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 The proliferation of information technology produces a huge amount of data 

called big data that cannot be processed by traditional database systems. 

These Various types of data come from different sources. However, 

stragglers are a major bottleneck in big data processing, and hence the early 

detection and accurate identification of stragglers can have important  

impacts on the performance of big data processing. This work aims to assess 

five stragglers identification methods: Hadoop native scheduler, LATE 

Scheduler, Mantri, MonTool, and Dolly. The performance of these 

techniques was evaluated based on three benchmarked methods: Sort, Grep 

and WordCount. The results show that the LATE Scheduler performs  

the best and it would be efficient to obtain better results for stragglers 

identification. 
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1. INTRODUCTION 

With the excessive growth in information and data, their analysis becomes a challenge and more 

complex due to the increased volume of structured and unstructured data that are produced by the internet of 

things (IoT), social media, multimedia etc. Application such as MapReduce is a fault tolerant, scalable and 

simple framework for data processing that enables its users to process these massive amounts of data 

effectively [1, 2]. MapReduce is a significant model of preparing and generating a set of enormous 

information. This is because; it gives simple utilization environment, offer solution to ad hoc and to misses 

like Data sorting, Web indexing among several others. MapReduce is utilized in Big Information 

Applications in bigger Companies such as Yahoo and Google among several others.  

The MapReduce is unlisted as a section of one structure or the other. The reason for creating 

stragglers is the diversity in accessibility in the CPU, I/O discord or network traffic. When the map and 

reduce are completed, that is when the MapReduce Framework is accomplished [3, 4]. In MapReduce 

Framework the job is not accomplished till very reduce and map undertakings are completed.  

Moreover, the quantity of the stragglers weakens with the wide-range of the time occupation [5-8].  

In a heterogeneous environment, some compute nodes are faster than the other. Slower compute nodes are 

called stragglers node and these fast nodes will finish their tasks early and wait for the stragglers to finish. 

http://researchprofiles.herts.ac.uk/portal/en/organisations/school-of-engineering-and-computer-science(e8a416ef-26e6-4bcc-922c-2284155c9f88).html
https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 11, No. 1, February 2021 :  375 - 382 

376 

Sometimes nodes fail due to hardware or software failures. Therefore, it is significant to detect stragglers in 

an early stage.to avoid performance discarion in the systems 

Nowadays organizations with a large amount of data have complexity in processing and analyzing 

using traditional database management systems. By designing MapReduce, Google has made millions of 

users around the world find content from millions of pages within a hundredth of a second; therefore,  

the bulk processing problem has become a big challenge and their analysis technologies are changing rapidly. 

On the other side, stragglers are well recognized as a major bottleneck in big data processing and they can 

have significant impacts on big data processing.  This work aims to evaluate five stragglers identification 

methods: Hadoop native scheduler, longest approximate time to end (LATE) Scheduler, Mantri, MonTool, 

and Dolly The performance of these techniques was assessed based on three benchmarked methods:  

Sort, Grep and WordCount.  

The remainder of this paper is structured as follows: The second section depicts MapReduce and 

struggles. In the third segment, five stragglers identification approaches are presented. In the forth segement, 

expermentalresults are presented  This section is followed by the conclusion and future work of this study. 

 

 

2. MAPREDUCE FRAMEWORK AND STRAGGLERS 

MapReduce is the matching information preparing perfect models proposed for considerable 

information preparation on bunch-based figuring designs [9]. This system is used inside in facilitating data 

mining, search applications and machine learning at server centers. The philosophy needs to deal with broad 

scale web search applications. It was at first suggested by Google to deal with tremendous scale web search 

applications. The focus is licensing programmers in extracting from problems such as parallelization, 

booking, allocating, thus allowing them to focus on developing applications. In modern organizations and 

enterprises, there are four factors, including processing, storing, visualization, and analyzing large data. 

MapReduce can run the applications on a parallel cluster of hardware automatically. In addition; it can 

process terabytes and petabytes of data more rapidly.  

