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 This paper proposes an adaptive anti-sway controller for uncertain overhead 

cranes. The state-space model of the 2D overhead crane with the system 

parameter uncertainties is shown firstly. Next, the adaptive controller which 

can adapt with the system uncertainties and input disturbances is established. 

The proposed controller has ability to move the trolley to the destination in 

short time and with small oscillation of the load despite the effect of  

the uncertainties and disturbances. Moreover, the controller has simple 

structure so it is easy to execute. Also, the stability of the closed-loop system 

is analytically proven. The proposed algorithm is verified by using Matlab/ 

Simulink simulation tool. The simulation results show that the presented 

controller gives better performances (i.e., fast transient response, no ripple, 

and low swing angle) than the state feedback controller when there exist 

system parameter variations as well as input disturbances. 
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1. INTRODUCTION  

The overhead cranes which are widely used for transporting heavy loads are one of the most popular 

underactuated mechanical systems in that the number of the actuators is less than the degree of freedom.  

The deficiency of actuator for sway dynamics presents a coupling effect between the load sway motion and 

the trolley traveling motion. The transient swing of payload may cause a safety hazard to employees, 

transferred goods and surrounding objects. In addition, the lack of actuator makes the control design of  

the underactuated system much more difficult than the full actuated systems. For this reason, designing  

the controller for the overhead crane system which can move the trolley to the destination as fast as possible 

with acceptable swing angle attracts the consideration of many researchers. 

Nowadays, there have been various control methods that can guarantee the good performance for  

the overhead crane systems both in open loop and closed loop. In the class of open loop control, the swing of 

payload is abolished by some approaches such as input shaping [1-4], trajectory planning [5, 6]. However,  

in general, the open-loop control system can not guarantee the good performance in the case of system 

uncertainties and external disturbances. Therefore, many closed-loop control techniques are applied to  

the overhead crane system to improve the performance such as nonlinear feedback [7-11], partial feedback 

linearization [12, 13], fuzzy logic control [14-17], sliding mode control [18-21] and so on. 

It is widely recognized that adaptive control method has the advantage of handing with uncertain 

systems. In the field of overhead crane control, the adaptive control technique is also considered by some 

researchers. In [22] the fuzzy logic controller is used to keep the system stable and an adaptive algorithm is 

provided to tune the free parameters. The given strategy is simple but robust to the variation of the system 

parameters (wire length and payload weight) as well as external disturbances. However, the stability of 

overall system is not presented. In [23], a fuzzy sliding-mode control is designed for the antisway trajectory 
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tracking of the nominal plant. Then, a fuzzy uncertainty observer is used to cope with system uncertainties as 

well as actuator nonlinearities. This observer is incorporated with the fuzzy sliding-mode control law for  

the development of the adaptive fuzzy sliding-mode controller. This scheme guarantees asymptotic stability 

and robust performance but it is quite complicated. An adaptive sliding-mode antisway control of uncertain 

overhead cranes with high-speed hosting motion is shown in [24]. In this scheme, the asymptotic stability of 

the sway dynamic is achieved by the sliding-mode controller, the system uncertainties is coped by a fuzzy 

observer. This algorithm gives the robust antisway performance to overhead cranes regardless of 

hosting velocity and system uncertainties. The stability of the system, however, is proven in analysis and 

simulation only.  

This paper proposed an antisway adaptive controller for overhead cranes. In particular, the model of 

the overhead crane is built in the form of state-space at first. Then, the adaptive controller with feedforward and 

feedback components is introduced. This controller has the ability to drive the trolley to the target with high 

speed and low swing angle. Also, the proposed controller can remove the effect of the parametric uncertainties 

as well as the input disturbances. Moreover, the structure of the controller is not complicate and this leads to 

simplify in the execution. The stability of the overall system is guaranteed by the Lyapunov theory. Finally, 

the simulation is executed by Matlab/Simulink for both proposed adaptive controller and conventional state 

feedback controller. The simulation results indicate that the suggested controller gives the good performance, 

i.e., fast response, no steady state error, no payload swing angle even under the condition of system 

uncertainties. The main contribution of this research work can be cited as the following: 

- The proposed controller can drive the trolley to the target with fast responses and almost no swing angle. 

