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 Smart microgrids belong to a set of networks that operate independently. 

These networks have technologies such as electric vehicle battery swapping 

stations that aim to economic welfare with own resources. Improper handling 

of electric vehicles services represents overload, congestion or surplus 

energy. This study addresses both management and support of electric 

vehiculos battery swapping stations. The formulation of a decision matrix 

examines economically viable alternatives that contributes to scheduling 

battery swapping stations. The decision matrix is implemented to manage  

the swapping, charging and discharging of electric vehicles. In addition,  

the smart microgrid model evaluates operation issues. The smart microgrid 

model used extends with considerations of demand response, generators with 

renewable energies, the wholesale market, local market and electricity spot 

price for electric vehicles. Additionally, uncertainty issues related to 

the planning for the infrastructure of the electric vehicle battery swapping 

station, variability of electricity prices, weather conditions and load 

forecasting are used. Mentioned stakeholders must maximize their economic 

benefits optimizing their uncertain day-ahead resources. The proposed hybrid 

optimization algorithm supports aggregator decision making. This algorithm 

achieves a 72% reduction in total cost. This percentage of feasible reduction 

is obtained by calculating the random solution with respect to the suboptimal 

solution. 
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NOMENCLATURE 
                                                                                      Indexes: 

f  Time zero for EV batteries L  Loads  

i  Distributed generation (DG) units  M  Markets  

j  PV units  S  
Scenarios  

k  
External suppliers  t  Periods 

E  Energy storage systems    

                                                                                      Variables: 

DGP  
Active power generation (kW)  

ESS
P   

Discharge power of ESS (kW)  

extP  
External supplied power (kW)  

EV
P   

Discharge power of EV (kW)  
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ESS
P   

Charge power of ESS (kW)  
fcN  

Number of fully-charged batteries  

EV
P   

Charge power of EV (kW)  
cN  

Number of batteries to charge  

curtP  
Power reduction of load (kW)  

dN  
Number of batteries to discharge  

imbP   Unsatisfied power for load (kW)  
swN  

Number of batteries to swap  

imb
P   

Exceeded power of DG unit (kW)  
iN  

Number of initial batteries in the station 

buyP  
Power bought to the market (kW)  

DN  
Initial EV station visits (EV demand)  

sellP  
Power sold to the market (kW)  

evN  
Number of EVs 

PVP  
Photovoltaic generation (kW) J  

Demand welfare 

                                                                                      Parameters 

  
Full charging battery interval 

buyC   
Cost for buying energy (m.u./kWh) 

  Full discharging battery interval 
sellC  

Cost for selling energy (m.u./kWh) 

DGN  
Number of DG   s  

Probability of scenario 𝑠  

kN  
Number of external suppliers  

PVP  
Photovoltaic generation (kW)  

eN  
Number of ESSs  

loadP  
Forecasted load (kW) 

LN  
Number of loads  MP  Market price in wholesale and local markets 

(m.u./kWh)  

mN  
Number of markets  

swP  
Price for swapping a batterie (m.u.) 

sN  
Number of scenarios  

mP  
Price for missing a battery (m.u.) 

T  Number of periods  
eMP  

EVs market price (m.u.) 

DGC  
Generation cost of DG (m.u./kWh)  d  

Efficiency for discharging  

extC  
Cost of external supplier (m.u./kWh)  c  

 

PVC  
Cost of PV generation (m.u./kWh)    

 

ESSC  
Cost of ESS (m.u./kWh)   

Charger rate of the on-board EV (kW) 

loadC  
Cost of load (m.u./kWh)   

Charger rate from the charger level specification 
(kW) 

imbC  
Grid imbalance cost (m.u./kWh)  ev  Type of EV 

 

 

1. INTRODUCTION 

Electric vehicles (EVs) have shown additional benefits compared with their fossil fuel vehicle 

counterparts [1]. They produce fewer emissions even when considering their whole process of energy 

production, independently of their energy source [1]. In addition to lower emissions, EVs may also use 

renewables energies as a source of power [1]. However, one of the greatest deficiencies of EVs is that 

conventional vehicles can easily be refueled, while EVs require long charging times that need planning. 

This is combined with the difficulties in setting up an infrastructure with specialized equipment to facilitate  

the use of EVs [1]. Given these scenarios, the sustainable EV operation must rely on the efficient EV 

scheduling, among others.  

There are still challenges in the deployment of EV charging infrastructure. First, EVs increase  

the power demand on the grid [2]. Second, when distributed generation is available, uncertainty over  

the photovoltaic and wind generation, electricity prices, load forecasting, and swapping demand can 

influence the operation of the electrical network [3]. Furthermore, demand management considers strategies 

for flatting the demand of EV´s and load with demand response (DR), such as moving the peak load to valley 

hours [3]. Third, time role is crucial to schedule events, such as swapping, charging, and discharging of EVs 

batteries [4]. Fourth, the longevity of battery life is a concern for end users given the level of charging and 

discharging that users must undergo [4]. Fifth, consumers may have range anxiety on whether EVs batteries 

can last all their trips. These barriers can also represent restrictions to the proper use of the microgrid with 

EVs. As an illustration, if the customers distrust both EV technology and the associated infrastructure. 
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This risky behaviour may result in the overuse of charging stations [4]. Finally, the overall inherent 

uncertainties that the aggregator must manage when implementing the smart microgrid (SMG) is significant. 

