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ABSTRACT

Advancement of the prediction models used in a variety of fields is a result of the
contribution of machine learning approaches. Utilizing such modeling in feature en-
gineering is exceptionally imperative and required. In this research, we show how
to utilize machine learning to save time in research experiments, where we save more
than five thousand hours of measuring the energy consumption of encoding recordings.
Since measuring the energy consumption has got to be done by humans and since we
require more than eleven thousand experiments to cover all the combinations of video
sequences, video bit rate, and video encoding settings, we utilize machine learning to
model the energy consumption utilizing linear regression. VP8 codec has been offered
by Google as a free video encoder in an effort to replace the popular H.264 video en-
coder standard. This research model energy consumption and describes the major dif-
ferences between H.264/AVC and VP8 encoders based on of energy consumption and
performance through experiments that are machine learning-based modeling. Twenty-
nine uncompressed video segments from a standard data-set are used, with several
sizes, details, and dynamics, where the frame sizes ranging from QCIF(176x144) to
2160p(3840x2160). For fairness in comparison analysis, we use seven settings in VP8
encoder and fifteen types of tuning in H.264/AVC. The settings cover various video
qualities. The performance metrics include video qualities, encoding time, and encod-
ing energy consumption.
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1. INTRODUCTION
Machine learning approaches have recently contributed to the advancement of the prediction models

used for energy consumption [1–3]. In this paper, we utilize machine learning to predict the energy consump-
tion of over ten thousand experiments to be used for encoders performance comparisons.

The popularity of H.264/AVC has confronted an incredible competence with Google discharging VP8
and VP9 as free of charge video encoders, mainly on YouTube [4]. One of the key factors that would shape
the encoder of the future is the adequacy of VP8 comparing to H.264/AVC. Thanks to the awesome overextend
of video compression, the viability of VP8 comparing to with H.264/AVC needs more thorough analysis. It is
noted that a few works only compared the viability of both encoders such as [5–14]. Study [9] has compared
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H.264/AVC and VP8 encoders for only three sequences.The evaluation measurements were only one metric;
which is the perceived video quality. Besides, it tested only with minimum basic compression parameters.

This research depicts the contrasts between MPEG-4 Part 10 (H.264/AVC) and VP8 encoders in en-
ergy consumption, video quality, and encoding time/speed. It moreover gives nitty-gritty comparative eval-
uations for more than eleven thousand tests, so as to reflect practical circumstances by wisely selecting the
compression settings, and the video evaluation segments. Twenty-nine uncompressed video segments were
used, with a variety of frame contents, with sizes extending from QCIF (176x144) to 2160p (3840x2160)
and the contents changing significantly in detail and speed of movements. To guarantee a reasonable and fair
comparison, we utilize three encoding settings in H.264/AVC, with five different tunings for each, and seven
settings in VP8 encoder. These settings cover an assortment of accomplished quality levels. We change the
bit rate for each video segment to study different video quality. The performance metrics include the quality
of the video, speed of encoding, and energy consumption. For the quality of the video, we use the structural
similarity index (SSIM) [15].

The organization of the paper is as takes after. Section 2. provides background information of the
used encoders for comparison. Subsequently, Section 3. analyzes and discusses the performance assessment
and evaluation procedures, techniques, and methodology. At last, Section 4. illustrate and analyzes the most
results.

2. BACKGROUND INFORMATION
Most of the researches that combine encoders and machine learning/deep learning (ML/DL) tech-

niques focused on developing robust ML/DL algorithms for the detection, tracking, and classification of objects
[16, 17] and the detection and classification of unusual events [16–21] (and reference within). The overwhelm-
ing majority of research on CV considered the development of robust algorithms to improve accuracy [22–26]
(and references within).

The encoding process stages of an H.264/AVC codec include spatial(intra) and temporal (inter) pre-
diction [27]. Both the spatial and the temporal prediction are utilized to decrease the duplicates within the
video. Video information contains temporal and spatial repetition. Subsequently, similitudes can be encoded
by fair considering spatial (within a frame) and/or temporal (between frames) residuals.

