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 The aim of this study is to estimate the new initial values of VFactor.  

In general, this algorithm is one of the members in a group of special 

proposed integer factorization algorithm. It has very high performance 

whenever the result of the difference between two prime factors of  

the modulus is a little, it is also called as balanced modulus. In fact, if this 

situation is occurred, RSA which is a type of public key cryptosystem will be 

broken easily. In addition, the main process of VFactor is to increase and 

decrease two odd integers in order to compute the multiplication until  

the targets are found. However, the initial values are far from the targets 

especially that the large value of the difference between two prime factors 

that is not suitable for VFactor.  Therefore, the new initial values which are 

closer to the targets than the traditional values are proposed to decrease loops 

of the computation. In experimental results, it is shown that the loops can be 

decreased about 26% for the example of 256 bits-length of modulus that is 

from the small result of the difference between prime factors. 
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1. INTRODUCTION  

Integer factorization problem (IFP) has become one of the important issues since RSA [1] which is  

a type of asymmetric key crytosystem or public key cryptosystem [2] was proposed in 1978. The reason is 

that it can factor the modulus as prime numbers and then the private key kept secretly by owner is also 

recovered. That mean, this methodology is one of the tools for breaking RSA. At present, the length of 

the modulus should be assigned at least 1024 bits [3] to avoid attacking by intruders. However, if one of 

hidden parameters is weak, it is very easy to break this system, although bit-length of the modulus is very 

high. The examples of the weak parameters are consisting of a low private key [4-6], a high private key [7], 

a low prime factor [8, 9], all prime factors of p-1 or q-1 [10] which are small, where p and q are represented 

as prime factors of the modulus and the small result of p-q [11-14].  

The aim of this paper is to modify one of the factoring algortihms which is suitable for the small 

result of p-q. The algorithm is called VFactor [15]. Both of two initial values are usually assigned for 

VFactor, x and y. Referring to the conditions, y is always decreased until y=q and x is always increased until 

x=p. However, the initial value of x and y are usually far from p and q, respectively. Therefore, in this paper, 

the new initial values of x and y which are very closer to the targets than the traditional values are proposed. 

The key concepts are from the considering the last m digits of p and q and the result of (p+q) mod 8 must be 

always equal to 0 when (n+1) mod 8 =0, where n is the modulus. Then, it implies that many unrelated values 

are removed from the computation.  
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The rest of the paper is organized as follows. In section 2, it mentions about the related works which 

consist of an overview of RSA, VFactor, tecniques to analyze the last m digits of p and q and conditions of  

p+q and p - q. In section 3, the proposed method which is the generating of the new initial values of x and y 

are presented. In section 4, the experimental results and discussion are mentioned. Finally, the conclusion 

will be discussed in the last session. 

 

 

2. RELATED WORKS 

2.1.  RSA 

 RSA is a type of public key cryptography. It was proposed by three researchers, Ron Rivest,  

Adi Shamir, and Len Adleman in 1978. There are three main processes for this technique. The first process is 

a key generation and there are three steps to finish this process. Step 1 is to generate two prime numbers 

randomly, p and q, and then compute modulus, n=p*q, and euler totient value,  (n)=(p-1)*(q-1).  

The next step is to select a public key, t, with the following condition, 1<t< (n) and gcd(t,  (n) )=1. After 

that, a private key, h, can be computed from t*h mod  (n)=1 by using some of extended euclidean 

algorithms [16-19]. The second process is an encryption process to convert original plaintext, m,  

as ciphertext, c, from the equation: c=mt mod n. The last process is a decryption process to recover m by 

using the equation: m=ch mod n. Generally, it is very difficult to break this system when bit-length of n is at 

least 1024 and all parameters are strong. In contrast, RSA becomes easily attacked when some of parameters 

are weak. One of the weak parameters is the small value of p-q. There are various tecniques which are 

suitable for this condition. One of them is VFactor which is a type of integer factorization algorithm. 

 

2.2.  VFactor and improvement  

 VFactor is one of integer factorization algorithms. This algorithm which was proposed by 

Sharma et al., has very high performance when the result of p-q is very close to 0. Two odd integers are 

chosen as the initial values. The first value is y=⌊√𝑛⌋ but y may be decreased by 1 to ensure that it is an odd 

number when it is an even number. The other value is x=y+2. The main process is to compute m=x*y.  