In fact, SMG is defined as a group of loads with DR and energy storage systems (ESSs), as much as they act 

as a unified entity. SMG operates in both connected and isolated modes [5]. However, demand of users, 

market prices, and uncertain renewable energy production may lead to barriers in creating efficient charging 

station infrastructures [6]. To countermeasure these challenges, an aggregator can be formulated [6, 7]. 

Energy aggregators can be made by integrating EVs and ESSs. Furthermore, battery swapping 

stations (BSSs) have more competitive visit times of EVs in comparison with traditional stations, which only 

have the option of charging batteries [6]. Regarding the schedule, public transport would prefer swapping  

the battery instead of charging batteries due to the critical operating time [6, 7]. In SMGs, a forecasting issue 

is the prediction of EVs visits [6]. An aggregator may deal with this problem, as it manages components such 

as photovoltaic panels, loads with DR, ESSs, and EVs [8]. The last two can both discharge (or charge) power 

and buy (or sell) energy in SMGs [9]. The aggregator coordinates the service reliability among  

the stakeholders, EVs scheduling, hours of load shifting, or valley filling of EVs. Aggregators should also 

consider uncertainties such as EVs trips planning, forecasting load, electricity prices, and generation with 

renewable energies [10]. Finally, the increase in SMG profits has been addressed with metaheuristic 

optimization tools, producing outstanding solutions in acceptable times [9].  

Under this context, the proposed SMG model introduces an aggregator, who optimizes EV BSS. 

Equally notable, this approach is formulated using a decision matrix, which aims to simulate operating 

conditions such as charging (or discharging) times, stochastic visits, and batteries swapping of EVs. Without 

overlooking other elements, this study formulates the programming of traditional and renewable energies, 

ESSs, electricity markets, and loads with DR. The main contributions of this paper are described below: 

The SMG model introduces stochastic scheduling due to the EV station visits based on the K-means 

clustering approach, and price variability in electricity markets. Both aspects are formulated according to  

the operation approach of EV BSS. To be more comprehensive, the SMG model includes uncertainty 

conditions, such as weather forecast, load prediction, and wholesale and local markets. 

A decision matrix to EV BSS is scheduled introducing significant elements in EVs, such as state of 

charge (SOC) of EVs, type of vehicle, probability of EVs visiting the BSS, state of the battery (swap or do 

nothing) and idle spaces (per hour). The idle spaces are generated when the charge of a battery must be 

mandatory, to exemplify a reserve of batteries that guarantees a good service in the case of unexpected visits 

of EVs in the BSS. The proposed SMG model has continuous and discrete variables, as well as a decision 

matrix that introduces a new problem related to integer numbers, sequence of numbers and idle spaces. 

Therefore, the optimization algorithm “variable neighbourhood search-differential evolutionary particle 

swarm” (VNS-DEEPSO) is implemented in order to reduce the cost in SMGs with uncertainty environments. 

This document is organized as follows: section 2 presents the state of the art of SMG models that 

include EV BSS. Section 3 formulates the SMG model and emphasizes the constraint of the SMG with EV 

BSSs. In section 4, the uncertainty sources are highlighted and the EV BSS matrix with uncertainty is 

presented, showing the operational strategy. In section 5, the case study and results are discussed. Finally, 

section 6 outlines the conclusions. 

 

 

2. STATE OF THE ART 

SMGs have challenges related to the planning of the day-ahead operation of EVs. At the same time, 

other elements (load with demand response - DR, generation - Gen and ESSs) must be coordinated [7]. 

Six elements are tackled as main contribution of this study: (1) load with DR, (2) Gen, (3) ESSs, 

(4) EV-prosumer (EVP), (5) BSS, and (6) uncertainty of EV BSS, Gen, loads with DR and energy markets. 

Hereinafter, the six terms are called uncertainty sources. According to the information collected, Table 1 

organizes SMG models from 1 to 10, based on their main characteristics. 

SMG model 1 schedules the day ahead, where the optimization problem is solved by assembling  

the genetic algorithm with the feasible solution region [3]. Therefore, an economical operation of BSS is 

proposed when it chooses the level of tolerable risk. This BSS model operates as an isolated network, that is, 

it does not integrate other elements of the grid and eliminates the discharged function of EVs batteries [3].  

SMG model 2 coordinates the charging, discharging, and swapping of batteries. When EVs can 

buy/sell energy to the grid, this role is called EVP. The swapping prices and charging intervals are compared 

with traditional strategies. Then, the results demonstrate that the profit of BSS coordination is acceptable in 

comparison with other strategies. Nevertheless, the associated cost does not take into account other elements 

of the grid [6]. 

SMG model 3 includes other elements such as EV operation, photovoltaic (PV) generation, 

electricity market pricing, and DR. In this case, the EV model has no comprehensive description of scenarios 
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and constraints [9]. SMG model 4 proposes the dispatch of energy for EVs, wind and photovoltaic power 

generation. In fact, this EV model associates EVs with each node and only the load power varies. Therefore, 

the model lacks an approach of discharging, swapping batteries, and constraints [11].  

BSS model 5 gathers the EVs in programs of DR. The case study demonstrates that ignoring  

the uncertainty of EVs traffic and PV generation leads to an inappropriate planning. Furthermore, BSS model 

5 assumes simplifications without considering other elements of the grid and the uncertainty of the market 

prices [12]. The model 6 for battery charging stations considers the uncertainty over charging EVs.  