- The scheme works well under the effect of rope length, variation load mass, the external disturbances. 

- In comparision with the existing works which solve the same problems of the overhead crane systems,  

the presented controller has simple structure and the stability is proven via Lyapunov theory by using  

the Linear Matrix Inequality. 

 

 

2. SYSTEM MODEL AND LMI BASED ADAPTIVE CONTROLLER DESIGN 

Figure 1 describes the block diagram of an overhead crane. The trolley moves along the horizontal 

axis (Ox-axis) with its load which is hung at the end of the rope. 

 

 

 
 

Figure 1. Block diagram of an overhead crane system 

 

 

The motion equation of the overhead crane is given as the following [25]: 

 

{
(𝑀 +𝑚)�̈� + 𝑚𝑙�̈� 𝑐𝑜𝑠 𝜃 − 𝑚𝑙�̇�2 𝑠𝑖𝑛 𝜃 = 𝑢

𝑙�̈� + 𝑔 𝑠𝑖𝑛 𝜃 + �̈� 𝑐𝑜𝑠 𝜃 = 0      
                                   (1) 

 

where 

M: trolley mass [kg] m: payload mass [kg] 

l: cable length [m] x: trolley position [m] 

g: gravity acceleration [m/s2] : payload swing angle [deg] 

u: control input corresponding to control force exerted on the trolley [N] 
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The model (1) can be rewritten as: 
 

{
 
 

 
 �̈� =

𝑚𝑔 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 +𝑚𝑙�̇�2 𝑠𝑖𝑛 𝜃

𝑀 +𝑚 𝑠𝑖𝑛2 𝜃
+

1

𝑀 +𝑚𝑠𝑖𝑛2 𝜃
𝑢

�̈� = −
(𝑀 +𝑚)𝑔 𝑠𝑖𝑛 𝜃 + 𝑚𝑙�̇�2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

(𝑀 +𝑚 𝑠𝑖𝑛2 𝜃)𝑙
−

𝑐𝑜𝑠 𝜃

(𝑀 +𝑚 𝑠𝑖𝑛2 𝜃)𝑙
𝑢

 (2) 

 

It should be noted that since the sway angle is small, i.e. it is desired to be zero, then cos  1, sin  , 

and 2 0. The model (2) can be simplified as: 

 

{
�̈� =

𝑚𝑔𝜃+𝑚𝑙�̇�2𝜃

𝑀
+

1

𝑀
𝑢

�̈� = −
(𝑀+𝑚)𝑔𝜃+𝑚𝑙�̇�2𝜃

𝑀𝑙
−

1

𝑀𝑙
𝑢

                                              (3) 

 

Defining the state variables: 

 

𝑋 = [𝑥1 𝑥2 𝑥3 𝑥4]𝑇 = [𝑥 − 𝑥𝑑 �̇� − �̇�𝑑 𝜃 − 𝜃𝑑 �̇� − �̇�𝑑]
𝑇  

 

where xd and d are the desired values of x and , respectively. 

With this definition and by using the fact that the xd and d do not change suddenly in a short 

sampling interval, the system model (3) can be rewritten as: 

 

{
 

 
�̇�1 = 𝑥2
�̇�2 = 𝑘1𝑥3 + 𝑘2𝑥3𝑥4

2 + 𝑘3𝑢
�̇�3 = 𝑥4
�̇�4 = 𝑘4𝑥3 + 𝑘5𝑥3𝑥4

2 + 𝑘6𝑢

                                                    (4) 

 

where 𝑘1 =
𝑚𝑔

𝑀
, 𝑘2 =

𝑚𝑙

𝑀
, 𝑘3 =

1

𝑀
, 𝑘4 = −

(𝑀+𝑚)𝑔

𝑀𝑙
, 𝑘5 = −

𝑚

𝑀
, 𝑘6 = −

1

𝑀𝑙
 

 

The control input u can be separated into two parts, u1 and u2, where u1 is the feedback control 

component which stabilizes the error dynamics of the system and u2 is the nonlinearity compensating control 

component given as 

 

𝑢2 = −𝑥3𝑥4
2                                                                          (5) 

 

In considering the system parameter uncertainties, the model (4) becomes: 

 

