
International Journal of Electrical and Computer Engineering (IJECE)
Vol. 11, No. 2, April 2021, pp. 1697∼1708
ISSN: 2088-8708, DOI: 10.11591/ijece.v11i2.pp1697-1708 r 1697

Monitoring of solenoid parameters based on neural
networks and optical fiber squeezer for solenoid valves

diagnosis
Abdallah Zahidi1, Said Amrane2, Nawfel Azami3, Naoual Nasser4

1,2,3INPT Optics Lab, National Institute of Posts and Telecommunications, Rabat, Morocco
4LDEDS, Faculties of Science and Technology, Hassan University 1st, Settat, Morocco

Article Info

Article history:

Received Apr 4, 2020
Revised Aug 11, 2020
Accepted Sep 30, 2020

Keywords:

EMS
Fluctuations
Monitoring
Neural Networks
Polarization squeezer

ABSTRACT

As crucial parts of various engineering systems, solenoid valves (SVs) operated by
electromagnetic solenoid (EMS) are of great importance and their failure may lead to
cause unexpected casualties. This failure, characterized by a degradation of the per-
formances of the SVs, could be due to a fluctuations in the EMS parameters. These
fluctuations are essentially attributed to the changes in the spring constant, coefficient
of friction, inductance, and the resistance of the coil. Preventive maintenance by con-
trolling and monitoring these parameters is necessary to avoid eventual failure of these
actuators. The authors propose a new methodology for the functional diagnosis of
electromagnetic solenoids (EMS) used in hydraulic systems. The proposed method
monitors online the electrical and mechanical parameters varying over time by using
articial neural networks algorithm coupled with an optical fiber polarization squeezer
based on EMS for polarization scrambling. First, the MATLAB/Simulink model is
proposed to analyze the effect of the parameters on the dynamic EMS model. The
result of this simulation is used for training the neural network. Then a simulation is
proposed using the neural net tting toolbox to determine the solenoid parameters (Re-
sistance of the coil R, stiffness K and coefficient of friction B of the spring) from the
coefficients of the transfer function, established from the model step response. Future
work will include not only diagnosing failure modes, but also predicting the remaining
life based on the results of monitoring.
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1. INTRODUCTION
In electromechanical solenoids (EMS), also called electromagnetic devices (EMD), driven by a control

solenoid, the armature is positioned by balancing the electromagnetic force against that of a return spring. They
are relatively an inexpensive construction [1], have a simple design and control circuit, require little energy for
control, are highly reliable [2], these electromagnetic actuators are used in wide range of modern industrial
equipment such as digital actuator arrays [3], vehicle vibration control systems [4], gas valve [5], robotic ma-
nipulators [6], positioners [7], anti-braking systems [8], and polarization controllers where solenoids are used
as mechanical actuator on the fiber to adjust the output light power [9]. In hydraulic systems, these electro-
magnetic actuators are commonly used in three basic categories to actuate hydraulic control valves directional-
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control, flow-control, and pressure-control. Directional-control valves are used to connect and isolate hydraulic
passages by simply opening and closing a communication path. Flow-control valves allow variable flow rate
control to a component. Finally, pressure-control valves regulate variable pressure to a hydraulic component
[10].

Analysis of EMS purposes show that to improve the safety and the performance of the EMS based
hydraulic system, the regular maintenance strategy of these electromechanical solenoids surely reduces failure
rate of the system; however, it brings high maintenance cost [11]. It should be highlighted that emergency
modes of EMDs are not only results of faults of their various elements or incorrect personnel activities during
EMD manufacturing and operation, they are also possible during a normal operation due to the wearing of
mating surfaces of friction assemblies or/and fluctuation in its parameters [12, 13].

Therefore, it is necessary to develop an effective approach for EMS diagnostics and operation controls
in order to map the failure and the reliability of the EMS based on the solenoid valves. The diagnostic results
could be used to estimate the health condition of the solenoid valves and predict their remaining useful life.
Additionally, the solenoid valves could get timely repaired or replaced before their potential failure causes any
system breakdown.