In fact, if m=n, then it implies that x and y are two large prime factors of n. However, it is divided into two 

cases. The first case is m > n while y is too large, then y has to be decreased by 2. On the other hand,  

the second case is occurred when m<n, x is too small and it must be increased by 2. In fact, the process is 

continuously repeated until m=n is found. Moreover, the modified algorithms of VFactor were proposed to 

remove some loops and time. MVFactor [20] is the technique to decrease both of x and y out of  

the computation when the last digit is equal to 5. In fact, the odd integers which the last digit is equal to 5, 

except 5, are not certainly a prime number, because 5 divides all of them. Later, MVFactorV2 [21] was 

proposed. The key is to choose only x and y which must be written in the following form: 6k+1 or 6k-1, 

where k . Moreover, the last digit of them must not be equal to 5. Therefore, the odd integers which  

the last digit is 5 and can not be written as the form 6k+1 or 6k-1 are certainly not a prime number. 

Table 1 is shown the steps of increasing the odd integer to skip unrelated values. Furthormore, 

the information in the table is also selected to consider the decreasing steps. 

 

 

Table 1. The increasing steps of the odd integer that may be a prime number 
Row LSG(n) n mod 6 Increasing Steps 

1 1 5 0 

2 3 1 2 

3 5 3 None 
4 7 5 4 

5 9 1 2 
6 1 3 None 

7 3 5 4 

8 5 1 None 
9 7 3 None 

10 9 5 6 

11 1 1 2 
12 3 3 None 

13 5 5 None 

14 7 1 6 
15 9 3 None 

16 1 5 4 
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The information in Table 1 shows the increasing steps of the odd integer that may be a prime 

number. All prime numbers, except 2 and 3, must be usually rewritten as two forms consisting of 6k-1 and 

6k+1. That mean the integer which its condition is equal to the data in row 3rd, 6th, 8th, 9th, 12th, 13th and 15th 

of this table is not certainly a prime. The reason is that the form of some of them is 6k+3 or the last digit is 5. 

Therefore, if x has to be increased or y has to be decreased, then the increasing steps in this table can be 

chosen to remove the odd integers which are not certainly a prime number. For example, assume that  

the lastest value of x has the last 2 digits as 63 and the condition is in 7 th row, the next value should have  

the last 2 digits as 69.   
 

2.3.  Analyzing the last m digits of p and q 

In 2017, [22] the technique to analyze all last m digits of p and q was proposed. After finding all of 

them, many unrelated integers are removed out of the computation. In fact, they are chosen to leave some 

loops of FFA. Assuming some values which may be the last m digits of p and q are disclosed. There are two 

rules for analyzing the others which may be also the last m digits of p and q as follows: (Assigning pm is 

represented as the last m digits of p and qm is represented as the last m digits of q. 

Rule 1: If the last digit of p and q are same, the other pairs can be computed from pm'=(pm+10m-1) 

mod 10m and qm'=(qm+9*10m-1) mod 10m 

Example 1 Assuming p2=11, q2=31 (the last 2 digits of 11*31=41), then p2'=21 and q2'=21 (the last 2 

digits of 21*21=41) 

Rule 2: If the last digit of p and q are different, the other pairs can be computed from  

pm'=(pm+k1*10m-1) mod 10m and qm'=(qm+k2*10m-1) mod 10m, where ((pm mod 10)*k2+(qm mod 10)*k1) mod 

10=0 

In fact, after finding all last m digits of p and q, all possible results of the last m digit of p+q and  

p-q are also disclosed. Assuming U is represented as the set of all possible values of the last m digits of  

p+q and V is represented as the set of all possible values of the last m digits of p-q. Example 2 is shown the 

way to find all members for both of them.  

Example 2 Finding U and V for all values of n that the last 2 digits are 83  

Sol. In general, both of rule 1 and rule 2 are the key to find all members of U and V. In fact, all pairs 

of the last 2 digits of p and q are as follows: (11, 53), (21, 23), (31, 93), (41, 63), (51, 33), (61, 3), (71, 73), 

(81, 43), (91, 13), (1, 83), (17, 99), (27, 29), (37, 59), (47, 89), (57, 19), (67, 49), (77, 79), (87, 9), (97, 39) 

and (7, 69). Therefore, U and V are as follows: 
 

U={04, 16, 24, 36, 44, 56, 64, 76, 84, 96} 

V={02, 18, 22, 38, 42, 58, 62, 78, 82, 98} 
 

In addition, after U and V are found, the initial value of u, ui, which is begun as 2 ⌈√𝑛⌉ can be 

reestimated. The last m digits of ui should be one of the members in U. That means it can be increased 

whenever the result is still not a member of U.  