EV uncertainties are modeled through a Gaussian distribution model. In addition, the EVs are connected to 

the grid, PV generation, and battery-ESSs. In spite of this, the last variables have uncontrolled stochastic 

uncertainties, since there are no details about these uncertainty models [13].  

BSS model 7 forecasts wind-power generation and uses real time prices to plan in short time. 

However, the EV model takes into account the uncertainty over charging EVs [14]. BSS model 8 considers 

the stochasticity in energy markets and demand management of batteries. Nevertheless, model 8 simplifies 

the interaction between stakeholders and EV BSS [15].  

BSS model 9 purchases power in an upstream network and maximizes the day-ahead incomes. 

This bi-level model is divided into lower and upper levels. This model has acceses to the mechanism of 

real-time prices. The BSS model includes a micro-turbine, PV and wind generation. The uncertainty of 

the last two is considered together with the uncertainty of the load demand and the arrival time of EV. 

However, this model includes neither the ESS nor the load shedding restrictions [16]. A framework is 

proposed to restrict the load shedding in [17]. Other research also considers the uncertainty of PV and wind 

generation and introduces an index of probability of islanding operation [18]. 

BSS model 10 is formulated in this paper and integrates constraints to EVs through BSS, where BSS 

uncertainty is simulated by means of a K-means clustering approach. Moreover, it integrates SMG with 

uncertainty elements such as PV generation, electricity markets, and loads with DR. SMG planning is 

performed by the aggregator, which tries to increase the profits of the SMG. Then, the aggregator minimizes 

the operational cost while increasing the incomes. Indeed, the transactions in electricity markets generate 

profit. Besides, the aggregator has assets, such as EVs BSSs and ESSs, which become prosumers as they can 

either buy or sell energy. 

 

 

Table 1. Review of microgrids with EVs BSS 
No DR Gen ESS EVP BSS Uncertainty sources 

1 No Yes No No Yes EVs and PV generation [3] 

2 No  No No Yes Yes EVs and electricity markets [6] 
3 Yes Yes Yes Yes No EVs, PV generation, electricity markets, and loads with DR [9] 

4 Yes No No No No EVs, wind-power, and PV generation [11] 

5 Yes Yes No No Yes EVs and PV generation [12] 
6 No Yes Yes No No EVs [13] 

7 No Yes No No Yes Electricity markets and wind-power generation [14] 

8 No Yes No Yes Yes Battery demand and electricity markets [15] 
9 No Yes No Yes Yes PV and wind-power generation, load demand and EVs [16] 

10 Yes Yes Yes Yes Yes EVs, PV generation, electricity markets, and loads with DR (This SMG 

model is formulated in this paper) 

 

 

The BSS model formulation can be applied for DR programs [19]. The load is usually involved in 

DR programs [9]. In the BSS model, the aggregator negotiates energy in the electricity spot price. In the BSS, 

one available asset is the battery bank in the BSS that can be encoded with a EVs BSS matrix.  

The aggregator deals with the uncertainty in the arrival time of EVs and the volatility of market prices.  

For both, the uncertain scenarios are estimated with the K-means grouping method. In the case study, vehicle 

driving patterns are forecast based on NWS traffic [6]. Load management for EVs should tackle congestion 

times and relieve the scarcity of energy [20]. The SOC eases the scheduling the batteries charge or discharge 

as indicator [20].  

In this way, SMG model 10 is the most comprehensive, taking into account the previous revision in 

Table 1. Satisfactory solutions of vital importance are inspected, through the formulation of heuristic 

methods [9, 21]. These methods have been widely studied, however, there are still development gaps related 

to yields, and exploration and exploitation methods [21]. A vast majority of metaheuristics proposes  

a sequential combination of heuristics to be more successful [21]. For example, a hierarchy analysis is set out 

among several algorithms such as enhanced velocity differential evolutionary particle swarm optimization 

algorithm. In Figure 1, the main algorithms reported in the literature are organized according to the hierarchy 

of a better suboptimal solution [9, 22]. In summary, VNS-DEEPSO algorithm turns out to have a greater 
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hierarchy regarding the SMG models proposed in [9, 22] and it is described in two (VNS and DEEPSO) main 

components below. VNS-DEEPSO is widely tested in a robust optimization approach [9]. This research finds 

out a robust solution with low sensibility to some uncertainty parameters, such as PV power forecast, load 

prediction, EVs planning, and wholesale and local markets [9]. 

 

 

 
 

Figure 1. Hierarchy of the best suboptimal solutions based on [9, 22] 

 

 

2.1.  Variable neighborhood search-VNS 

VNS is used in nonlinear optimization, as it can find a local optimum with quality solutions [23]. 

The algorithm makes automatics neighborhood changes and aims to extend the local search. The VNS 

algorithm is defined in two main stages: initialization and repetition. The initialization stage consists in 

defining the neighborhood structures. In the repetition is carried out in three steps. First step, the initial 

solution is found in the neighborhood. Second step, the search method looks for an initial solution called 

local optimum. In the third step, the local optimum is stored. Afterward, when the new solution improves  

the local optimum solution, then the local optimum solution will be updated. Two cases can happen: 

first, the new solution found in the process is worse than the local optimum or second, the new solution found 

is the same as the local optimum. In both cases, the search continues for the next neighborhood structure. 

These steps are repeated until the last neighborhood structure [23, 24]. 

