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 The electrical output performance of photovoltaic (PV) modules are sensitive 
to temperature variations and the intensity of solar irradiance under 
prolonged exposure. Only 20% of solar irradiance is converted into useful 
electricity, and the remaining are dissipated as heat which in turns increases 
the module operating temperature. The increase in module operating 
temperature has an adverse impact on the open-circuit voltage (Voc), which 
results in the power conversion efficiency reduction and irreversible cell 
degradation rate. Hence, proper cooling methods are essential to maintain  
the module operating temperature within the standard test conditions (STC). 
This paper presents an overview of passive cooling methods for its feasibility 
and economic viability in comparison with active cooling. Three different 
passive cooling approaches are considered, namely phase change material 
(PCM), fin heat sink, and radiative cooling covering the discussions on  
the achieved cooling efficiency. The understanding of the above-mentioned 
state-of-the-art cooling technologies is vital for further modifications of 
existing PV modules to improve the efficiency of electrical output. 
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1. INTRODUCTION  

Photovoltaic (PV) modules convert sunlight into electricity with the aid of semiconductor material 
through the photovoltaic effect. However, the output performance of the PV module significantly depends on 
several external factors such as solar irradiance and ambient temperature, causing the reduction of electrical 
output and its life span [1]. The main problem which limits the electrical performances of PV technology is 
the overheating of the PV module. The literature has shown that only 20% of the absorbed solar radiation is 
converted into useful electricity, and the remaining part of solar radiation is dissipated as heat [2].  
The temperature increment of the PV module can reach values up to 80 ⁰C. Based on the previous study,  
for every 1 ⁰C increase in module temperature causes the decrease of output power by 0.4-0.5% depends 
upon the PV cell technology used [3-5]. For this reason, there is a need to understand the proper cooling 
techniques to solve the temperature problem. 

https://creativecommons.org/licenses/by-sa/4.0/
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Several cooling techniques have been investigated to remove the heat generated by the PV module 
and hence lowering its temperature. The temperature regulation of PV modules can be classified by two 
general methods, namely, passive and active approach. The active cooling requires additional components 
(pump or blower) for the flow circulation of the coolant. The main issues related to such a method are their 
applicability and economic viability [6]. Recently, the following active cooling methods have been 
investigated by several researchers such as buried heat exchanger [7-9], pulsating heat pipe [10, 11], water 
cooling [12-14], and airflow cooling [15-18]. Despite a significant reduction of module operating 
temperature, the overall initial investment cost is still a considerable concern. 

On the other hand, several researchers have worked on a passive cooling approach. This approach is 
based on the natural convection principle utilising the ambient airflow to reduce the PV panel temperature. 
Passive cooling methods are more attractive because it requires no additional input power. Currently,  
the following passive cooling methods have been investigated such as phase change material (PCM) [19-26], 
passive fin heat sink [27-33] and radiative cooling [34-36].  

The understanding of the above-mentioned state-of-the-art cooling techniques is crucial to improve 
the efficiency of electrical output. Several researchers have conducted extensive reviews on various cooling 
methodologies, but to the best of our knowledge, there is limited review focusing only on passive cooling 
approaches [37, 38]. Setting it apart from the aforementioned papers, the focus of this paper is to review the 
passive cooling methods for PV module that have been reported in the literature over the past two years.  
The article is structured as follows. First, the parameters that influence the performance of a PV module, 
including the derating factors, are discussed. Second, the paper details the literature conducted over the past 
two years on the passive cooling method for PV modules which includes cooling with phase change materials 
fins heat sinks and radiative cooling. Finally, the comparison between the aforementioned passive cooling 
methods is discussed. From the comparison, the most promising approach is suggested and elaborated at  
the end of this paper.  
 
 
2. PERFORMANCE PARAMETERS 

A typical crystalline silicon PV module consists of several interconnected cells (usually 36 cells are 
connected in series) encapsulated into a long-lasting and stable unit. The primary purposes of the PV module 
encapsulation are to protect the electrically connected solar module from damage due to uncontrolled 
environmental factors such as humidity, dust, shading, and others [39]. The module lifetimes and warranties 
of PV modules are typically about 25 years, indicating the encapsulation robustness [40]. However,  
an undesirable impact of the encapsulation is that it contains the heat flow into and out of the module lead to 
an elevated module operating temperature [41]. The module operating temperature is defined by the energy 
balance equation between heat generated by the sun and heat loss from the module to the surroundings [42]. 
The electrical output of the PV module under real operating conditions differs from Standard Test Conditions 
(STC), generally measured at 25 ⁰C and 1000 W/m2. Based on the temperature dependence of the open-
circuit voltage, a reduction in the power conversion efficiency by 0.2–0.5% is observed with an increment of 
1 °C [37]. The increase in module temperature causes a linear reduction of the output power [43-45].  
This value denoted as a temperature coefficient and can usually be found in the manufacturer datasheet.  