An H.264/AVC codec can select from numerous diverse intra-prediction and motion-estimation modes
at the time of encoding a macroblock. The rate-distortion optimization (RDO) mode selection is an optimum
algorithm for choosing the most excellent encoding mode for each macroblock, based on a cost that considers
the lowest value of bit rate and distortion combination. The differences between H.264 and VP8 in modes are
shown in Table 1.

Table 1. H.264/AVC and VP8 encoding comparison
Encoding Step H.264/AVC encoder VP8 encoder
Intra-Prediction Nine modes of prediction were used per (4× 4) and Uses four intra-prediction modes shared (4× 4) and

(8× 8) Luma block in high profiles prediction (16× 16) Luma, and (8× 8) Chroma
four modes of prediction were used per (16× 16)
Luma block and (8× 8) Chroma prediction modes

Inter-Prediction sixteen reference frames three reference frames
Partition types are (16× 16) down-to (4× 4) Partition types are (16× 16) down-to (4× 4)

Spatial-prediction is utilized to foresee the content of a block from its neighbors’ blocks with no
history utilization. In spatial (intra-mode) selection in H.264/AVC , the number of possible mode combinations
for a 16 × 16 pixel MacroBlock (MB) can be (16 × N4 + N16) × N8 , where N4, N16, and N8 represent
the number of modes of a 4× 4 Luma block, and a 16× 16 Luma block, an 8× 8 Chroma block,respectively.
To select the best mode for one MacroBlock, the encoder performs (16 × 9 + 4) × 4 which is equals to 592
RDO calculations [28]. In VP8 codec, applying the same equation gives (16 × 4 + 4) × 4 which is equals to
272 RDO calculations. Hence, the complexity of H.264/AVC is more than twice that of VP8 encoder intra-
prediction without optimized implementation.

Motion-estimation (Inter-prediction) is the method of predicting the a block contents (Luma and
Chroma) by referring to past and/or future processed frames. Reference frames (RFs) and motion vectors
(MVs) are the essential parts of motion estimation (inter-mode prediction). The RF is already processed frame
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utilized to get similar blocks, and where the MV show the displacement (in pixels) between where the current
block is in the current frame and the comparing prediction block within the RF [29].

H.264/AVC and VP8 encoders have comparative structures in terms of block sizes. H.264/AVC
utilises the following partitions 16 × 16, 16 × 8, and 8 × 16, and each 8 × 8 can be further divided into
8× 8, 8× 4, 4× 8, or 4× 4. While VP8 encoder utilises 16× 16, 16× 8, 8× 16, 8× 8, and 4× 4 partitions.
VP8 encoder dropped 8× 4 and 4× 8 partitions which is impossible to be of a significant issue [30, 29]. Both
H.264/AVC and VP8 encoders support variable-size motion vectors.

3. PERFORMANCE EVALUATION METHODOLOGY
3.1. Used codecs, video sequences, and performance metrics

As for the experimental set up, we adopted vpx codec for encoding and decoding with regard to
the VP8. Furthermore, we adopted for encoding X264 (r1688) and we adopted for decoding FFmpeg (SUN-
r24758) with regard to the H.264/AVC. The evaluation video segments were categorized into 4 categories
according to frame size, as illustrated in Table 2. provide more details about the used test sequences are in
Table 3.

Table 2. Used video segments properties
formatting frmae size (in Pixles) Standard bit rate
Quarter common intermediate 176×144 videoconferencing 20-800 Kbps
format (QCIF)
Common intermediate format (CIF) 352×288
4 Common intermediate format (4CIF) 704×576 Standard-Definition Television (SDTV) 100-2000 Kbps
Standard HD (720p) 1280×720 High-definition television (HDTV) 500-3000 Kbps
Full HD (1080p) 1920×1080
4k (2160p) 3840 × 2160 Quad high-definition television (QHDTV) 2000-8000 Kbps