 

2.2.  Differential evolutionary particle swarm optimization-DEEPSO 

DEEPSO algorithm was developed based on three metaheuristics: differential evolution (DE), 

evolutionary algorithm (EA) and particle swarm optimization (PSO). These methods try to find the global 

correct direction and jointly search for a robust solution [25]. EA algorithm uses biological operators such as 

reproduction, mutation, recombination, and selection. Therefore, the population evolves through biological 

techniques. Furthermore, the fitness determines the solution quality [26]. 

PSO algorithm is a set of candidate solutions as swarm particles. They flow in tracks of the search 

space. The search motivation is the best performance of them and their neighbors [27]. DE algorithm has 

three or four operational parameters and in roughly 20 lines, it includes a simple and adaptable mutation 

operator [26]. Finally, DEEPSO algorithm was introduced as a metaheuristic technic and is a hybrid among 

EA, PSO, and DE. It has best outcomes than other techniques, however, it does not provide a deductive 

demonstration [25]. 

 

 

3. SMART MICROGRID MODEL 

This section presents the main assumptions in the BSS model 10 of SMG that represents the profits 

(including operation costs and incomes). Figure 2 represents the main elements of the SMG (ESS, EV BSS, 

load with DR, day-ahead markets, PV generation and DG). The arrows mean buy or sell energy: selling is 

symbolized by the line entering to the aggregator and buying by the line coming out from the aggregator.  

The red line highlights the elements with uncertainty. The SMG model is obtained by codifying a black box 

model of SMG from [28] and a decision matrix is developed by collecting available data from [29, 30], 

together with the EV uncertainty model based on the methodology from [6]. The main SMG assumptions are 

listed below.  

Variable neighborhood search differential evolutionary particle swarm (VNS-DEEPSO)
First 

hierarchy

Evolutionary particle swarm optimization (EVDEPSO)
Second 

hierarchy

Ant colony optimization (ACO), chaotic evolutionary swarm optimization (CESO), cuckoo
search (CS), evolutionary particle swarm optimization (EPSO), flower pollination (FP),
differential evolution (DE), genetic algorithm (GA), hybrid simulated annealing (HSA),
hybrid differential search algorithm (HDSA), particle swarm optimization (PSO), quantum
particle swarm optimization (QPSO), simulated annealing (SA) and Tabu search (TS).

Third 
hierarchy
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- SMGs is a component of the smart grid, but also SMGs operate independently and self-sufficiently. 

By the same token, SMGs consist of a set of loads and generators operating as a unique system [31]. 

In this context, SMGs have aggregators that try to increase the SMG profits.  

- SMGs are flexible in connecting distributed generation (DG) and PV generation [32]. 

- Two electricity markets are considered wholesale and local, and the EV prices are estimated with  

the Australian Market Operator from January 2016 to June 2019. Prices from electricity markets lead to 

revenues for selling or expenses for buying energy [28]. 

- A realistic approach of SMG includes energy resources with uncertainty. The uncertainty sources come 

from (a) PV renewable generation, (b) load profiles, (c) visit of EVs to BSSs, and (d) electricity market 

prices for wholesale, local, and electricity spot for EVs [6, 28]. 

- The aggregator uses ESS and BSS as their own assets and supports the programming of energy 

resources of SMG. Indeed, ESS has constraints related to the state of the battery, while EVs have 

constraints related to stochastic visits to BSS, brand, and plug type of EV. 

- The improvement of SMG profits is formulated with a heuristic optimization algorithm. Specifically, 

the VNS-DEEPSO algorithm is a recently studied technique that has demonstrated good performance 

for these types of problems [21]. 

 

 

 
 

Figure 2. Depiction of energy transactions in SMG 

 

 

According to the main aspects in the SMG operation, the objective function aims to minimize Z, 

that is, the negative of the profits (1), which means that profits are maximized. It is defined as the addition 

and subtraction of six terms. The first term introduces the value of buying energy to load with DR. 

The second term, Gen can be negative when the energy of DGs and PV generation are sold. The third, fourth 

and fifth terms are the prosumers, represented by the ESS, BSS of EVs, and market transactions (MTs). 

These costs or revenues are quantified based on the type of transfer. In the first place, the incomes are 

represented with a negative value and, in the second place, costs are estimated with a positive value. 

The sixth term of (1) is penalties (Pen), which are defined for an imbalance, when the demand is not satisfied 

or the generation is exceeded [28]. Fixed costs are related to the purchase of batteries, degradation of 

components, and maintenance. As in math, the derivative of a constant is zero. Fixed costs are also constant 

(they do not vary regardless of the decision variables), therefore, they are not included in the objective 

function, because their change rate is zero (1) [6]. For explanations purposes, the six terms on the right side 

of (1) are formulated from (2) to (7). 