 

2.4.  Analyzing the initial value of p-q 

The initial value of p-q should be usually begun as 0, p=q. However, real value of p-q is very far 

from the initial value. In 2018, [23] the equation to estimate the new initial value of v, v i, was proposed. 

In fact, before using the equation, all last m digits of p and q must be disclosed. In addition, vi can be 

computed from the following equation: vi=⌈ √𝑑2 ∗ 𝑛
4

⌉, where d is the distance between the traditional value of 

ui and the new value of ui. In addition, the new values of ui and vi can be also selected to decrease time for 

some other factorization algortihms. For example, in 2019, this technique is chosen to combine with trial 

divition algorithm (TDA) [24]. Before applying this method with TDA, the first divisor is usually begun as 

⌊√𝑛⌋. On the other hand, it may be assigned as the integer which is less than this value when it is applied 

with TDA. 

 

2.5.  Analyzing the remainder of (p+q) mod 8 

In [25], it is found that if the result of (n+1) mod 8=0, then the result of (p+q) mod 8 must be always 

equal to 0. Therefore, only pattern of p+q which is in the condition will be included to remove some loops of 

the computation. 
 

 

3. THE PROPOSED METHOD 

In this section, the new initial values to both of x and y for Vfactor are proposed to decrease  

the certainly unrelated values out of the computation. In general, the traditional initial value of x is  
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the minimum odd integer which is larger than n .  On the other hand, after the last m digits of n are 

analyzed, it can be estimated as qi when qi is an odd number or qi+1 when qi is an even number. In addition, 

the traditional initial value of y is the maximum odd integer which is still less than n . The same reason with 

above condition, the new value can be estimated as the maximum odd integer which is less than 
𝑛

𝑞𝑖
 . 

Furthermore, if the concepts of MVFactor and MVFactorV2 are also included, then the last digit must not be 

equal to 5 and the forms of them must be always 6k+1 or 6k-1. 

 

Algorithm 1: The new initial values of x and y 
Input: n, ui, vi  

1. qi  
i i
u + v

2
 

2. IF qi%2 == 0 Then 

3.    qi  qi+1 

4. End IF 

5. x  qi 

6. x10  x % 10 

7. x6  x % 6 

8. IF (x10 == 5 and x6 == 3) OR (x10 == 1 AND x6 == 3) OR (x10 == 7 AND x6 == 3) OR (x10 ==5 

AND x6 ==5) OR (x10 == 9 AND x6 == 3) Then 

9.     x  x+2  

10.Else IF (x10 == 5 AND x6 == 1) OR (x10 == 3 AND x6 == 3) Then 

11.     x  x+4 

12.End IF 

13. y   
  

n

x
 

14. IF y%2 == 0 Then 

15.    y  y - 1 

16. End IF 

 

17. y10  y %10 

18. y6  y % 6 

19. IF (y10 == 5 and y6 == 3) OR (y10 == 1 AND y6 == 3) OR (y10 == 5 AND y6 == 1) OR (y10 ==3 

AND y6 ==3) OR (y10 == 9 AND y6 == 3) Then 

20.     y  y - 2  

21. Else IF (y10 == 7 AND y6 == 3) OR (y10 == 5 AND y6 == 5) Then 

22.     y  y-4 

23. End IF 

Output: The new initial values of x and y 

 

Algorithm 2: The new initial values of ui and vi 
Input: n (n+1 mod 8=0), U, V 

1. ui  2  
 n  

2. t  ui 

3. IF the last m digits of ui is not a member of U Then 

4.     Increaning ui until the last two digits are equal to one of the members in U 

5. End IF 

6. While ui mod 8 is not equal to 0 do 

7.      Replacing the last m digits of ui by the next member of U 

8.  End While 

9. d  ui - t 

10. vi   
 
4 2
d n*  

11. IF the last m digits of vi is not a member of V Then 

12.     Increaning vi until the last two digits are equal to one of the members in V 

13. End IF 

Output: The new initial values of ui and vi 

 

Example 3: Finding the new initial values of x and y when n=2620361083 (56533*46351) by 

considering the last 2 digits of n=83 and using Algorithm 1 

Sol. Before using Algorithm1, ui and vi must be computed. Usually ui=2 ⌈√2620361083 ⌉=102380. 