2. PROBLEM STATEMENT
Despite the high reliability and the excellent performance of solenoid valves in various applications,

their failure may result in severe system crash, signficant casualties and economic losses, especially in safety-
first fields, such as railway braking system, aviation engine, and nuclear power plants [14]. However, as stated
in some previous works [15, 16], the EMS dynamic in these devices is governed by an electromagnetic force
that increases greatly when the air gap is near zero. This nonlinear behavior, together with physical bounds
that limit the motion, causes EMS of valves to be subject to strong shocks and wear that often result in early
failures [17], these failures, which affects the dynamic response [18], may be due to a fluctuation in the EMS
structure parameters [19] or the electrical and mechanical parameters of the EMS (variations in inductance and
resistor of the coil, changes in spring constant and coefficient of friction) [20, 21]. Other studies have shown
a deterioration in the performance of EMS based system in presence of parametric variation [12, 13], even for
the best control solutions [20]. Other literatures have also revealed that failure of solenoid valves can also occur
gradually due to coil burnout of EMS related to mains voltage and frequency, spring force [22, 23]; and that
the resistance of the coil might be a source of themo-mechanical failure of the solenoid valve [24]. In addition,
the above-mentioned literature provides the parameters which characterize the failure of the solenoid valves.
This information can then be used to design a model to map the failure. Approaches based on signal processing
[25] and machine learning [26] have been proposed in the literature to diagnose the state of solenoid valves
leading to the development of a sensor to detect anomalies [27] or a method for grouping failures [26]. None
of these approaches gives a physical explanation of the failure modes related to the solenoid parameters [28];
Other models based on the movement of the armature and Foucault current [2] and the EMD winding current
curve appearing with the movement of the armature [29, 30] have been developed for diagnosis, but none of
these models does treat electrical and mechanical parameters as a source of failure. Morever, most control
approaches are using signals such as the coil current or voltage of solenoid to monitor the parameters; yet, the
main problems in such approaches are that the detected signals are prone to interference and difcult to obtain
[31]. Other works have been limited to the estimation and identication of a single solenoid parameter [32, 22].
In this work, the authors have developed a new approach for the diagnosis of an EMS actuator in solenoid
valve. The proposed approach is based on a new method based on optical fiber polarization controller signal
feedback coupled with articial neural networks model (ANN) for monitoring the electrical and mechanical
EMS parameters (resistence of coil R, and K, B respectively the stiffness and the coefficient of friction of the
spring), considered in this approach as health indices to characterize the failure of the solenoid valve. NN
has the advantages of controlling complex and non-linear systems [33, 34], has high accuracy of prediction
capability [35], and it is of great importance to find the high speed electromagnetic switching valve [36].

3. METHODOLOGY OF STUDY
This paper proposes a new methodology using optical fiber polarization controller signal feedback

coupled with an articial neural networks model (ANN) for monitoring the solenoid parameters and predicting
its performance. Figure 1 shows the proposed monitoring process.
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Figure 1. Block diagram of monitoring process

In the proposed structure, the optical fiber polarization controller is based on an EMS and an optical
fiber used as a mechanical force sensor of the EMS armature. This force induces an optical birefringence
that modifies the polarization of the light [9]. The variation of the polarization of the light is reflected by the
variation of the light intensity detected by a photodiode placed at the output of the optical fiber, In the first
step, a mathematical model is proposed to obtain the response of the system. Then, this model is identied from
this response using function tfest of MATLAB/Simulink [37] to determine the transfer function coefficient of
the system. In the second step, the effect of solenoid parameters variation on the transfer function coefficient
is analysed. This method uses simulation electromagnetic fiber squeezer based polarization controller with
function tfest and the simulation results are stored in a text file that will be used for neural networks training.
In the last step, the neural networks model is proposed to estabish the solenoid parameters from the coefficients
of the transfer function set from the step response of the fiber squeezer. Finally, to check the efficiency of
the proposed model, a prediction error is calculated. The result of the simulation shows that this optical fiber
squeezer coupled with the neural network model is very efficient to monitor the EMS parameters. The results
of monitoring will be used in a future work to estimate the remaining life of the solenoid valve.

4. BUILDING THE SIMULINK MODEL
4.1. Structure and equations of electromagnetic fiber squeezer

The EMS is the electromagnetic actuator that exerts the pressure on the fiber. Its structure is shown in
Figure 2.