Equation (2) represents the prices (𝑃) per capacity (𝐶) of loads with DR and the scenarios (s) have  

a probability (𝜋(𝑠)). In (3), the total generation is denoted as the sum of DGs, external supplier, and PV 

generation. Equation (4) details the operation of the ESS. In (5), BSS revenue is calculated from allocating  

a swapped battery 𝑁𝑆𝑊 per price 𝑃𝑆. If EVs visit the station, but there is no battery to swap, then BSS owners 

will receive penalties. The penalty is calculated based on the subtraction of an assigned battery 𝑁𝑠𝑤  from EVs 

battery demand 𝑁𝐷 [15]. In (5), the efficiencies (𝜂𝑑 and 𝜂𝑐) refer to charging and discharging of batteries, 

Aggregator optimizes energy 

transactions of SMG

ESS BSS
Stochastic visit of EVs

Electricity spot price for EVs

Load with 

DR

Day-ahead markets

DG

PV 

generation 

Uncertainty Bidirectional transaction One-directional transaction

Decision matrix for EV BSS, data from [29, 30] 
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while 𝑁𝑐 and 𝑁𝑑 represent the number of batteries that are charged and discharged in the electricity  

spot price for EVs (𝑀𝑃𝑒). In (6), MTs represent the sale (𝐶𝑏𝑢𝑦) and purchase (𝐶𝑠𝑒𝑙𝑙) of energy. Finally,  

the penalizations (Pen) are made such that the demand is not satisfied, or the generation is exceeded as shown 

in (7). This model is structured with mixed-integer linear programming. However, in (9) the constraint for 

demand with DR is nonlinear, so it can be classified as mixed-integer nonlinear programming. 

 

 minimize Z DR Gen ESS BSS MT Pen        (1) 
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The energy balance has constraints shown in (8). The conservative balance should be zero.  

The energy balance is composed of the total generation (DG, an external supplier, and PV), ESS, load with 

DR, transfer in the market, and imbalance in the generation of energy [28]. EVs BSS has another analysis 

equal to the energy balance shown from (10) to (17). This model also considers that EVs and loads are 

involved in DR programs. Equation (9) formulates a constraint for the load DR that they should be different 

from zero and the demand welfare 𝐽 represents at least 10 % of the total energy being supplied for all 

periods [32]. Equation (1) is subject to (8) and (9). EVs encompass the DR program and schedule the BSS 

arrival time with the following assumptions. The amount of visits of EVs is expected to be fixed [6]. 

However, visiting hours are estimated with the K-means clustering method [6]. Therefore, the visiting hours 

of EVs is uncertain [16]. The priority in the BSS is that the swapping batteries must be charged. Once 

the batteries are charged, the aggregator decides whether to discharge or swap them. This option is only 

possible when one or more EVS eventually demand to swap a battery. 
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Fully charged batteries are available per hour. At least one fully charged battery is guaranteed every 

period in the BSS. In the event that electric vehicles visit the substation, two cases may occur. In the first 

case, the battery is not swapped because the aggregator does not consider it compelling or there are no 

batteries available. These assumptions contemplate that the aggregator is penalized, so these situations are 

undesirable [15]. In the second case, the battery is swapped. The day begins with a fully charged battery 

bank. EVs arriving at the BSS have completely depleted batteries [6]. The charging / discharging capacity of 

EVs batteries is constant. This is estimated with the average charging time according to the type of charger 

and the EV brand [6]. The battery swapping time is considered negligible [16].  

The substation has a constant number of batteries [33]. However, the SOC depends on factors, such 

as the visits of EVs and the decisions of the aggregator [16]. Battery degradation is estimated as a fixed cost. 

In other words, the variability of costs for battery degradation is assumed negligible for day-ahead 

planning [33]. The aggregator can swap several batteries at the same time [33]. In accordance with 

the aforementioned considerations, the restrictions for the programming of EVs are formulated. 

In (10), fully-charged batteries (𝑁𝑓𝑐) include the previous fully-charged batteries in each period, new 

batteries that are fully-charged (𝑁𝑐) and depleted batteries that are swapped for fully-charged batteries (𝑁𝑠𝑤). 

An additional function of EV batteries consists in supplying the SMG demand. In (11), the waiting time for 

charging or discharging is represented by the interval charging time (𝛿) or interval discharging time (𝜁). 

𝛿 is calculated as the ratio between the vehicle battery capacity (𝜐𝛽) and the minimum between the power of 

the on-board EV (𝜐𝛼) and the allowed power from the charger level specification (𝜐𝛾).  

The acceptance rate is limited by the EV technology for charging or discharging in BSS. 

EV charging levels are frequently grouped into three categories as shown in Table 2 [34]. Level 1 chargers 

are required either at home or in overnight process. Level 2 chargers have two uses in public or private 

facilities. Level 3 chargers are developed with technology that allows a quick charge in a short time; 

however, these advances are at a premature phase yet [34]. 

The next EV restriction (12) establishes the initial batteries in the station (𝑁𝑖). Fully-charged 

batteries (𝑁𝑓𝑐) should maintain this limit. Furthermore, discharging (𝑁𝑑) and swapping (𝑁𝑠𝑤) batteries are 

allowed without surpassing the number of initial batteries (13). In addition, EV customers demand (𝑁𝐷) 

should be higher than the batteries being swapped (14). 

 The batteries to be charged (𝑁𝑐) depend (𝑁𝑖 − 𝑁𝑓𝑐(𝑡,𝑠)) on the battery availability and the allocated 

batteries to swap 𝑁𝑠𝑤 in the actual period (15). In (16), the SOC is represented by the succession of  

the charge (∑ 𝑁𝑐(𝑡−𝑓,𝑠)
𝛿−1
𝑓=0 ) and discharge (∑ 𝑁𝑑(𝑡−𝑓,𝑠)

𝜁−1
𝑓=0 ) periods. The sum of these two terms cannot exceed 

the initial number of batteries. In (17), decision variables are greater than or equal to zero. 