The performance of different module technology depends significantly on environmental conditions 
such as the intensity of solar irradiation, wind speed, inclination angle, and the accumulation of dust [45]. 
Figure 1 shows the thermal images of two different module technologies recorded under the influence of  
the same environmental conditions. The recorded module temperature is higher in monocrystalline silicon 
(44.59 ⁰C) as compared to thin-film technology (42.88 ⁰C). The monocrystalline module performs poorly at 
elevated temperature due to the issue (but not limited to) of front-to-back contact interconnection. Unlike  
the thin-film PV module, that is a monolithically single unit and does not require individual interconnection, 
hence demonstrates better performance at higher temperatures [46]. 

 The electrical output power of PV modules under real operating conditions can be estimated 
analytically by considering the derating factors due to the module mismatch (kmm) (either positive or negative 
power tolerance), temperature (ktem), the peak sun factor (kg), dust accumulation (kdirt), and ageing (kage).  
The derating factor due to the module mismatch (kmm) is calculated based on given power tolerance in  
the manufacturer datasheet [47]. On the other hand, for dust (kdust) and ageing (kage) factors, they are 
estimated based on the year of installation and manufacturing respectively. The derating factors due to 
temperature (ktem) and solar irradiation (kg) significantly affect the value of voltage and current, respectively 
and calculated based on the following equations: 
 
 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡 = 1 + �� 𝛿𝛿

100%
� × (𝑇𝑇𝑡𝑡 − 𝑇𝑇𝑠𝑠𝑡𝑡𝑠𝑠)� 
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where ktemp is the derating factor due to temperature, 𝛿𝛿 is the temperature coefficient of electrical quantities  
(% / ⁰C), 𝑇𝑇𝑡𝑡 is the module efficiency at ROC (⁰C), and 𝑇𝑇𝑠𝑠𝑡𝑡𝑠𝑠 is the module temperature at STC (⁰C). Note that, 
𝛿𝛿 is representing 𝛼𝛼,𝛽𝛽 and 𝛾𝛾 for power, voltage and current respectively. Based on Ross-thermal model,  
the module temperature can be analytically estimated using the following: 

 
 𝑇𝑇𝑡𝑡 = 𝑇𝑇𝑎𝑎𝑡𝑡𝑎𝑎 + ��𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁−20 ℃

800 𝑊𝑊𝑡𝑡−2 � × 𝐺𝐺� 
 
or 𝑇𝑇𝑡𝑡 = 𝑇𝑇𝑎𝑎𝑡𝑡𝑎𝑎 + 𝑇𝑇𝑡𝑡𝑒𝑒𝑡𝑡𝑒𝑒𝑎𝑎𝑡𝑡𝑡𝑡𝑒𝑒 
 
where 𝑇𝑇𝑎𝑎𝑡𝑡𝑎𝑎 is the ambient temperature (⁰C), and 𝑇𝑇𝑡𝑡𝑒𝑒𝑡𝑡𝑒𝑒𝑎𝑎𝑡𝑡𝑡𝑡𝑒𝑒 is the elevated module temperature during 
operation. Based on Australian Standard 1995, 𝑇𝑇𝑡𝑡𝑒𝑒𝑡𝑡𝑒𝑒𝑎𝑎𝑡𝑡𝑡𝑡𝑒𝑒 = 25 ⁰C. The derating factor due to irradiance (kg), 
can be determined as: 
 

 𝑘𝑘𝑔𝑔 = 𝐺𝐺
1000

 
 
where kg is the derating factor due to solar irradiation, G is solar irradiance (W/m2). By combining all the 
derating factors, the estimated electrical outputs of a PV module at ROC (PROC) can be calculated as follows: 
 

𝑃𝑃𝑅𝑅𝑁𝑁𝑁𝑁 = 𝑃𝑃𝑆𝑆𝑁𝑁𝑁𝑁 × 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝_𝑒𝑒𝑡𝑡𝑝𝑝𝑎𝑎𝑡𝑡𝑑𝑑𝑑𝑑𝑔𝑔 
 

𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝_𝑒𝑒𝑡𝑡𝑝𝑝𝑎𝑎𝑡𝑡𝑑𝑑𝑑𝑑𝑔𝑔 = 𝑘𝑘𝑡𝑡𝑡𝑡 × 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑘𝑘𝑔𝑔 × 𝑘𝑘𝑒𝑒𝑑𝑑𝑝𝑝𝑡𝑡 × 𝑘𝑘𝑎𝑎𝑔𝑔𝑡𝑡 
 
where PSTC is power rated at STC and electrical efficiency is determined by the module’s efficiency at STC 
and temperature coefficients as per the manufacturer datasheet. The effect of module temperature increment 
can be analysed using the following equation: 
 
 𝜂𝜂𝑡𝑡 = 𝜂𝜂𝑠𝑠𝑡𝑡𝑠𝑠[1 − 𝛽𝛽𝑠𝑠𝑡𝑡𝑠𝑠(𝑇𝑇𝑡𝑡𝑝𝑝𝑒𝑒𝑚𝑚𝑒𝑒𝑡𝑡 − 𝑇𝑇𝑠𝑠𝑡𝑡𝑠𝑠)] 
 
where 𝜂𝜂𝑡𝑡 is module efficiency under real operating conditions, 𝜂𝜂𝑠𝑠𝑡𝑡𝑠𝑠 is the module efficiency as per datasheet,  
𝛽𝛽𝑠𝑠𝑡𝑡𝑠𝑠 is the temperature coefficient (%/⁰C), 𝑇𝑇𝑡𝑡𝑝𝑝𝑒𝑒𝑚𝑚𝑒𝑒𝑡𝑡 is module temperature at ROC (⁰C) and 𝑇𝑇𝑠𝑠𝑡𝑡𝑠𝑠 is module 
temperature at STC (⁰C). Based on IEC 61215, the difference between estimated and measured values must 
be less than 5% for acceptable percentage error. 
 
 

 
 

Figure 1. Thermal images of (a) thin-film and (b) monocrystalline PV module 
 
 
3. CURRENT STATE-OF-THE-ART ON PASSIVE COOLING TECHNOLOGIES 

This section discusses recent literature on passive cooling methods. The main objective is to provide 
a brief overview of obtaining useful information for further improvements. A detailed review of the most 
current passive cooling techniques for PV module is essential for further modifications of existing PV 
modules to improve the efficiency of electrical output.  
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3.1.  Passive cooling using phase change materials  
Extensive research studies have been investigated to propose an efficient cooling technique by 

integrating phase change materials (PCMs). This process is known as the passive cooling method as no 
external powers required. It occurs during the solid-liquid phase transition when the heat produced from  
the PV module is absorbed in PCMs as latent heat at constant phase temperature [48].  

Wongwuttanasatian et al. [19] have designed grooved tube and finned containers of the same 
volume (3000 cm3) filled with palm wax as PCM. It was observed that by introducing PCM cooling in  
a finned box could enhance the module efficiency by up to 9.82 %. This approach contributes to a 5.3% 
improvement in electrical efficiency. However, their study reveals the electrical efficiency of the module 
could be significantly enhanced if the irradiance level is more than 500 W/m2, and the use of PCM is not 
feasible for low irradiance location. 

Authors in Ref. [48] examined the performance of salt hydrate (PCM32/280) as a PCM.  
A polycarbonate sheet was used to fill the PCM and attached under the absorber plate. The study was 
conducted with PCM cooling exposed under both natural and forced convection. The PCM integration helps 
to improve the PV module temperature by 4.3 ⁰C and 3.6 ⁰C under the natural and forced cooling, 
respectively. The study shows that the use of PCM under natural convection outweigh forced convection. 

Nada et al. [21] have reported the experimental study analysing the performances of hybrid 
nanoparticles and paraffin/wax insertions to reduce the module temperature. Paraffin/wax is used as  
the PCM, and aluminium oxide powder Al2O3 is used as nanoparticles aimed to enhance the thermophysical 
properties of the cooling medium. As a result, the PV module with the pure PCM and enhanced PCM with 
2% of Al2O3 can reduce the module temperature by 8.1 ⁰C and 10.6 ⁰C respectively. Similarly, Baygi and 
Sadrameli [23] have experimentally examined the use of polymer grade PCM to be incorporated as a coolant. 
The melting point of polyethylene glycol 1000 of nearly 40 ⁰C seems ideally suited for this approach. Eight 
rectangular-shaped of aluminium containers were filled with PEG-1000 were installed at the rear side.  
The authors indicate that by incorporating PEG-1000, the module temperature was recorded at lower value of 
47 ⁰C at solar noon while the electrical efficiency was enhanced up to 8%.  