Recently, it has gained popularity in a wide range of applications due to its ability to provide  

a highly effective and efficient framework for the parallel execution of the applications, data allocation in 

distributed database systems, and fault tolerance network communications. As illustrated in Figure 1,  

parallel map assignments are run as one input data as a gathering of <key, value> sets which is that is divided 

into fixed produce and size blocks transitional output. The model of MapReduce Programming comprises of 

information preparing capacities: map and reduce. 

 

 

 
 

Figure 1. MapReduce framework 
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In the Map-phase, when the user requests to perform a job, the tasks are sent to the Map machines to 

run. The Combiner reduces the amount of data transmission in the network in the Reduce phase. Sort or 

Merging part is a part of the Reduce-phase. The time is used to integrate Map outputs from different nodes 

and this integration is considered as a Reduce time. The Reduce-part is the last step to run the job in  

a MapReduce way. The effect of each part of this process on runtime is different and to estimate the end time 

of each job, appropriate weights (the effect of each part on execution process is obtained from the ratio of  

the time of each part to the total time) should be used for each part. For more details see [9].   

Stragglers are the endeavors that set aside longer effort in execution other than comparative 

assignments. Behind the assignment, there are various purpose to set aside longer effort, such as,  

imperfect machines, proportion of information to process, framework blockage, heterogeneity among 

equipment, and contention for the current resources [10, 11]. In any case, it is not significant for an 

assignment to be slower all around its execution. In addition, in the event that one task running slow on  

a given machine, it isn't significant for the completely future and present assignment to run slower on that 

particular machine. In dealing with Mantri, it is essential to keep in mind three primary mechanisms:  

- In the event it is found that the expected remaining time exceeds the normal runtime, then the process 

will be restarted up to thrice. 

- In the event that the resource measurement decreases undesirably, then scheduling of a speculative 

duplicate takes place. The expected remaining time (trem) and the normal runtime (tnew) are estimated 

as illustrated in the following algorithms. 

- term = (telapsed * d/dread) + twrapup 

- tnew = processRate∗locationFactor∗d+schedLag. 

Many reasons for such stragglers to occur including load imbalance, scheduling inefficiencies,  

data locality, communication overheads hardware heterogeneity [12, 13]. There have also been efforts 

looking to address one or more of these concerns to mitigate the problem [14-16]. Sesipite all of these prior 

efforts are important and useful in overcoming this problem, we believe that a rigorous set of analytical tools 

is needed in order to better understand the consequences of stragglers on the performance slowdown in big 

data [17, 18]. 

 

 

3. STRUGGLERS IDENTIFICATION TECHNIQUES 

Various methods are proposed for stragglers identification. In this section, five strugglers 

identification methods including Hadoop native scheduler, LATEscheduler, Mantri, MonTool, and Dolly to 

assess their sutabiltuy for stragglers identification. 

 

3.1.  Hadoop native scheduler 

Hadoop native scheduler allocates a progression score somewhere in the range of 0 and 1 to each 

task. For lessen assignments, to execute is isolated into 3 phases, every one of that records for 1/3 of  

the score. In the case of a map, the progression count addresses the proportion of input information [19].  

The stages are: 

- At the first stage (copy stage), the assignment gets the map output. 

- In the second stage (sort arrange), the map output is arranged by key. 

- The decline stage, the customer-characterized capacities are connected to the rundown of guide yield.  

For every task, it grasps up per minute and the assignment headway score is found to be short of 

typical for the group less 0.2, the unit is stepped as a straggler. In addition, at every stage, the score is  

the capacity of data prepared. At that point, Hadoop figures the normal procedure value to each classification 

of assignments for a description of a farthest point for theoretical completion. Task below the farthest point 

are recognized comparatively lessen and the ties between them are controlled by data locale. In any case,  

the scheduler ensures that just a single theoretical duplicate of every one assignment is running at whatever 

point, however reschedules scores while considering their authentic progression. A few of the pivotal 

suspicions that break in virtualized, heterogeneous bunches are-  

- In decrease activity, the sort, copy, and lessen phases every one proceeds around 1/3 of the total time.  

- Nodes expected by Hadoop can execute the job at a harshly equivalent rate. In addition, these are 

homogeneous, while undertakings propel at a reliable rate all around time. 