However, the last 2 digits is 80 which is not a member of U. Therefore, ui can be increased as 102384, and 

then d=4. In addition, vi=2 ⌈ √42 ∗ 2620361083
4

⌉=906. Nevertheless, the last 2 digits is 06 which is not 

a member of V. Then, vi can be increased as 918. Therefore, each step in Algorithm 1 is as follows: 
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 Step 1: qi=
102384 918

2


=51651 

 Step 2-4: qi is not changed, because qi % 2=1 

 Step 5: x=51651 

 Step 6-7: x10=1 and x6=3 

 Step 8-12: x=51653 

 Step 13: y= ⌊
2620361083

51653
⌋ =50730 

 Step 14-16: y is changed as 50729, because y % 2=0 

 Step 17-18: y10=9 and y6=5 

Step 19-23: y is not changed, because both of y10 and y6 are not matched with the conditions.  

 

Therefore, the new initial values are x=51651 and y=50729 

In fact, the traditional initial values in example 3 are as follows: 𝑦 = ⌊√2620361083⌋ = 51189  

and x=y+2=51191. Then, x’ s loops  are  decreased as 
51653−51191

2
= 231 and y’ s loops are decreased as 

51189−50729

2
= 230. Therefore, total loops are left out the computation about 461 whenever the new initial 

values of x and y are chosen instead of the tradition values. 

Furthermore, total loops are more decreased when m is large. The reason is that the characteristic of 

n is analyzed more deeply. In contrast, loops are not reduced when the last m digits of 2 ⌈√𝑛⌉ is  

the member of U, because d is equal to 0. Therefore, both of ui and vi are not changed.  

Moreover, the idea in [25] can be selected to apply with the proposed method when the result of  

(n+1) mod 8 is equal to 0. In fact, d is expanded, because ui can be modified in the conditions of U and u mod 

8=0. However, both of ui and vi must be improved before using Algorithm 1. For Algortithm 2,  

it shows the process to improve ui and vi when (n+1) mod 8 is equal to 0.  

Example 4: Finding the new initial value of x and y when n=3801472783 (63073*60271) by 

considering the last 2 digits of n=83 and using Algorithm 1 and Algorithm 2 

Sol. First, the result of (n+1) mod 8 have to be determinded. Because the result is 0, then 

the pattern of (p+q) mod 8 must be also 0. 

The process to find the new values of ui and vi by using Algorithm 2 is as follows: Usually  

ui=2 3801472783 
 

= 123314. However, the last 2 digits is 14 which is not a member of U. Therefore,  

ui can be increased as 123316. In contrast, 123316 mod 8=4  0, then next value of ui should be 123324. 

However, 123324 mod 8=4  0, then next value of ui should be assigned as 123336. Because 123336 mod 

8=0, it is the new value of ui, d=22.  In addition, 𝑣𝑖 = 2⌈ √222 ∗ 3801472783
4

⌉ = 2330. However, the last  

2 digits is 30 which is not a member of V. Therefore, vi can be increased as 2338. Therefore, each step in 

Algorithm 1 is as following: 
 

Step 1: qi=
123336+2338

2
= 62837  

Step 2-4: qi is not changed, because qi % 2=1 

 Step 5: x=62837 

 Step 6-7: x10=7 and x6=5 

 Step 8-12: x is not changed, because both of x10 and x6 are not matched with the conditions. 

Step 13: y=
3801472783

62837

 
  

= 60497 

 Step 14-16: y is not changed, because y % 2=1 

 Step 17-18: y10=7 and y6=5 

Step 19-22: y is not changed, because both of y10 and y6 are not matched with the conditions.  
 

Therefore, the new initial values are x=62837 and y=60497. 

The traditional initial values in example 4 are usually as following: y=⌊√3801472783⌋=61656=61655 

(y is always an odd number) and x=y+2=61657. Then, x’ s loops  are decreased as 
62837−61655

2
= 590 and y’ s 

loops are decreased as 
61655−60497

2
= 579. Therefore, total loops are left out the computation about 1169 

whenever the new initial values of x and y are chosen instead of the tradition values. In fact, in this example, 

assuming the concept in [25] is not chosen to combine with the proposed method, ui=123316, d=2 and vi=718. 