Hachem et al. [24] have conducted an experimental study of combined PCM to regulate the module 
temperature. The combined PCM consists of white petroleum jelly (70%), copper (20%), and graphite  
(10%). The experimental results indicate that the output power had been increased by up to 3% with pure 
PCM and 5.8% with combined PCM.  

 
3.2.  Passive cooling with fin heat sink 

Many researchers have contributed to the fin structured heat sink development attached at the rear 
side of the PV module under natural convection. Hernandez-Perez et al. [33] examined the performance 
enhancement of PV modules incorporating multiangular aluminium fins, which intended to increase  
the vortex generation by allowing multidirectional and less restrictive airflow. A numerical model was 
developed using ANSYS FLUENT for design optimisation in terms of fin length, material, and heat transfer. 
Using this heat sink method, the achieved theoretical and experimental temperature reduction of the PV 
module was as high as 9.4 ⁰C and 10 ⁰C, respectively. The electrical efficiency was improved by 4 % with the 
proposed segmented aluminium heat sink. Fatih et al. [49] analysed similar design called staggered array 
with ten different aluminium fin configurations of various parameters. It was observed that the energy and 
exergy efficiencies increased by 11.55% and 10.91%, respectively. 

The effect of fin thickness and fin height has been further investigated by Amr et al. [28]. They have 
designed and developed an array of longitudinal aluminium fins attached at the back of the PV module.  
The experimental set-up consists of two 250 W Si-poly, tested under Egyptian condition. The optimum 
dimensions obtained from numerical analysis consists of 10 aluminium fins with the height and thickness of 
10 cm and 0.2 cm, respectively. However, the authors found that the effect of fin thickness and thermal 
conductivity are not significant. 

Elbreki et al. [50] carried out a numerical and experimental investigation on heat transfer 
performance of Lapping fins with planar reflectors. The results illustrated that the PV module temperature 
was reduced from 64.3 ⁰C without cooling to 39.73 ⁰C with the fin height of 200 mm. The authors found that 
the fin thickness above 2 mm does not affect output performance of the PV module. The use of lapping fins 
and planar reflectors improved the efficiency of the PV module from 9.81% (without cooling) to 11.2% (with 
cooling fins).  

Authors in Ref. [32] have undertaken an experimental analysis of a cooling PV module with porous 
metal foams as a fin heat sink. The metal foam (6 and 10 mm) consists of a cellular structure of metal with 
high porosity characteristics ranging from 75 to 95% were used in this study. It was observed that the PV 
module temperature was improved from 49 ⁰C to 48 ⁰C at solar noon. The inefficient cooling was due to 
uneven metal foam structures that caused heat accumulation. Similarly, Cabo et al. [29] have investigated  
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the passive cooling effects on a PV module energy conversion efficiency. Two fin geometries were 
considered in the study. The first orientation was parallel positioned L profile, and the second orientation was 
randomly placed and perforated aluminium fins. The experiments were performed under solar radiation 
between 200 to 900 W/m2. The second fin geometry was observed to perform better than the first geometry. 
The perforated and randomly positioned fins gave better output performance by 2%. 

Chandra et al. [51] have designed cooling fins known as a thin flat metallic sheet (TFMS).  
The experimental set-up was measured under the following parameters; fin numbers (0 to 4) and controlled 
solar intensity in the range of 200 to 700 W/m2. It was found that the maximum thermal and electrical 
efficiency were recorded at 56.19% and 13.75% respectively for four numbers of fins at 0.14 kg/s and  
700 W/m2 solar radiation. Such structural modification will be effectively integrated into buildings.  

 
3.3.  Passive cooling with radiative cooling 

Radiative cooling is a method based on a high transparency atmospheric window at the wavelength 
range of 8-14 µm [52]. Zhao et al. [53] investigated the hybrid cooling method incorporating PV and 
nighttime radiative cooling. The set-up consisted of a low-density polyethylene transparent cover (TPT),  
PV panel, insulation material, and six copper pipes welded on the rear side of the PV module. The use of  
a transparent TPT layer shows promising effects for its high thermal emissivity and excellent insulation 
material. The average electrical efficiency evaluated at sunny days nearly reached 14.9%, lower than 
morning and afternoon, and net radiative cooling power of 72.94 W/m2. This scenario revealed the negative 
effect of the higher operating temperature of the solar cell. It was found that the performance of radiative 
cooling significantly depends on the atmospheric humidity of a specific location.  

A group of researchers [35] established a thermal electric coupled model to evaluate  
the effectiveness of a selective spectral and radiative cooling at different ambient conditions. The top glass 
cover was modified such that it works as a filter to the solar wavelengths and highly emissive at the infrared 
spectrum known as RC emitter. The efficiency of the PV module could be improved by 4.55% for this 
combined cooling approaches. It was found that the efficiency could be further enhanced by at least 2-2.5% 
at relatively lower humidity locations around China.  