Table 3. Characteristics of the used standard video sequences
Video Segment Duration (seconds) Video Size (Frames) Resolution
Forman 12 300 176×144, 352×288
Salesman 17 449 176×144
News 12 300 176×144, 352×288
Mobile 12 300 176×144
Highway 80 2000 176×144
Stefan 3 90 352×288
Paris 42 1065 352×288
MotherDaughter 12 300 352×288
City 24 600 704×576
Crew 24 600 704×576
Harbour 24 600 704×576
Soccer 24 600 704×576
Ice 19 480 704×576
DucksTakeOff 20 500 1280×720, 3840 × 2160
InToTree 5 500 1280×720, 3840 × 2160
OldTownCross 5 500 1280×720, 3840 × 2160
ParkJoy 20 500 1280×720, 3840 × 2160
Mobcal 20 504 1280×720
BlueSky 8 645 1920×1080
Pedestrian Area 15 375 1920×1080
Riverbed 10 250 1920×1080
RushHour 20 500 1920×1080
Station2 12 313 1920×1080

The used evaluation measurements are energy consumption, video quality, and encoding speed per-
formance. To measure the quality of the videos , we utilize the structural similarity index (SSIM) [15]. To
determine SSIM, we utilized the the brightness in the image or Luma (Y) part in the YUV, as brightness would
stimulate eye more than the color would. We split the energy measured data to two categories, training data
and test data (80% of measured data were for training).

Machine learning-based energy consumption modeling and comparing of... (Yousef O. Sharrab)
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3.2. Procedure
Encoding is done using vpxenc/vpxdec (http://www.webmproject.org) codec. H.264/AVC encoding

is done by X.264 (http://X264.nl), while the decoding of H.264/AVC is done by using FFmpeg. We developed
C++ program to computerize the measurements of the encoding time and the encoded video bit rate.

We utilize MATLAB program to measure SSIM metrics, to find the quality of the distorted decoded
video sequences relative to the original distortion-free video sequence. The ratio of the target bit rate to the
accomplished bit rate is calculated by dividing the input bit rate that we specify in the command line by the
accomplished bit rate, which is the average of the real bit rate for the encoded sequences. To tradeoff the
encoding speed and the accomplished bit rate for certain SSIM quality, we draw the point which corresponds
to the interpolation tuple of that SSIM quality. In these figures, the higher speed and lower bit rate are better
encoders and parameters combinations.

The encoding settings for both H.264/AVC(X264) and VP8 encoders are selected to include a variety
of energy consumption and video quality. The encoding settings of VP8 encoder are selected from the WebM
website. Additionally, H.264/AVC (X264) parameter settings are selected from the developers website [8]. The
utilized encoding settings are explained in [11]. The formats of the encoded videos are WebM and mp4 for
VP8 encoder and H.264/AVC, respectively.

The energy consumption experiments were conducted on a dual-core processor laptop. The energy
was measured by Graphic Timer Watt meter. The number of needed experiments are (29 video sequence ×
6 bitrates × 22 settings × 3 repetition for accuracy which is equals to 11, 484). Each experiment needs in
average half an hour to be setup and conducted manually, which is very time consuming and prone to error.
For that reason, we pick a sample as follows, for each sequence we measure the energy for one bit rate out of
six, and 13 settings out of 22 which reduces the number of needed experiments to 522 experiments (29 × 1 ×
6 × 3 repetitions for accuracy). We use this collected data for training, to model the energy consumption based
on the encoding time feature. From the developed model, we predicted the remaining 10, 962 (11, 484− 522)
energy consumption predictions. The block diagram of the energy consumption modeling including training
and testing is shown in Figure 1.

Figure 1. Machine learning-based energy consumption modeling block diagram

4. RESULT PRESENTATION AND ANALYSIS
In this section, we analyze the results of H.264/AVC and VP8 encoders Comparison in energy con-

sumption, encoding time, and video quality. For space, we do not show all figures. For clear figures, we do not
show all setting results in all figures.