Analyser Detector

Laser
1550

Solenoid

Figure 2. Scheme of using the electromagnetic fiber squeezer

The magnitude of the phase difference of two polarized light along the squeezing axis and its orthog-
onal axis can be expressed as [38]:

δ = 6e− 5
F

λd
(1)

and the light power Ps at the output of the polarization analyzer according to scheme of Figure 2 is:

Ps = E2 (2)
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where

E = A.
1

2
.E (3)

A =

(
ej(φm+ δ

2 ) 0

0 ej(φm−
δ
2 )

)
(4)

Ps = E2 =
P0

2
(1 + cos δ) (5)

where P0 is the input light intensity.

4.2. Mathematical model of EMS
The solenoid refers to the electromagnetic actuator. It is used to exert pressure on the fiber. Its struc-

ture is shown in Figure 3.

Plunger

Coil

Figure 3. Cross section of EMS

The mathematical model of EMS is given [39] by expression as (6):

m
d2x(t)

dt2
+B

dx(t)

dt
+Kx(t) =

µ0µrN
2AI2(t)

2(x0 − x(t))2
(6)

where: x(t): Displacement of the armature in (m), I(t): The electromagnet coil current in(A), A: the cross
sectional area of the coil in (m2), N : the number of the turns of the coil, µ0: Permeability of the free space in
(H/m), µr: Relative Permeability of the dielectric materiel between the coil and armature, x0: The initial air
gap between the armature and the backside of the frame in (m), m: Masse of the armature in (Kg), K: is the
stiffness of the spring in (N/m) and B: System damping coefficient in (N.s/m).

The equation of the electrical circuit is as (7) and (8):

u = Ri(t) +
d

dt
[L(x).i(t)] (7)

u = Ri(t) + L(x)
di(t)

dt
+ i(t)

dL(x)

dt
(8)

R is the series resistance of the EMS coil and L(x) is the inductance of the coil that depends of the air gap [39]:

L(x) =
µ0µr

x0 − x(t)
(9)

The balance equation of the force acting on the fiber is expressed as [40]

m
d2x(t)

dt2
= F −K(x(t) − x0) −B

dx(t)

dt
(10)

F is the force produced by the magnetic field and it be derived knowing that magnetic system is linear and that
current was kept constant

F =
dwt
dx

=
i2

2

dL(x)

dx
=
i2

2

aL′

(a+ x)2
(11)
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where L′ =
µ0πadN

2

g
and a ,d ,g parameters depending on the EMS. from (8) we can write

di

dt
=

1

L(x)

(
u−Ri− i

dL(x)

dx

dx

dt

)
(12)

from (10) we can write

d2x

dt2
=

1

m

(
F −K(x− x0) −B

dx

dt

)
(13)

Both (1) and (5) are used to write:

Ps =
P0

2

(
1 + cos(6e− 5

F

λd
)
)

(14)

4.3. Simulink model
The system model has been implemented in versatile software MATLAB which is widely used in

control engineering around the word. This simulation is used to effectively determine the best performance
of the dynamic response in the output light intensity. The electrical model Simulink which models (12) is
represented in Figure 4(a); while, the Simulink mechanical model for (13) is illustrated in Figure 4(b). This
model depends on the intrinsic parameters of the EMS: the mass m of the armature, the coefficient of friction
B, the stiffness of the ressort K, the resistance and the inductance of the coil (R, L). The Figure 4(c) represents
the optical Simulink model for (14).

(a) (b)

(c)

Figure 4. Simulink models, (a) Electrical model, (b) Mechanical model, (c) Optical model
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5. PRINCIPE OF SIMULATION
5.1. Monitoring process flowchart

To predict and monitor the EMS parameters, the coefficients of the transfer function obtained from
the step response of the fiber squeezer based on the EMS are used as input of the NN model. The parameters
solenoid R, B and K are expected as outputs. The flowchart of the monitoring process is shown in Figure 5.
Figure 6 proposes the architecture of the ANN model and Table 1 illustrates an example of identification results
used for the ANN training.