Another comprehensive photonic approach has been investigated based on nocturnal radiative 
cooling [54]. The selective plate was designed by incorporating a 500 µm-thick silica as a photonic crystal 
structure at the front side of the solar cell. Alternatively, the rear side was layered with multilayer materials 
such as SiO2, TiO2, and MgF2. The electricity output of diurnal photovoltaic was recorded at 6.9% with an 
output power of 99.2 W/m2. This photonic approach can be applied to any other solar cells. The various 
passive cooling methods discussed in this section are summarised in Table 1. 
 
 

Table 1. Summary of the passive cooling methods 
Ref. Cooling method PV Technology Year Type of work Power Conversion 

Efficiency Improvement 
[19] PCM (palm wax) Si-poly (20W) 2020 Experimental 5.3 % 
[48] PCM (salt hydrate) Si-mono (90W) 2019 Experimental 4.3 % 
[21] PCM and Al2O3 Si-poly (30W) 2018 Experimental 5.7 % 
[23] PCM (PEG 1000) Si-mono (40W) 2018 Experimental 8.0 % 
[24] PCM (copper & graphite) Si-poly (30W) 2017 Experimental 5.8 % 
[33] 
[50] 
[49] 
[28] 
[32] 
[29] 
[53] 
[35] 
[54] 

Fin heatsink (segmented) 
Fin heatsink (lapping, reflector) 
Fin heatsink (staggered array) 
Fin heatsink (longitudinal) 
Fin heatsink (porous metal) 
Fin heatsink (Perforated-L) 
Radiative cooling (hybrid) 
Radiative cooling (TE coupled) 
Radiative cooling (photonic) 

Si-poly (15W) 
Si-poly (40W) 
Si-poly (75W) 
Si-poly (250W) 
Si-poly (75W) 
Si-poly (50W) 
Si-mono (n/a) 
Si-mono (n/a) 
Si-mono (n/a) 

2020 
2020 
2019 
2019 
2018 
2018 
2019 
2019 
2018 

Experimental & Numerical 
Experimental & Numerical 

Experimental 
Experimental & Numerical 

Experimental 
Experimental 
Experimental 

Numerical 
Numerical 

10.0 % 
11.2 % 
11.5 % 
5.0 % 
1.0 % 
2.0 % 

n/a 
4.55 % 
4.6 % 

 
 
4. CONCLUSIONS 

This review has described three main techniques in the temperature regulation of PV modules using 
passive cooling techniques such as phase change materials (PCM), passive fin heatsinks, and radiative 
cooling. In this rapidly developing field, we expect more to appear soon. All have their merits and 
drawbacks, with some being better suited than others to specific environmental conditions. The most studied 
cooling method is the use of phase change materials (PCM). Different types of organic and inorganic PCMs 
have been investigated to achieve PV module cooling. However, its application is limited by its high cost, 
low thermal conductivity, phase-segregation, and fire safety.  
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PV Cooling based on the radiative cooling concept, although sounds attractive, is only achievable 
under suitable atmospheric conditions. In the past few decades, nocturnal radiative cooling has been 
successfully demonstrated. However, to implement the concept for PV cooling application during the day 
under direct sunlight remains a challenge and only recently a few lab-scale applications has been proven 
successful, indicates its potential as a practical passive cooler during the day. Such techniques would require 
further research and developments since it would involve modifications of commercially available silicon 
solar cells.  

PV cooling via fin heat sink offers enhanced heat transfer area to promote a more significant heat 
transfer rate from the rear surface of the PV module to the ambient mainly via natural convection.  
This method can be considered as the most economical in comparison to the other passive cooling 
techniques, technically feasible under different climatic conditions, and easy to implement or install.  
In the heat transfer mechanism by natural convection, the heat flow is highly dependent on the geometry of 
the surface (heatsinks) and its orientation. Hence, if adequately designed and computer-simulated,  
for example, by using a suitable computational fluid dynamics (CFD) software, the designed heat sinks may 
promote turbulent natural convection heat transfer that promotes better cooling rate. Besides, it is essential to 
optimise the surface area of the fin heat sink to achieve a balance between the rate of heat dissipation and 
manufacturing cost. 

In summary, the passive cooling technique using fins heat sink is attractive. Therefore, there is  
a strong need for continuous research and development (R&D) for this type of cooling technique with more 
innovative design and configuration to further enhance its capacity as a reliable PV passive cooling 
technology. 
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