Hence, the total loops are decreased only 359. Therefore, loops are more decresed about three times. However, 

this technique can not be appied with n in example 3, because n+1 mod 8=4  0. 
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4. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, experimental results and discussion will be presented. In fact, the last 2 digits of all 

values of n in the experiment are 83, because U and V are already considered in related works section to skip 

this process. However, if the other cases of n are occurred, both of U and V must be considered at first. 

Furthermore, n+1 mod 8=0 for all values of n in this section is selected to include the idea behind 

Algorithm 2. The experiment is about the comparison of decreasing loops between using only Algorithm 1 

and the combination between Algorithm 1 with Algorithm 2. In addition, bit-length of n which is randomly 

chosen in this experiment consist of 32, 64, 128, 256, 512 and 1024. Moreover, 50 values of n are chosen for 

the same bit-length to find the average. However, the condition of n in this session is that d must not be equal 

to 0. The reason is that the new initial values for both of Algorithm 1 and the combination between 

Algorithm 1 and Algorithm 2 are still equal to the tradition initial values. 

The information in Table 2 shows that if (n+1) mod 8=0 and d 0, decreasing loops of 

the computation by using the combination between Algorithm 1 and Algorithm 2 are much higher than using 

Algorithm 1 only. In addition, it is larger than the other about two times. Therefore, to ensure that all hidden 

parameters are strong, the result of (n+1) mod 8 should not be equal to 0. In fact, the probability is equal to 

0.25 that the result of (n+1) mod 8=0, n is selected randomly. 

 

 

Table 2. The comparion of decreasing loops between two proposed techniques for (n+1) mod 8=0 
Bit-length of n Decreasing Loops 

Algorithm 1 Algorithm 1+Algorithm 2 

32 287 752 

64 77683 257612 
128 9656643962 18065926601 

256 4.31*1019 8.07*1019 

512 7.23*1038 1.35*1039 
1024 3.06*1077 5.72*1077 

 

 

However, if n is larger than 1024 bits and all hidden parameters are strong, VFactor and all 

improving algorthms, including the proposed methods and the result of (n+1) mod 8=0, do not still break 

RSA within a polynomial time. The example is shown as follows: Assuming 

n=293060910868290979627266785232142097857*205030072726927862555415759877785028319= 

60086299868745423605959016054076895558512635625836613350661870819438814212383 (256 bits-

length), after estimating the new initial values, the decreasing loops are about 7.98 *1019. However, the total 

loops are 2.34*1037. Therefore, after using the proposed method, loops are decreased only 3.14*10-11 % that 

is very too small. In contrast, the proposed method become high performance when p is close to q. The 

example is shown as follows: Assuming n=194456630408620613527183578802116928289* 

194456630408620613127183578802116928247=37813381109874874999245217886281867608252777770

855434333178732422091857479383 (256 bits-length), after estimating the new initial values, the decreasing 

loops are about 2.78 *1019. However, the total loops are 1.06*1020. Therefore, after using the proposed 

method, loops are decreased about 26% that are very high. Therefore, the ratio of the decreasing loops is 

based on the characteristics of p and q and the proposed method is suitable for a small result of p and q. 

 

 

5. CONCLUSION  

The new initial values for VFactor are assigned to leave the unrelated values out of the computation. 

The key is to choose the concept of the consideration of the last m digits of p and q. In fact, after all of them 

are found, the patterns of the last m digits of p+q and p-q are also disclosed. Both of them are the keys to 

estimate the new initial values for this method. Moreover, this technique is also included with the other 

pattern of p+q that the result of (p+q) mod 8 is always equal to 0 when then result of (n+1) mod 8 is 0. 

Two algorithms are proposed in this paper. The first is called Algorithm 1 which can be applied with all 

values of n. However, before using this algorithm, U and V must be calculated. Another one is called 

Algorithm 2. This algorithm is chosen to support Algorithm 1 when the result of (n+1) mod 8=0. 

The experimental results show that if (n+1) mod 8=0, the decreasing loops of the computation by using 

the combination between Algorithm 1 and Algorithm 2 are higher than using only Algorithm 1 about two 

times. Furthormore, in experimental results, it is shown that the loops can be decreased 26% in the example 

of 256 bits-length of n when the difference between prime factors is small. 
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