Figure 5. Monitoring process flowchart
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Figure 6. Neural network architecture

Table 1. Identification result for neural network training
Indice K (N/m) B(Ns/m) R(Ω) Num Dun1 Dun2 Dun3

1 2998.5692 3.2177 11.8536 114.7376 1 16.2331 15095.4567
2 2168.9635 2.3559 12.8581 70.5311 1 11.8918 10931.6472
3 2521.0054 2.1333 13.6778 72.4483 1 10.7603 12681.9928

5.2. Neural networks architecture
The NN inputs consist of a matrix of order 10000 × 3, where each line represents a set of coefficients

of the transfer function num, dun2 and dun3. On the other hand, the outputs are the elements of a matrix of the
same order as the inputs where each line exemplifies a set of solenoid parameters (K, B and R). The structure
also contains 10 hidden layers chosen by default with the sigmoid function as activation function and 3 output
layers with a linear activation function as shown in Figure 6.

5.3. Neural networks training
5.3.1. Identification with variable parameters for NN training

First, we propose a mathematical model that is used to obtain the response of the system. Then, this
model is identified from this response using identification function tfest whose syntax is sys=tfest(data, np, nz).
This function is used to estimate a transfer function containing nz zeros and np poles from the index response
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(data) of the Simulink model described in paragraph 4.3. The resulting transfer function has the coefficient
(num, dun2, dun3), and can be expressed as (15):

Tf =
num

s2 + dun2s+ dun3
(15)

Secondly, in order to obtain the system transfer function for different values of the solenoid parame-
ters, K, B and R are varied while while keeping m=200 g and L=20 mH since they are not likely to vary during
long-term operation of the solenoid. The variation interval of K is 1000 to 3000 N/m ; R is 10 to 15Ω and B is
2 to 4 N.s/m. The inputs of the Simulink model are a matrix of three columns and n rows of random value of
solenoid parameter. The random variation between the max and min values of each of the three parameters (K,
B and R) is obtained by using the function rand (n,1) whose syntax is as (16):

parameter = (max–min) ∗ rand(n, 1) +min (16)

where parameter is K, R or B, and n= 10 000. The following Figure 7 represents the flowchart which allows to
obtain the dataset and Table 1 shows an example of the text file results obtained. The results of this simulation
are used as data (num, dun2, dun3) and target (K, B, R) for training the neural network model as shown in
section 5.3.2.

Start

initialization

K, B and R text files

Opening Sumlink model

Identification with tfest function

Coef Tf* text files

Variation of EMS parameters (K, B, R)

End VSP*

End

Tf: Transfer function
VSP: Variation solenoid parameters

Figure 7. Identification flowchart

5.3.2. Neural networks training
The target of neural network is able to identify and predict the solenoid parameters. Data from step

response and neural network target are used to search weight (w) and bias (b). Weight and bias are obtained
by entering data and target in MATLAB program by using Neural Net fitting toolbox which offers several
training functions. The updating of weight and bias values during network training is performed according
to the Levenberg-Marquardt optimization which offers faster tracking of system parameter change [41]. The
Levenberg-Marquardt algorithm is an efficient and popular damped least squre technique. This algorithm is
a combinaison between the steepest gradient descent and the Gauss-Newton algorithms [42]. The activation
function at the output of the HLs is the sigmoid function, it delivers a continuously smoother range of values
between 0 and 1 and is less expensive in terms of calculation. At the output of the network, the activation
function is linear, which creates an output signal proportional to the input. During the searching process of
weight and bias, the dataset is subdivided into three percent, 70% for training, 15% for the test and 15% for
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validation. The evaluation of the model is measured using three evaluation performances which are the mean
square error (MSE), the coefficient of correlation (R) and error histogram. The optimization technique applied
in the ANN model training seeks to optimize the weights and biases of the ANN structure by minimizing rhe
mean square error (MSE).

The training results are illustrated in Figure 8(a) which represents the convergent curve of the MSE
according to the epochs, error histogram and coefficient of the correlation between the output and the target
that respectively illustrated in Figure 8(b) and Figure 8(c).
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Figure 8. Training performance, (a) The convergent curve of the MSE, (b) Training error histogram,
(c) Training coefficient of correlation

5.4. Monitoring result and prediction error
The prediction and monitoring, of the EMS parameters are achieved through the data acquisition (num,

dun2, dun3) from the step response of the optical fiber polarization controller based on EMS. These data are
used as inputs of the NN model in order to find the parmeters. The predicted solenoid parameters M, B and K
obtained from the transfert function coefficient are illustred in the Table 2. Figure 9 shows the structure of the
minotoring process.
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Table 2. Predicted parameters testing result
NN input Solenoid parameter

num dun2 dun3 K(N/m) B(Ns/m) R(Ω)
Test1 74.23 18.28 5683 1101.8 3.60 8.90
Test2 137.86 14.03 14010 2775.5 2.76 10.40
Test3 59.12 16.21 10871 2159.5 3.22 14.03

