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 Unalleviated voltage instability frequently results in voltage collapse; which 
is a cause of concern in power system networks across the globe but 
particularly in developing countries. This study proposed an online voltage 
collapse prediction model through the application of a machine learning 
technique and a voltage stability index called the new line stability index 
(NLSI_1). The approach proposed is based on a multilayer feed-forward 
neural network whose inputs are the variables of the NLSI_1. The efficacy of 
the method was validated using the testing on the IEEE 14-bus system and 
the Nigeria 330-kV, 28-bus National Grid (NNG). The results of  
the simulations indicate that the proposed approach accurately predicted  
the voltage stability index with an R-value of 0.9975 with a mean square 
error (MSE) of 2.182415x10−5 for the IEEE 14-bus system and an R-value of 
0.9989 with an MSE of 1.2527x10−7 for the NNG 28 bus system. The results 
presented in this paper agree with those found in the literature. 

Keywords: 

Artificial neural network 
Online voltage stability analysis 
Voltage stability 
Voltage stability index 
Weakest bus 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Samuel Isaac, 
Department of Electrical and Information Engineering, 
Covenant University, 
Km 10, Idiroko Road, PMB 1023, Ota, Ogun State, Nigeria. 
Email: isaac.samuel@covenantuniversity.edu.ng 

 
 
1. INTRODUCTION 

Power system management and control have gradually become more challenging; due to increasing 
demand, restrictions on the expansion, and the evolution of power industries into deregulated and competitive 
markets. These have resulted in numerous violations of power system stability as operators push these 
networks close to their stability limit, as reported by [1]. This action has, in turn, led to several voltage 
collapse incidences around the world with high-cost implications to both the utilities and consumers [2-6]. 
For this reason, power systems must be monitored and also alert operators about the possible emergencies or 
faults that are indicative of voltage instability.  

According to Kundur, [7] voltage stability is "the ability of a power system to maintain steady and 
acceptable voltage magnitudes at all network buses at normal operating conditions and after being subjected 
to a disturbance" [7]. A power system network is said to be voltage unstable when a disturbance causes at 
least one bus in the network to experience a gradual decline in voltage magnitude [1, 8]. If a reduced voltage 
profile accompanies the perturbation in all or part of the network, voltage collapse may occur [7]. The cause 
of disturbance maybe by a sudden increase in load demand, reactive power mismatch, improper operation of 
voltage control devices, loss of any element of power system, or malfunctioning of on-load tap changing 
transformers. 

Voltage stability can be assessed either through static or dynamic analysis. In static analysis,  
the power system is in steady-state and modelled using algebraic equations. The static analysis makes it 
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possible to track the voltage stability through voltage stability margin changes since the system's equilibrium 
point moves slowly.  In the case of dynamic analysis, the power system by a dynamic model, voltage stability 
level assessment carried out using time-domain simulations. However, these methods are unsuitable for 
online voltage stability analysis because they involve vast, tedious, and difficult computations.  

Recently, research endeavours in the area of online voltage stability assessment using machine 
learning approaches have received increasing research interest due to their broad range of applications and 
ease. In the field of voltage stability analysis, numerous researches using machine learning is ongoing with 
artificial neural network (ANN), fuzzy logic network, support vector machine, decision trees, and neuro-
fuzzy networks, as seen in [9-16]. ANN includes many components; these components are the single-input 
neuron or the Multiple-Input Neuron, as shown in Figure 1 [17]. This machine learning-based voltage 
collapse prediction methods address the shortcomings of the conventional techniques aforementioned. 
 
 

 
(a) (b) 

 
Figure 1. The component of neural network, (a) Single-Input, (b) Multiple-Input 

 
 
In [13], three artificial neural network models, namely the feed-forward neural network (FFNN) 

layer recurrent neural network and radial basis function (RBF) neural network, were developed to 
approximate the fast voltage stability index (FVSI) under various load scenarios. The study compares  
the accuracies of these models in predicting the most critical lines and buses in the test systems. The authors 
found that although the prediction accuracy of the RBF neural network was better than the other topologies 
considered, the feed-forward neural network had better generalization with a maximum error of about 0.03 
among them. The authors in [14], implemented an RBF neural network to approximate the voltage security 
level of a power system under a contingency state using the L-index. From their results, the authors found 
that although the proposed RBF network was faster than the FFNN trained by back-propagation, it required 
more hidden neurons to achieve the same training error as the FFNN.  

 In [16], voltage stability analysis was carried out using a risk-based assessment method; that 
measures system exposure to an outage and the impact of the resulting disruption. The L-index was taken as 
the voltage stability indicator and a measure of the severity of the outage. The index was implemented using 
two ANN models, the generalized regression neural network (GRNN) and the multilayer perceptron neural 
network (MLFFN). The authors found that the MLFNN had better approximation than GRNN with a mean 
square error (MSE) of 7.107 × 10−7.  