{
 

 
�̇�1 = 𝑥2
�̇�2 = (𝑘1 + 𝛥𝑘1)𝑥3 + (𝑘2 + 𝛥𝑘2)𝑥3𝑥4

2 + (𝑘3 + 𝛥𝑘3)(𝑢1 + 𝑢2)
�̇�3 = 𝑥4
�̇�4 = (𝑘4 + 𝛥𝑘4)𝑥3 + (𝑘5 + 𝛥𝑘5)𝑥3𝑥4

2 + (𝑘6 + 𝛥𝑘6)(𝑢1 + 𝑢2)

   (6) 

 

where ∆ki (i = 1 to 6) are the uncertainties of ki. It does not lose the generation with the assumption that k3 

and k6 are not only the uncertainties of k3 and k6 but also include the input disturbances and error in  

the feedforward channel represented by . With this assumption, the model (6) becomes: 

 

{
 

 
�̇�1 = 𝑥2
�̇�2 = (𝑘1 + 𝛥𝑘1)𝑥3 + 𝑘3𝑢1 + 𝑘3𝛿(𝑢1 + 𝑥3𝑥4

2)
�̇�3 = 𝑥4
�̇�4 = (𝑘4 + 𝛥𝑘4)𝑥3 + 𝑘6𝑢1 + 𝑘6𝛿(𝑢1 + 𝑥3𝑥4

2)

                                          (7) 

 

The model (7) can be rewritten in the state-space form as 

 

�̇� = (𝐴 + 𝛥𝐴)𝑥 + 𝐵[𝑢1 + 𝛿𝑓(𝑥, 𝑢)]                                                  
(8) 

 

 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 :  5793 - 5801 

5796 

where  

 

𝐴 = [

0 1 0 0
0 0 𝑘1 0
0 0 0 1
0 0 𝑘4 0

] , 𝛥𝐴 = [

0 0 0 0
0 0 𝛥𝑘1 0
0 0 0 0
0 0 𝛥𝑘4 0

] 

 

𝐵 = [0 𝑘3 0 𝑘5]
𝑇 ,  𝑓(𝑥, 𝑢) = 𝑢1 + 𝑥3𝑥4

2 

 

In which A component expresses the uncertainties of the system parameters parameters. Assume that there 

exists a positive definite matrix PR44 satisfying the following inequality 

 

(𝐴 + 𝛥𝐴)𝑇 𝑃 + 𝑃(𝐴 + 𝛥𝐴) + 𝑄 − 2𝑃𝐵𝑅−1𝐵𝑇 𝑃 < 0                                      (9) 

 

where QR44, and RR22 are positive definite matrices. Assume the controller K is given by: 

 

𝐾 = 𝑅−1𝐵𝑇𝑃                                                                  (10) 

 

and the adaptive law 

 

�̇�𝑒𝑠 = 𝛾𝑓(𝑥, 𝑢)𝑥𝑇𝑃𝐵,  𝛾 > 0                                                (11) 

 

where es is the estimated value of . 

 

Consider the following theorem: 

Theorem: Assume that the LMI condition (9) is feasible for some P and the controller gain K is given by 

(10), the adaptive law is given by (11). Then the controller u1 can make the error dynamics x converge  

to zero. 

 

𝑢1 = −𝐾𝑥 − 𝛿𝑒𝑠𝑓(𝑥, 𝑢)                                                             (12) 

 

Proof: Let us choose the Lyapunov function as 

 

𝑉 = 𝑥𝑇𝑃𝑥 + 𝛿𝑒
2𝛾−1

                                                                  
(13) 

 

where e= es  .  Its time derivative along the error dynamics (11) is given by 

 

�̇� = 2𝑥𝑇𝑃�̇� + 2𝛿𝑒�̇�𝑒𝛾
−1 

   = 2𝑥𝑇𝑃[(𝐴 + 𝛥𝐴)𝑥 + 𝐵𝑢 + 𝐵𝛿𝑓(𝑥, 𝑢)] + 2𝛿𝑒𝛾
−1(�̇�𝑒𝑠 − �̇�) 