Figure 9. The model architecture for EMS monitoring process

5.5. Model performance testing
The evaluation of the model performance is done according to the flowchart of the Figure 10 by using

data not utilized for the model training. The parameters found are used as inputs of the Simulink model to find
the predicted value of transfer function coefficients. These values are compared to the current values :num,
dun2 and dun3 to finally calculate the prediction error. The model performance testing structure is illustrated
in Figure 11.

Figure 10. Performance testing flowchart

Monitoring of solenoid parameters based on neural networks and optical fiber... (Abedallah Zahidi)
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Figure 11. The detail model performance testing

5.6. Results and discussion
Table 1 illustrates the result of the mathematical model identification of the system proposed for

training using the tfest function for different values of the parameters K, B and R. It is clear from this table that
if the stiffness of the spring K, the coefficient of friction B and the resistance of the solenoid coil R vary, the
coefficients of the transfer function characterizing the model dun2 and dun3 also vary, this variation affects the
performance of the hydraulic system based on solenoid valve. However, the coefficient dun1 is kept constant
it is equal to 1. The Figure 8(a) shows the convergence curve of MSE which illustrates the evolution of the
NN training. Moreover, it can be observed from this figure that suitable weights and biases of the NN model
are found in the end of the iteration with a better MSE value which is around 6,63.10−6. In addition, the
improvoment of the model performance might be realized by increasing the number of iterations (epochs)
in order to minimize the MSE. The Gaussian form of the error histogram in Figure 8(b) and the value of
coefficient of correlation between outputs and targets during the test illustrated in Figure 8(c) show the high
quality of training result.

On the other hand, according to the results obtained from the performance test model of Figure 9
along with those illustrated on the Table 2, it is clear that the predicted values of K, B and R are in evident
agreement with the test values obtained by the model of the Figure 11 and which are illustrated in Table
3. What’s more, and generally, the training result is less accurate compared to the training, however, from
the testing performance given in the Table 3 and the relative prediction error illustrated in Table 4. Thus it
is proven that the training performance of Levenberg-Marquardt algorithm is able to control and predict the
solenoid parameters, and that the proposed neural network monitoring was successfully implemented.

Table 3. Simulink model testing result
Solenoid parameters Simulink model outputs

K(N/m) B(Ns/m) R(Ω) num dun2 dun3
Test1 1101.8 3.60 8.90 74.73 18.34 5684
Test2 2775.5 2.76 10.40 137.74 14.05 14010
Test3 2159.5 3.22 14.03 58.97 16.21 10870

Table 4. The test result prediction error
Actual values (NN input) Predicted values (simulink model output) Relatif prediction error
num dun2 Dun3 num dun2 dun3 num dun2 Dun3

Test1 74.23 18.28 5883 74.73 18.34 5684 0.67% 0.30% 0.01%
Test2 137.86 14.03 14010 137.74 14.05 14010 0.08% 0.13% 0%
Test3 59.12 16.21 10871 58.97 16.21 10870 0% 0% 0.003%

6. CONCLUSION
In this article, a model-based approach for detecting faults in electromagnetic solenoid of valves was

proposed. The model is based on ANN coupled with an optical fiber polarization squeezer signal feedback.
During a voltage step, the coefficients of the transfer function of the mathematical model are determined from
the step response of the actuator model. Then, the parameters of the EMS, selected as the health indices
of the solenoid valve, are determined from the ANN model. The results of this model have been verified
through simulation on MATLAB/Simulink. The proposed neural networks model has satisfactory performance
of prediction and has met the monitoring requirement. Thus, this contribution provides a novel approach on
fault diagnostics in hydraulic systems. It consists only of software and optical fiber. Additionally, expensive
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sensors that may reduce the overall reliability, are not required. This method is also applicable to solenoid
in other applications, e.g., solenoid actuators in robotics, variable force solenoid in clutch systems, and so
on. Future work will not only consist of diagnosing the solenoid valve failure modes by monitoring the EMS
parameters, but also through predicting the remaining life.
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