4.1. Energy consumption and encoding speed against perceptual quality at certain bit rate tradeoff
In all frame sizes excluding high definition standards (1080p and 2160p), H.264/AVC accomplishes

lower energy consumption and higher performance than VP8 encoder at the same bitrate. In High Definition
Standards resolutions, VP8 encoder yields higher performance but more encoding time and higher energy con-
sumption than H.264/AVC at the same performance. Notes that we use different settings for high definition
standards (720p, 1080p, and 2160p) for H.264/AVC based on the developers recommendations. Upon the
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evaluation of VP8 encoder settings under QCIF, CIF, and 4CIF, with “Best” indicating the most efficient per-
formance, the maximum energy consumption, and the slowest speed of encoding, settings “Good 0”, “Good
1”, “Good 2”, “Good 3”, “Good 4”, and “Good 5” come next,respectively. The setting “Good 5” produces the
worst performance, the minimum energy intake, and the fastest encoding among all the VP8 encoder settings.
On the other hand, settings “Good 1”, “Good 2”, and “Good 3” (720p, 1080p, and 2160p) were more efficient
in terms of encoding speed, performance, and energy intake. Regarding H.264/AVC, the setting “higher qual-
ity” has clearly the slowest encoding, the maximum energy intake, and the most efficient performance, mainly
for smaller resolution values, whereas adopting “Higher Speed” provides the worst quality, the smallest energy
intake, and the fastest encoding. “Normal quality” is in between the previous two settings.

4.2. Performance at various bit rate
Figure 2 compares the H.264/AVC and VP8 encoding time (speed) and video quality performance P

according to the following model

P = a×Q/Qh + (1− a)× S/Sh, (1)

where a is weighting factor, Q, Qh, S, Sh represents quality, highest quality, encoding speed, highest encoding
speed, respectively. The weighting factor take values fro 0 to 1, its value can be set based on which we care
more about; the quality or the encoding speed. For example in real time streaming we care more about encoding
speed, while in off line recording we care more about the quality. This model takes the mean value of the
normalized perceived quality and encoding speed for a = 0.5. The figure shows that ‘VP8 Good 5 setting’ and
‘H.264/AVC High Speed setting’ have the best performance, where ‘VP8 Best setting’ and ‘H.264/AVC High
Quality setting’ have the worst performance. This evaluation shows that high encoding speed (less quality)
settings perform better as they increase the encoding speed without significant impact on the perceived video
quality. H.264/AVC encoder generally has higher performance than Vp8 encoder based on (1).
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Figure 2. Codecs comparison in performance=(0.5× quality/highest quality +0.5× encoding speed/highest
encoding speed) Vs. bit rate, (a) Quality QCIF and CIF, (b) Quality 4CIF, (c) Quality 720p, (d) Quality

1080p, (e) Quality 2160p
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As we see in Figures 3 and 4, H.264/AVC generally consumes less energy than VP8 encoder, only
VP8 “Good 5” setting consumes less energy than H.264/AVC “High Quality” setting.
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Figure 3. Codecs comparison in encoding energy consumption, (a) Quality, QCIF and CIF, (b) Quality 4CIF,
(c) Quality 720p, (d) Quality 1080p, (e) Quality 2160p
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Figure 4. Codecs comparison in encoding energy consumption and quality at settled Bit rate, (a) Quality,
Bitrate=300 Kbps, QCIF and CIF, (b) Quality, Bitrate=500 Kbps, 4CIF, (c) Quality, Bitrate=800 Kbps, 720p,

(d) Quality, Bitrate=2000 Kbps, 1080p, (e) QQuality, Bitrate=7000 Kbps, 2160p
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5. CONCLUSIONS
Progression of the prediction models utilized in a variety of areas is a result of the contribution of

machine learning approaches. We show that we can extend our experiments and have more data to compare by
predicting energy consumption based on a machine learning model. The model saved us more than five thou-
sand hours of energy measurements. It is exceptionally imperative to have a way of preparing data through a
machine learning model to save time and it is immune to error. Implementation computation complexities have
been compared of H.264/AVC and VP8 encoders, and proved that VP8 encoder prediction is more straight-
forward. Such easiness of prediction results in speedier and lowers energy encoding utilization at the encoder.
which can simplify the encoding by an efficient implementation. Furthermore, we have compared and ana-
lyzed the execution of H.264/AVC and VP8 encoding through broad tests. In terms of the energy consumption,
H.264/AVC is predominant to VP8 encoder for most frame sizes. The results illustrate that H.264/AVC by and
large accomplish superior to VP8 Encoder in terms of performance and energy utilization.
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