   = 2𝑥𝑇𝑃[(𝐴 + 𝛥𝐴)𝑥 + 𝐵(−𝐾𝑥 − 𝛿𝑒𝑠𝑓(𝑥, 𝑢)) + 𝐵𝛿𝑓(𝑥, 𝑢)] + 2𝛿𝑒𝛾
−1�̇�𝑒𝑠 

   = 2𝑥𝑇𝑃[(𝐴 + 𝛥𝐴) − 𝐵𝐾]𝑥 − 2𝑥𝑇𝑃𝐵𝛿𝑒𝑠𝑓(𝑥, 𝑢) + 2𝑥
𝑇𝑃𝐵𝛿𝑓(𝑥, 𝑢) + 2𝛿𝑒𝑠𝛾

−1�̇�𝑒𝑠 
   = 2𝑥𝑇𝑃[(𝐴 + 𝛥𝐴) − 𝐵𝐾]𝑥 − 2𝑥𝑇𝑃𝐵𝛿𝑒𝑠𝑓(𝑥, 𝑢) + 2𝛿𝑒𝑠𝑓(𝑥, 𝑢)𝑥

𝑇𝑃𝐵 
   = 2𝑥𝑇𝑃[(𝐴 + 𝛥𝐴) − 𝐵𝐾]𝑥                    (14) 

 

The LMI condition (9) implies that  

 

�̇� < −𝑥𝑇𝑄𝑥 ≤ 0  (15) 

 

Then, by integrating both sides of (15), the following equation is derived 

 

∫ 𝑥(𝜏)𝑇𝑄𝑥(𝜏)
∞

0
𝑑𝜏 = −∫ �̇�(𝜏)𝑑𝜏

∞

0
= 𝑉(0) − 𝑉(∞) < ∞ (16) 

 

This implies 𝑥 ∈ 𝐿2 ∩ 𝐿∞, 𝛿 ∈ 𝐿∞. Combining the previous results and using Barbalat’s lemma, 

x converges to zero as time goes to infinity, that is, 

 

𝑙𝑖𝑚
𝑡→∞

𝑥(𝑡) = 0 (17) 
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Remark 1: The equation of A can be rewritten as the following form: 

 

𝛥𝐴 = [

0 0 0 0
0 0 𝛥𝑘1 0
0 0 0 0
0 0 𝛥𝑘4 0

] = 𝐸𝐹𝛥𝑘1 + 𝐺𝐹𝛥𝑘4                                             (18) 

 

where 

 

𝐸 = [

0 0
1 0
0 0
0 0

] ,  𝐹 = [

0 0
0 0
1 0
0 0

]

𝑇

,  𝐺 = [

0 0
0 0
0 0
1 0

]

  

The inequality (9) is rewritten as 

 

𝐴𝑇 𝑃 + 𝑃𝐴 − 2𝑃𝐵𝑅−1𝐵𝑇 𝑃 + 𝑄 + 𝛥𝐴𝑇𝑃 + 𝑃𝛥𝐴 < 0
                                     

(19) 

 

The above inequality (19) is satisfied if the following inequality holds for some positive ρ 

 

𝐴𝑇 𝑃 + 𝑃𝐴 + 𝑄 − 2𝑃𝐵𝑅−1𝐵𝑇 𝑃 + 𝜌𝑃𝐸𝐸𝑇𝑃 +
1

𝜌
𝐹𝑇𝐹𝛥𝑘1

2 + 𝜌𝑃𝐺𝐺𝑇𝑃 +
1

𝜌
𝐹𝑇𝐹𝛥𝑘4

2 < 0               

 

(20) 

 

where the following inequality is used 

 

𝛥𝐴𝑇𝑃 + 𝑃𝛥𝐴 = 𝛥𝑘1𝐹
𝑇𝐸𝑇𝑃 + 𝛥𝑘1𝑃𝐸𝐹 + 𝛥𝑘4𝐹

𝑇𝐺𝑇𝑃 + 𝛥𝑘4𝑃𝐺𝐹 

      ≤ 𝜌𝑃𝐸𝐸𝑇𝑃 +
1

𝜌
𝐹𝑇𝐹𝛥𝑘1

2 + 𝜌𝑃𝐺𝐺𝑇𝑃 +
1

𝜌
𝐹𝑇𝐹𝛥𝑘4

2 

 

Assume that |k1| and |k4|
  

for some known positive constant , then inequality (20) is satisfied if 

the following Riccati-like inequality has a positive definite solution matrix PR44: 