Task in a similar characterization performs relative proportion of work. This presumption 

particularly fails for reduce undertakings in having tremendous modification in keys apportioned to an 

explicit reducer.  
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3.2.  LATE scheduler 

LATE considers another framework that estimates the finishing time for assignments in matching 

class to anticipate prediction to the stragglers that have potential. In addition, LATE addresses in errors in  

the Hadoop scheduler achieved in a varied condition [20]. 

- LATE uses a cap on the measure of theoretical assignments that can keep running at once, to deal with 

the manner in, which that theoretical assignments cost resources.  

- LATE remains educated in regards to direct nodes in the framework and never runs theoretical copies 

on those nodes.  

- Assignments with headway rates underneath 25 percent edge of summarized undertakings are 

recognized as stragglers. 

- Score for the progress is found out using the Hadoop scheduler locally. The rate of Advancement is 

determined as progression score/T whereby T represents the running time of the assignment. 

- Completion time is estimated by the formula (1-Progress Score)/Progress Rate.  

LATE appreciates following favorable circumstances:  

- Likewise, by monitoring surveyed left time rather than headway rate, LATE speculatively execute just 

assignments, which advance job reaction time, as contradicted to any slower tasks. 

- LATE considers nodes heterogeneity while choosing where to hypothesize assignments.  

- It is strong to heterogeneity of node considering that that re-impelling only slows the assignments and 

only a few amounts of undertakings.  

However, LATE Scheduler has the following weakness [21]:  

- Time required by LATE Scheduler is found to be higher, usually one minute, in starting evaluation,  

prior to an activity being stepped as a straggler.  

- In the final activity, time for a task is determined using the determined out-progression rate middle 

value of the out-headway rate beside the present progression rate, the ending time foreseen is inclined to  

mixed up. 

- Enormous undertaking will tend to take to a greater degree of risk than the rests to process, along these 

lines it is possible to be labelled as a possibility to be conjectured bringing about squandering resources.  

If there is no explanation of the temperate nature of the acknowledged stragglers searched,  

the straggler assurance may be wrong. This essentially prompts much response time.  

 

3.3.  Mantri 

Mantri is superior concerning outliers since it uses continuous progression reports; Mantri follows 

up and distinguishes the stragglers from the start. Early operations permit the assets used by coming 

assignments and accelerate the generally the employment [21]. Mantri is given an opportunity to upgrade 

over previous work that just duplicates the slouches by the acting dependently upon the effects and the asset 

and opportunity cost of activities. It utilizes the accompanying methods:  

- Restarting exception tasks aware of advantage imperatives and work unevenness attributes,  

- Ensuring yield of assignments subordinate upon a cost benefit analysis, and 

- Network careful position of assignments.  

Mantri perceives focuses at which assignments are unfit to gain ground at the customary rate and 

executes focused on results. Mantri spots undertakings subordinate in the area of their information 

sources,The controlling gauges that perceive According to Mantri previous anomaly relief outlier, plans are 

effects to mindfulness and asset discernment. Remarkable exercises are required for various reasons.  

Key Mechanism in Mantri:  

- A theoretical copy is scheduled just if the proportion of asset obliged is diminished along these lines.  

At most three could be three copies of similar errands (tasks).  

- If the anticipated residual time for an errand is much higher than the ordinary running time of  

the assignment after restarting, the assignment is started again until the highest value is achieved.  

The approximation of trem and t can be written as: 

 

𝑇𝑟𝑒𝑚 = (𝑡𝑒𝑙𝑎𝑝𝑠𝑒𝑑 ∗
𝑑

𝑓𝑒𝑎𝑟
) + 𝑡𝑤𝑟𝑎𝑝𝑢𝑝 (1) 

 

where d= entire information to process, fear=data officially prepared and twrapup= time to recall results  

 

𝑇𝑛𝑒𝑤 = 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒 ∗  𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑑 + 𝑠𝑐ℎ𝑒𝑑𝐿𝑎𝑔 (2) 
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3.4.  Mon tool 

It assembles information on the errands by succeeding framework calls and investigating them.  