Equation (1) is then subject to 
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Table 2. Specifications of the charger power level [34] 
Power Level Typical use Charger rate (𝜐𝛾) Variant 

Level 1 Charging at home or office 1.4 kW (12 A)  
1.9 kW (20 A) 

A 
B 

Level 2 Charging at private or public outlets 7.7 kW (32 A) 

19.2 kW (80 A) 

A 

B 
Level 3 Commercial Up to 50 kW 

Up to 100 kW 

A 

B 

 

 

4. UNCERTAINTY SOURCES 

The uncertainty is represented in the three groups presented below. 

 

4.1.  Uncertainty of PV generation, electricity markets, and loads with DR 

The case study is created by using 5000 scenarios based on [28]. This research looks for robust 

solutions to the uncertainty parameters, such as PV power forecast, load prediction, and wholesale and local 

markets [28]. The PV power geration, the loads with DR and the variations of energy markets (wholesale and 

local) have forecast errors of 15%, 10% and 20% respectively. In (18), the Monte Carlo method generates  

the scenarios. A normal distribution function is used to forecast the error (
,error sx ) through historical data. 

The forecast errors (
forecastx ) with uncertainty are represented by a normal distribution function. In the second 

step, 5000 scenarios are reduced to 100 using a reduction technique based on low probabilities [35].  

 

     ,forecast error s

SX t x t x t              (18) 

 

4.2.  Uncertainty of driven pattern and electricity spot price for EVs 

Data on EV trips and electricity spot prices for EVs use the transportation and electricity sources 

from New South Wales (NSW) [30]. The data on electricity spot prices is obtained from January 2016 to 

June 2019. They are estimated with the Australian Energy Market Operator. The time resolution is per hour 

and the K-means clustering is employed to forecast electricity spot prices from hour 1 to hour 24 [6]. 

Electricity spot prices for EVs are grouped into 10 clusters together with their probability percentages, 

as shown in Figure 3. The percentages represent the probability of occurrence. A similar feature is called  

a scenario and the prices are normalized so that the sum is unity for each day [6]. 

The cluster dataset identifies the EV expected visits in a specified region [6]. It is illustrated in 

Figure 4, EVs are group by arrival time. Then, the traffic data includes the amount of cars for a 24-hour time 

interval. The numer of vehicles and market prices have been normalized with a value of 0.1. Cars passing in 

southbound and northbound areas are separated. The scenarios are produced through probability of 

occurrence, where each cluster has some associated feature sets. In addition, the probability of occurrence 

depends on the number of characteristic patterns [6]. 

 

   , ,sw t s D t s
N N
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Figure 3. Clustering of scenarios to EV market 

 

 

 
 

Figure 4. Clustering of scenarios for the driven pattern of EV 

 

 

4.3.  EVs BSS matrix with uncertainty 

Scenarios of EVs arrival time from January 2016 to June 2019 in NSW are modeled and reduced to 

100 stochastic scenarios. For example, the EV BSS matrix illustrates a stochastic scenario and a feasible 

solution. Table 3 shows the encoding for a random scenario. The charging (𝛿) and discharging (𝜁) time are 

computed with Table 2. The time for charging and discharging are 8, 12, and 9 hours for Toyota, Nissan, and 

Mitsubishi at levels 1 A, 1 B, and 2 A, respectively. To emphasize, the decision matrix is formulated to 

quantify the number of fully charged batteries (Nfc), the number of batteries to charge (Nc), the number of 

batteries to discharge (Nd) and the number of batteries to swap (Ns). Fully charged batteries are estimated for 

the current (t) and previous (t-1) instant. 
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Table 3. Sample of EVs BSS matrix 
  State of change of 15 EVs Batteries EVs Batteries counter 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Nd Nc Ns 
Nfc 

(t-1) 

Nfc 

(t1) 