In [18], an FFNN was implemented to predict voltage stability using the line stability index (Lmn). 
The results validated through testing on the IEEE 14 and IEEE 30 bus systems. For the IEEE 14-bus system, 
the proposed network converged with an MSE of 4.08503 × 10−4, and the network converged with an MSE 
of 7.13254 × 10−5 for the IEEE 30-bus system. In [19], the authors assessed the voltage stability of  
the IEEE 14-bus system using an ANN-based approach with an L-index serving stability indicator.  
The authors found that the proposed method yielded more accurate results with an MSE of 0.0077424 and an 
R-value of 0.85998. 

This present work proposes a multilayer perceptron neural network for online voltage collapse 
prediction, using the new line stability index (NLSI_1) proposed in [20] as the voltage stability indicator.  
The effectiveness of the proposed approach is demonstrated through voltage collapse prediction on the IEEE 
14-bus system and the Nigerian 330kV 28-bus system. The rest of the paper is organized as follows: Section 
two gives a review of the NLSI_1. Section three outlines the proposed methodology. Simulation results are 
presented in section four, and section five concludes the paper. 
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2. THE NEW LINE STABILITY INDEX (NLSI_1) 
Static voltage stability analysis involves the determination of a stability indicator such as P-V and 

Q-V curves, eigenvalues decomposition. These indicators give an approximate value of the distance of  
the system's current operating point to voltage collapse. Some of these indicators require tedious and difficult 
computation, and this has made them unsuitable for online voltage stability analysis [21].  

The shortcomings, as mentioned earlier on, of some of these indicators, are overcome by voltage 
stability indices (VSIs) [22, 23]. One of such indices is the NLSI_1 proposed in [20], whose value falls 
between zero and one. The bus, whose index value is the highest in the system, is labelled the weakest bus in 
the system. The NLSI_1 is obtained from the combination of the line stability index (Lmn) and the fast 
voltage stability index (FSVI) through a binary switching function (σ), as shown in (1). The value of  
the switching function σ is determined by the magnitude of the angular difference between the sending and 
receiving end voltages. To examine whether σ is 1 or 0, the values of voltage angle (δ) computed from  
the load-flow program is compared with a threshold value 𝛿𝛿𝑐𝑐. 
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3. MATERIALS AND METHODS 

The proposed methodology for voltage collapse prediction is based on the artificial neural network. 
The aim of this is to predict the proximity to voltage instability and rank the resultant voltage collapse 
according to its severity if it occurs. This research paper proposes an online voltage stability analysis model 
using the multilayer perceptron neural network (MLPNN) and a voltage stability indicator called the new line 
stability index (NLSI_1). 
 
3.1.  Generation of training data 

The generation of the appropriate training data is of utmost importance in the development and 
deployment of any machine learning solutions. For neural networks to correctly predict the output of  
a system, the training data used should represent a broad spectrum of operating points of the problem being 
considered. In this paper, a considerable number of training data is gotten via off-line power system 
simulation using the following procedure:  
− A range of operating points is produced by varying the reactive power randomly at only the load buses 

only from the base case value until the voltage collapse occurred.  
− For each input-output pattern generated, pre-contingency line flows are obtained by performing  

the Newton Raphson load flow analysis. 
− Finally, for each input-output pattern, the NLSI_1 is evaluated to ascertain if the system is stable or not.  

A total of 3420 input-output patterns were produced for the IEEE 14- bus system after using  
the above procedure; that is 380 samples per load bus, and a total of 29,450 input-output patterns were 
produced for the NNG 28- bus system that is 1550 samples per load bus.  The generated data samples per 
load bus were concatenated in an excel spreadsheet to form the datasets in this study. 
 
3.2.  Selection of input features  

Input feature selection is a vital aspect in the development of an excellent artificial neural network 
model. In this paper, input features were selected based on the required variables needed to compute  
the NLSI_1, as seen in [24]. These variables are reactive power flowing the lines (Q), sending end voltage 
(VS), impedance (Z), line reactance (X), transmission line angle (θ), delta (δ), and switching function (σ). 
 
3.3.  Data normalization  

This research work utilizes the min-max data normalization to improve training time, minimize  
the size of the input space, increase the robustness of the implemented neural networks, and reduce  
the chances of ending up in local optima [25]. The input data is normalized between zero and one using  
the expression given in (2). 
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3.4.  Multi-layer perceptron neural network (MLPNN) 
MLPNNs are a kind of feed-forward artificial neural networks, which consists of at least three 

layers: an input layer, one or more hidden layer (s), and an output layer, as shown in Figure 2. In multilayer 
perceptron neural networks, the neurons in the input layer are interconnected and excited with the input data 
with multiple weights and biases connected to each neuron. The weighted sum of the inputs is then passed to 
the hidden layer, where they are transformed through the use of activation functions. Then finally, the output 
layer presents the output of the neural network by changing the hidden layer activations into whatever scale 
the output required to be. 
 