In addition, MonTool discovers the stragglers, stragglers effects and their reasons using the data. The daemon 

running of Montool at masters gives a structure pursue call from all workers center point. Moreover, it takes 

the state machines for various endeavors in figures and running likeness state machines; score.  

Montool sifting approach enter rest mode for 2 seconds and in the in returning active mode, it set up  

the framework calls gathered in 2 seconds [22]. The master receives the sent information at that point.  

Then the Montool gathers information concerning the assignment by succeeding the framework calls and 

looking at them. In addition, it produces framework call state machines for all framework calls every 

10mseconds by gathering plate/organize readings and compose framework calls for guide and diminish forms 

made by Hadoop. Similitude (Similarities) Score for two procedures is determined as: 

 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 = 1 − (𝑁𝑖
1 ∑ (𝑁𝑖

1 − 𝑁𝑖
2)𝑛

𝑖=1 𝑁𝑖
1⁄ ) (3) 

 

where Ni 1 furthermore, Ni 2 stands for the quantity of progress state for ithpair state for first and  

second separately.  

The Threshold for straggler is arranged to 85 percent to such an extent that on the off chance one 

procedure makes <85percentageframework calls, it is patterned as a straggler while the hypothetical copy  

is launched.  

Confinements:  

- Associating framework calls can't be accomplished without information about the keys. In addition,  

the case of keys is consistently unavailable in Hadoop.  

- It acknowledges all the maps or reduces assignments work upon comparable estimated remaining tasks 

and get to data in a comparative pattern. In any case, this supposition lessens tasks as data size perused 

by lessen assignments might be particular for each undertaking  

 

3.5.  DOLLY 

DOLLY oversees this system in managing the stragglers in a proactive manner .The primary 

challenge of cloning was coming up with intermediate information transfer effective such as maintaining a 

strategic distance from various assignments downstream in the activity from battling for the equivalent 

upstream yield. Cloning of little occupations can be accomplished with a couple of additional assets in view 

of the overwhelming tail circulation of occupation estimates [23, 24]; most of the employments are little and 

can be cloned with nearly nothing overhead. As restricted to hold up and endeavoring to foresee stragglers, 

then it takes theoretical implementation to its outrageous and dispatches various clones of all undertakings of 

the relevant occupation and simply utilize the consequence of the first clone to finish [25]. Intermediary 

information access with Dolly characterizes its methodologies for moderating dispute while getting to 

intermediary information from different map procedures completing at the same time. Table 1 provides 

comparison between stragglers identification methods used in this work.  

- Contention avoidance cloning (CAC): Here when an upstream assignment clone completes, the yield is 

directed to precisely a single task on the downstream order for clone-clone collection.  

 

Ѱ (n, c, d) =Probability [n upstream errands of c clones with > = d clones per collection.] 

 

where, p =likelihood of an errand straggling as: 

 

Ψ(𝑛, 𝑐, 𝑑) = ∑ (𝑐 𝑖⁄𝑐−𝑑
𝑖=0 )𝑝𝑖(1 − 𝑝)𝑐−𝑖 (4) 

 

Dolly characterized likelihood for occupation straggling with CAC as: 

 

P = 1 − ∑ [Ψ(𝑛, 𝑐, 𝑑) −  Ψ(𝑛, 𝑐, 𝑑 − 1)(1 − 𝑝𝑑)𝑛]𝑐
𝑑=1  (5) 

 

- Contention cloning (CC): After the completion of the upstream clone assignment, all downstream 

errands read the clones’ upstream output, which eases the issue of conflict. Dolly characterized 

likelihood for task straggling with CC as: 

 

P = 1 − ∑ [Ψ(𝑛, 𝑐, 1)(1 − 𝑝𝑑)𝑛]𝑐
𝑑=1  (6) 

 

- Every downstream clone waits for an ideal period (ώ) to see whether it can catch an elite duplicate of 

intermediary information. In the event that the downstream clones do not get its restrictive duplicate 
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even subsequent to hanging tight for ώ, it peruses dispute to one of the completed upstream clones 

yield. The ideal time of ώ considers typical varieties amongst upstream clones. 
 

