation for further research in this field can be as follows: Firstly, is to investigate 

different parameters of user performance in light of handover and load balancing in the wireless system over 

horizontal and vertical networks. Secondly, to investigate different parameters of user performance on both 

femtocell types: the close and hybrid. Finally, in regard to implementation, UE velocity should be taken into 

account in the handover decision as the main behavior. Thus, by monitoring the three main behaviors at UE 

which are the UE mobility, acceleration, and deceleration as the frequent line changes, the suitability of  

the proposed algorithm for the UE behavior can be ensured. 
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