Ni-Nfc 

(t-1)-Ns 

P
lan

n
in

g
 d

ay
 - ah

ead
 

1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 14 0 0 0 1 15 

2 1 2 1 1 3 3 3 3 3 3 3 3 3 3 3 11 2 0 2 3 13 

3 8 1 1 1 2 4 4 4 4 4 4 4 4 4 4 10 2 1 2 3 12 

4 7 8 9 1 1 3 3 3 3 3 5 5 5 5 5 5 7 2 1 2 12 

5 6 7 8 1 1 2 2 2 2 2 4 4 4 6 6 2 11 0 2 2 13 

6 5 6 7 8 1 1 1 1 1 1 3 3 3 5 5 0 13 1 1 6 13 

7 4 5 6 7 8 9 8 8 9 1 2 2 2 4 4 0 9 5 1 1 9 

8 3 4 5 6 7 8 7 7 8 8 1 1 1 3 3 0 14 1 0 3 14 

9 2 3 4 5 6 7 6 6 7 7 8 9 1 2 2 0 12 2 1 1 12 

10 1 2 3 4 5 6 5 5 6 6 7 8 1 1 1 0 14 0 1 4 14 

11 2 1 2 3 4 5 4 4 5 5 6 7 8 12 1 1 11 2 1 2 12 

12 1 1 1 2 3 4 3 3 4 4 5 6 7 11 9 0 13 1 1 3 13 

13 8 8 1 1 2 3 2 2 3 3 4 5 6 10 8 0 12 2 1 2 12 

14 7 7 9 1 1 2 1 1 2 2 3 4 5 9 7 0 13 1 1 4 13 

15 6 6 8 8 2 1 1 1 1 1 2 3 4 8 6 1 11 1 2 5 12 

16 5 5 7 7 1 2 2 2 2 2 1 2 3 7 5 5 10 0 0 2 15 

17 4 4 6 6 1 1 1 1 3 3 2 1 2 6 4 3 11 0 1 5 14 

18 3 3 5 5 9 1 1 1 2 2 3 2 1 5 3 2 9 1 3 4 11 

19 2 2 4 4 8 12 8 8 1 1 2 1 2 4 2 1 11 3 0 3 12 

20 1 1 3 3 7 11 7 7 9 8 1 1 1 3 1 0 12 2 1 6 12 

21 2 2 2 2 6 10 6 6 8 7 8 9 8 2 1 2 9 3 1 1 11 

22 3 3 1 1 5 9 5 5 7 6 7 8 7 1 12 2 12 1 0 3 14 

23 2 2 2 2 4 8 4 4 6 5 6 7 6 1 11 2 12 0 1 1 14 

24 1 1 1 1 3 7 3 3 5 4 5 6 5 9 10 0 14 1 0 4 14 

                       

 Free spots:    Swapping batteries:   Penalties: 4 Total swapping: 30 

 Nomenclature                   

 Nd: Number of batteries to dischange  Nc Number of batteries to change   

 Nfc Number of fully changed batteries  Ns Number of batteries to swap   

 

 

The SOC is calculated each hour for 24 hours with 15 batteries to swap. Vehicles such as Toyota, 

Nissan, and Mitsubishi use the services of BSS. The countdown decreases from 8, 12, and 9 hours (battery 

completely discharged) to 1 hour (battery fully charged). Regarding the charging of EV batteries, 

it is assumed that when the battery is swapped in BSS, it will be connected to the BSS charging point. 

Swapping batteries are represented by the red spots, while the free spots (blue spots) can make any decision: 

charging, discharging, or nothing. Regarding swapping, the aggregator does not know when the EV visits 

the BSS, because it depends on a random scenario. However, it can decide if it accepts or not the swapping 

battery. This BSS model assumes that vehicles arrive with depleted batteries. Nevertheless, the EV BSS 

matrix can also quantify different SOCs. For example, for the Toyota brand that requires 8 hours of charge, 

the SOC can be replaced by a different value between one and seven for the remaining hours. The arrival of 

vehicles with different SOCs into the BSS- can be further explored in future research. 

 

 

5. RESULTS AND DISCUSSION 

This section develops the case study and the results are discussed after its formulation. 

 

5.1.  Development of the case study  

The structure of the problem is based on the modified case study proposed in the IEEE-

CEC/GECCO 2019 competition [28]. This case study is carried out in Matlab 2016. Figure 5 shows the SMG 

components. Therefore, a 26-bus SMG has 5 DGs, 1 external supplier, 1 PV generation, 15 swapping 

batteries for EVs, 34 EVs, 90 loads with DR, and 2 ESSs. Moreover, the wholesale and local markes, and 

electricity spot price for EVs are considered. The capacity of energy resources is represented in Table 4. 

Prices of the wholesale and local markets are taken from [28], while the prices for EVs are taken from 

the New South Wales (NSW) electricity market given in monetary units (m.u.) per kWh [30].  

The capacity of energy resources is representedn Table 4. Prices of the wholesale and local markets 

are taken from [28], while the prices of the EVs market are taken from the New South Wales (NSW) 

electricity market given in monetary units (m.u.) per kWh [30]. EVs are selected based on the market reach 

of top EV manufacturers. Under this context, three types of vehicles are chosen: Toyota, Nissan, and 

Mitsubishi. In Table 5, surveys of EVs sales allow to compute the probability of EV transit [29]. 

Additionally, the battery characteristics are provided in [36]. 
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Figure 5. Representation of a 26-bus SMG 
 

 

Table 4. Energy resources [28] 
Energy resources Prices (m.u.*/kWh) Capacity (kW) Units 

Dispatchable DGs 0.07-0.11 10-100 5 
External suppliers 0.074-0.16 0-150 1 

ESS: 
Charge - 0-16.6  

Discharge 0.03 0-16.6 2 
Loads with DR 0.0375 4.06-8.95 90 

 

Forecast (kW) 
Photovoltaic - 0-106.81 1  

Load - 35.82-83.39 90 

 
Limits (kW) 

Market 1 (WS) 0.021-0.039 0-100 1 

Market 2 (LM) 0.021-0.039 0-10 1 
Electricity spot price (EVs) 0.014-0.119 0.0476-4.076 1 

* Monetary units (m.u) 

 

 

Table 5. Characteristic and transiting probability 

 

Price sales 

[29] 

Percentage  

(%) 

Cars Battery capacity (𝜐𝛽) 

(kWh) [36] 

Charger rate (𝜐𝛼) 

(kW) 

Toyota 27,595 59 20 10 1.25 

Nissan 14,715 32 11 23 [34] 3 
Mitsubishi 4,166 9 3 16 1.78 

Total 46,476 100 34   

 

 

5.2.  Discussion of case study results  

In this study case, the SMGs are optimized through the VNS-DEEPSO algorithm with 100 

probabilistic scenarios. The cost is reduced by 72 % in the overall cost, which is obtained by calculating  

the reduction percentage of the random solution with respect to the suboptimal solution. Additionally, 

according to [9], the VNS algorithm is selected (simple version) and the DEEPSO algorithm is formed by  

the following parameters: the mutation rate, the communication probability, the population and the local 

DEEPSO search probability as 0.8, 0.8, 2 and 0.1, respectively. The number of evaluations is restricted to  

a maximum of 50,000 [28]. 