 

Table 1. Methods comparison of stragglers identification 

Comparison Hadoop native scheduler 
LATE 

Scheduler 
Mantri Mon Tool Dolly 

Metric for Speculative 

Execution 

Weight equivalence for 

Reduce and Map jobs 

Time taken to 

complete task 

Bases Identification 

and corrective measure 

System 

Call 

Unsophisticated 

Cloning 

Cap on Number of 

Speculative Execution 

Negative Negative Negative Negative Affirmative 

Data Processing 

Technique 

MapReduce MapReduce MapReduce / 

Dryad 

MapReduce MapReduce/ 

Dryad 

Heterogeneity among 

Network Nodes 

Negative Affirmative Affirmative Affirmative Affirmative 

Priority Wise 

Scheduling 

Affirmative Negative Negative Negative Negative 

Overhead Increased Medium Medium Increased Increased 

 

 

In Table 1, the metric for speculative execution for the five straggler detection techniques were 

found to be different for each one the techniques. However, this was not the case for the Cap on number of 

speculative executions. All the techniques did not exhibit any characteristic for this category. The data 

processing technique was found to be similar for Hadoop native scheduler, LATE and Montool.  

The heterogeneity among network nodes were found to be similar for all techniques except the Hadoop 

native scheduler technique. This was also found to be the same case for priority wise scheduling. 
 

 

4. EXPERMENTAL RESULTS AND DISCUSSION  

To assess the process of diagnosing straggler tasks and assigning them to other nodes i.e. 

speculative execution for the Hadoop native scheduler, LATE scheduler, Mantri, MonTool, and Dolly,  

three benchmarked methods are used which include Sort, Grep and WordCount. We manually slowed down 

8 virtual machines (VMs) in a cluster of 90 with background processes to simulate stragglers.– faulty nodes. 

The other machines were allocated between 1 and 10 VMs per host. As our workload, we evaluated the work 

with a "sort" task in a total dataset of 40 GB and each of 128 MB for each host. Each job has 575 tasks on  

the map and 510 reduced tasks (it should be noted that Hadoop leaves some free capacity for speculation and 

failed missions). The stragglers were generated by running four CPU-intensive processes (tightened loops 

manipulating 900 KB arrays) and four disk-intensive processes (FDS tasks for generating huge files in  

a loop). The average results of 5 experiments for the used struggeles methods are shown in Figure 2 (see in 

Appendix). Based on the obtained results, the LATE Scheduler methods out performed Hadoop native 

scheduler, Mantri, MonTool, and Dolly.  

As it can be seen in the Figure 2, the results attained by the LATE Scheduler by Grep, is smaller 

than the results achieved by WordCount and Sort. This can be explained by considering the workload. 

WordCount and Sort write huge quantities of data across the network and to the computer. In the other side, 

Grep provides each reducer just a limited amount of bytes i.e, a count for each word. Therefore, it could be 

concluded that LATE Scheduler performed the best compared to other methods when Sort, Grep and 

WordCount are used with respectively 60%, 50% and 80%. 

 

 

5. CONCLUSION AND FUTURE WORK 

With the excessive growth in the information and data that produced by the internet of things (IoT), 

social media, multimedia and etc. applications, their analysis became a challenge and more complex due to 

the increasing volume of structured and unstructured data.  MapReduce is a fault tolerant, scalable and simple 

framework for data processing that enables its users to process these massive amounts of data effectively. 

This work aimed to evaluate five stragglers identification methods: Hadoop native scheduler,  

LATE Scheduler, Mantri, MonTool, and Dolly using Sort, Grep and WordCount benchmarked methods. 

According to experimental results, LATE scheduler outperformed the other methods used in this work.  

We can conclude that LATE Scheduler would be efficient to obtain better results for stragglers identification. 

For the future work, machine learning methods can enable us to know the story behind the data,  

for instance, deep learning approach can be used to identify the proper nodes for running the straggler tasks 

and also it can provide us more information about the number of failures in different phases and correlation 

between different featuresto obtain more accurate results. 
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APPENDIX 

 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 2. Average task execution time using (a) Sort, (b) Grep, (c) WordCount 
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