 

𝐴𝑇 𝑃 + 𝑃𝐴 + 𝑄 − 2𝑃𝐵𝑅−1𝐵𝑇 𝑃 + 𝜌𝑃𝐸𝐸𝑇𝑃 + 𝜌𝑃𝐺𝐺𝑇𝑃 +
2

𝜌
𝜁2𝐹𝑇𝐹 < 0                       (21) 

 

Remark 2: By using the Schur complement formula, it can be shown that the Riccati-like inequality (21) is 

equivalent to the following linear matrix inequality (LMI) 

 

𝑋 > 0,  [

𝐴𝑋 + 𝑋𝐴𝑇 − 2𝐵𝑅−1𝐵𝑇 + 𝜌𝐸𝐸𝑇 + 𝜌𝐺𝐺𝑇 𝑋 𝜁𝑋𝐹𝑇

𝑋 −𝑄−1 0

𝜁𝐹𝑋 0 −
𝜌

2
𝐼

] < 0                       (22) 

 

Thus, by solving the above simple LMI and setting P=X-1, we can easily obtain the positive definite solution 

matrix P of (21). 

 

 

3. CONTROL STRATEGY VERIFICATION 

In order to validate the effectiveness of the proposed adaptive antiswing controller, the simulation 

and experiment are executed in Matlab/Simulink environment and laboratory sized overhead crane test-bed, 

respectively. Let consider the overhead crane with the nominal parameters are shown in Table 1. 

 

 

Table 1. Nominal parameters of an overhead crane system 
Items Values 

Trolley mass (M) 25 (kg) 

Payload mass (m) 8 (kg) 

Cable length (l) 1.2 (m) 
Gravity acceleration (g) 9.81 (m/s2 ) 
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Based on the nominal parameters given in Table 1, the system model (4) can be rewritten as 

 

{
 

 
�̇�1 = 𝑥2
�̇�2 = 2.45𝑥3 + 0.25𝑥3𝑥4

2 + 0.05𝑢
�̇�3 = 𝑥4
�̇�4 = −12.26𝑥3 − 0.25𝑥3𝑥4

2 − 0.05𝑢

                                                     (23) 

 

The state-space model (11) with system uncertainties becomes 
 

�̇� = (𝐴 + 𝛥𝐴)𝑥 + 𝐵[𝑢1 + 𝛿𝑓(𝑥, 𝑢)]                                                   
(24) 

 

where   𝐴 = [

0 1 0 0
0 0 2.45 0
0 0 0 1
0 0 −12.26 0

] ,  𝐵 = [

0
0.05
0

−0.25

]

 

 

By solving (22) with  = 0.5k5, Q = 2I, and R =5e-3I, the controller gain is obtained as: 
 

𝐾 = [93.98 106.71 −331.14 3.17]                               (25) 
 

which leads to the following controller 
 

𝑢1 = −𝐾𝑥 − 𝛿𝑒𝑠𝑓(𝑥, 𝑢)     (26) 
 

where 𝑓(𝑥, 𝑢) = 𝑢1 + 𝑥3𝑥4
2,  �̇�𝑒𝑠 = 𝛾𝑓(𝑥, 𝑢)𝑥

𝑇𝑃𝐵 and 𝛾 = 0.05. The overall controller: 
 

𝑢 = 𝑢1 + 𝑢2                                                               (27) 
 

where u2 is shown in (5). 

In order to verify the effectiveness of the adaptation component, the performances of the proposed 

controller are compared with the performances of the conventional state feedback controller via simulation 

and experimental results. The equations of the conventional state feedback controller are given by: 
 

{

𝑢 = 𝑢1 + 𝑢2
𝑢1 = −𝐾𝑓𝑥

𝑢2 = −𝑥3𝑥4
2

                                                            (28) 

 

where K is calculated from nominal matrix A and B: 
 

𝐾𝑓 = [1.4 1461.5 −1461.3 290.6]                                   (29) 

 

In the paper, the simulations are carried out under three cases as follow: 

Case 1: The system parameters are nominal, i.e., M = 25kg, m = 8kg, and l = 1.2m. 

Case 2: The system parameters are of 150% variation, i.e., M = 37kg, m = 12kg, and l = 1.8m. 