Results are summarized in Figure 6, where the generation is presented for a period of 24 hours  

(in day-ahead markets). For this period, the maximum generation is supplied by the external supplier. DG 5 

has relevant participation followed by PV generation. The other generators (DG 1, DG 2, DG 3, and DG 4) 

have a lower participation rate. To summarize, the generation presents a stochastic generation. Load with DR 

is calculated by using a coefficient 10 from (9), as suggested by [32]. However, it is adjusted to 20 to avoid 

consumption equal to zero. The peak consumption in Figure 7 is 0.0722 kW at midday. Other peaks are 

found at 10 a.m., 7 p.m., and 9 p.m. with consumption of 0.0147 kW, 0.0198 kW, and 0.0117 kW, 

respectively. In [9], they report that the load is reduced because it is more convenient for the aggregator to 

carry out load shedding. 

PV 5 DGs G
External

supplier

22

23 25

24 19

18

20

21 14 15 16 17

1

11

12 13 10 5

4

3 6-9

BSS

26

90 Controllable loads ;  34            Electric vehicles; 2         Energy storage systems; 

26-Bus       Microgrid; 15               Swapping batteries to EVs
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EV batteries have events such as swapping, charging, and discharging as shown in Figure 8. A BSS 

of EVs has 15 EV batteries and it has scheduled visits of 34 EVs at any given time. The EV batteries can be 

partially charged. Figure 8 shows a smooth increase in the number of battery discharge at 2 a.m. and  

the number of discharging batteries decreases close to zero at 9 a.m. Afterward, from 2 p.m. the number of 

discharging batteries increases smoothly until 11 p.m. and ends steadily.  

The number of swapping batteries have stochastic behavior. It depends on the EVs visit and the EVs 

batteries that are accepted. The number of charging EVs batteries increases from 2 a.m. to 5 a.m. as shown in 

Figure 8. Then, it remains steady until 7 a.m. and decreases close to zero at 1 p.m. ESS 1 as shown in 

Figure 9 has a discharging peak with 0.1986 kW at 4 a.m. and a charging peak with 0.3144 kW at 9 p.m.  

ESS 2 has lower participation, presumably due to the use of EVs. In addition, [22] reports ESS 2 with  

a suboptimal solution of 0.87 kW. Transfer power in electricity spot price for EVs is computed as result of 

EVs matrix per average charger rate (19). This equation takes into account the average type of electric 

vehicle and type of charger rate.  

 

 

  
 

Figure 6. Power generated for 24 hours 

 

Figure 7. Consumption time of load with DR 

 

 

  
 

Figure 8. EV battery event programming for  

an average of 100 scenarios 

 

Figure 9. Planning of the energy storage system 

for one day 

 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑐ℎ𝑎𝑟𝑔𝑒𝑟 𝑟𝑎𝑡𝑒 =
∑ min(𝜐𝛼,𝜐𝛾)∗𝑒𝑣

𝑁𝑠
𝑒𝑣=1

𝑁𝑒𝑣
            (19) 

 

Electricity markets in Figure 10 show a tendency to sell and not to buy energy for higher profits.  

The wholesale market has the higher participation with transactions close to 85 kW and some fluctuations. 

The lowest energy sale takes place at 12 p.m. Sales in the local market have fluctuations around 36 kW.  

The electricity spot price for EVs carries out a small percentage of transactions per day. In the ESS, this is 
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highlighted when there are batteries charging and discharging. The transfer power is not carried out in  

the EVs market, but it is performed between the same batteries of the BSS. Therefore, the energy transaction 

of electricity spot price for EVs shown in Figure 10 is lower.  
 

 

 
 

Figure 10. Electricity markets 
 

 

6. CONCLUSIONS 

The optimization of EVs in SMG with uncertain scenarios has not been fully explored, thus this 

study proposes a new methodology that involves uncertainty decisions in battery swapping stations.  

In the proposed method, a decision matrix is formulated to schedule EVs BSS. Furthermore, the stocastic 

visit is based on the K-means clustering approach. Once the visit schedule to EV BSS has been generated, 

idle spaces appear in the probabilistic scenarios within a decision matrix. This means that the idle spaces are 

generated when the charge of a battery must be mandatory. 

As a result, optimization is only allowed for free spaces, that is, charging, discharging, or no action. 

In addition, other elements of the SMG are included in the model, such as DG, PV generation, ESS, loads 

with DR, and day-ahead markets. Finally, the best schedule of charging, discharging, and swapping for EVs 

batteries in BSS, and the transfer of power in the market are identified satisfactorily. The generation, loads 

with DR, and ESS are stochastic, however, the patterns are recognized of the main generators, peak hours in 

loads with DR (at midday), and ESS participation. 
 

 

APPENDIX 

Supplementary Materials 

- The SMG is available online at: http://www.gecad.isep.ipp.pt/WCCI2018-SG-

COMPETITION/ and http://www.gecad.isep.ipp.pt/ERM2019-Competition/ 

- EV brands are available online at: https://evadoption.com/ev-sales/evs-percent-of-vehicle-sales-by-

brand/. Electricity spot price for EVs is available online at: 

https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Data-dashboard 
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