Case 3: The system parameters are nominal, i.e., M = 25kg, m = 8kg, l = 1.2m, and the input disturbance is 

10sin(10t). 

In each case, the responses of the proposed algorithm is compared with the results of the state 

feedback controller. The simulation results for the above three cases are shown in Figure 2-4. In each figure, 

from top to bottom are the waveforms of the trolley position and payload swing angle, respectively. It can be 

seen from Figure 2 that, when the system parameters are nominal, the responses of the proposed scheme and 

the state feedback controller are not so much different. the settling time of the system with adaptive controller 

is about 3sec, the tracking error is almost zero, and the maximum payload swing angle is 0.15deg (after 3sec, 

the swing angle is cancelled). Meanwhile, the state feedback controller has the settling time about 5sec with 

no steady state error and 0.15deg of payload swing angle.  

In the Figure 3, the system parameters are of 150% variation but the results of the proposed system 

are nearly unchanged, i.e. the transient time is less than 4sec, the maximum swing angle is smaller than 

0.15deg and it is kept almost zero at the steady state. For the state feedback controller, the response of  

the position is little oscilation with the longger settling time, about 6sec, swing angle is still small (0.2deg) 

but it is underdamped oscillations. 
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Figure 4 illustrates the responses of the proposed adaptive controller and state feedback controller in 

the presence of the input disturbance. It can be seen that, with the adaptive controller, the trolley reaches  

the destination after 3sec and the payload swing angle is removed after the transient time. However,  

in the case of the state feedback controller, the settling time is 5sec and the swing in the both position and 

payload angle is not cancelled although the trolley arrives its target. 

 

 

 
(a) 

 
(b) 

 

Figure 2. Simulation results of the proposed adaptive controller and state feedback controller with nominal 

system parameters, (a) trolley position, (b) payload swing angle 

 

 

 
(a) 

 
(b) 

 

Figure 3. Simulation results of the proposed adaptive controller and state feedback controller with 150% 

variation of system parameters, (a) trolley position, (b) payload swing angle 

 

 

 
(a) 

 
(b) 

 

Figure 4. Simulation results of the proposed adaptive controller and state feedback controller with presence 

of the input disturbance, (a) trolley position, (b) payload swing angle 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 :  5793 - 5801 

5800 

The numerical analysis for above results is depicted in the Table 2. From the above simulation 

results, it is obvious that, the proposed adaptive controller and the corresponding state feedback controller 

keep the trolley stable at the destination. However, as the trolley mass, payload mass, and the cable length are 

changed or the input disturbance is sinusoidal, the suggested controller gives the performance with no 

redundant swing after the trolley comes to rest. Meanwhile, under the control of the state feedback scheme, 

the payload keeps swinging even though the trolley reaches the standstill condition. 

 

 

Table 2. Position and angle responses of the proposed and state feedback controllers in three cases 

 
Case 1 Case 2 Case 3 

Position Angle Position Angle Position Angle 

Proposed 
Ts = 3s 

No ripple 

Ts = 3s 

No ripple 

Max. -0.15o 

Ts = 3s 
No ripple 

Ts = 3s, 

No ripple 

Max. -0.15o 

Ts = 3s 
No ripple 

Ts = 3s 

No ripple 

Max. -0.15o 

State 
Feedback 

Ts = 5s 
No ripple 

4s 

No ripple 

Max. -0.15o 

Ts = 5s 
Little ripple 

Ts > 10s 

Ripple 

Max. -0.13o 

Ts = 5s 
Ripple 

Ts > 10s, 

Ripple 

Max. -0.12o 

Ts is the settling time 

 

 

4. CONCLUSION 

A simple but efficient antisway adaptive controller has been presented for the overhead crane 

system. This simple controller not only removes the oscillation of the payload but it is also robust to  

the system uncertainties. Also, the linear matrix inequalities (LMI) with feasible performance constraints 

have been used to design the controller gains. The stability of the overall system was guaranteed by  

the Lyapunov theory. Finally, the simulation and was executed by Matlab/Simulink for both proposed 

adaptive controller and the state feedback controller. The simulation results indicate that the suggested 

controller gives the good performance, i.e., fast response, no steady state error, no payload swing angle even 

under the condition of system uncertainties. 
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