 

 
 

Figure 2. Basic layers of an MLPNN 
 
 

4. RESULTS AND DISCUSSION 
This section presents the results obtained from the simulations carried out on the IEEE 14-bus 

system and the Nigerian 28-bus system. For both test systems, base case and contingency analyses were 
conducted, and ANN models were developed in MATLAB's neural network toolbox, to predict voltage 
collapse in the systems. The details of the ANN models developed are also given as follows: 

 
4.1.  Voltage collapse prediction on ieee 14-bus SYSTEM 

Voltage collapse prediction for load buses in the IEEE 14-bus network was carried out using an 
MLPNN. The developed MLPNN has one input layer, two hidden layers, and an output layer. Table 1 shows 
the neural network prediction for base case analysis, and for comparison purpose, the actual index values are 
also given. From the table, it is seen that all the buses and interconnected lines in the IEEE 14-bus system are 
stable; as indicated by an index value being below Table 1. The results also show the negligible error 
between the actual with the predicted index values. 

 
 

Table 1. Comparison of base case actual with the predicted index values 
Base Case 

From To Actual value* Predicted value Errors State 
1 2 0.02795 0.02794 0.00001 Stable 
1 5 0.08971 0.08968 0.00003 Stable 
2 3 0.01043 0.01046 -0.00003 Stable 
2 5 0.01739 0.00954 0.00785 Stable 
5 6 0.02698 0.02696 0.00002 Stable 
6 11 0.10239 0.10242 -0.00002 Stable 
6 12 0.01086 0.01089 -0.00003 Stable 
6 13 0.07729 0.07731 -0.00002 Stable 
7 8 0.16108 0.16113 -0.00005 Stable 
7 9 0.09207 0.09239 -0.00032 Stable 
9 10 0.05712 0.05685 0.00027 Stable 
9 14 0.03618 0.03282 0.00336 Stable 
10 11 0.05623 0.05554 0.00069 Stable 
12 13 0.06882 0.07138 -0.00256 Stable 
13 14 0.07662 0.07684 -0.00022 Stable 

 

*Adopted from (Samuel et al., 2017) 
 
 

Table 2 presents the actual and predicted index values at maximum reactive power loading for each 
of the load buses, along with the ranking of the contingencies and the states of the lines based on  
the predicted index value from most critical to least critical. From the table, the error which exists between 
the actual and predicted index values is minimal, which validates the proposed approach. The results 
obtained from the developed MLPNN confirm those obtained by [1, 20].   
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Table 2. Comparison of actual with the predicted index values at maximum load-ability 
 From To Actual value* Predicted value Rank** State** MVar Loading* 

Bus 4 3 4 0.94735 0.94732 1 Critical Q = 361 
 2 4 0.93149 0.93145 2 Critical 
 4 7 0.47529 0.47539 3 Stable 
 4 5 0.44546 0.44548 4 Stable 
 4 9 0.38755 0.38747 5 Stable 

Bus 5 1 5 1.09164 1.09191 1 Collapsed Q = 352.5 
 5 6 0.88055 0.88050 2 Critical 
 2 5 0.86373 0.86373 3 Critical 
 4 5 0.37737 0.37739 4 Stable 

Bus 7 7 8 0.99384 0.99388 1 Critical Q = 165.5 
 4 7 0.71677 0.71524 2 Stressed 
 7 9 0.19249 0.19081 3 Stable 

Bus 9 4 9 1.00066 0.99857 1 Critical Q = 152.5 
 7 9 0.61344 0.61192 2 Stressed 
 9 10 0.21509 0.21684 3 Stable 
 9 14 0.47644 0.47697 4 Stable 

Bus 10 10 11 0.95644 0.95850 1 Critical Q = 121.8 
 9 10 0.60377 0.56934 2 Stressed 

Bus 11 6 11 0.92694 0.92704 1 Critical Q = 103.8 
 10 11 0.44815 0.45306 2 Stable 

Bus 12 12 13 1.06607 1.06607 1 Collapsed Q = 78.9 
 6 12 0.76222 0.76221 2 Critical 

Bus 13 6 13 0.92585 0.92583 1 Critical Q = 151.8 
 12 13 0.63395 0.63413 2 Critical 
 13 14 0.54453 0.54287 3 Critical 

Bus 14 13 14 0.92338 0.92339 1 Critical Q = 74.6 
 9 14 0.86232 0.86233 2 Critical 

*Adopted from (Samuel et al., 2017) 
**Based on the predicted value 

 
 

Table 3 shows the ranking of buses in the IEEE-14 bus system in ascending order from weakest to 
strongest. From the table, bus 14 was identified as the weakest bus in the system with a reactive power 
margin of 74.5 MVar and a percentage change of 38.30% in the voltage magnitude. This choice was 
informed by the criterion listed in [26]. The results obtained by the developed neural network are in 
agreement with those obtained by the authors in [1, 13, 15, 18, 19, 27]. 
 
 

Table 3. Bus ranking in the IEEE 14-bus system 
Load Bus No From To Qmax Predicted value Ranking 

14 13 14 74.6 0.92339 1 
12 12 13 78.9 1.06607 2 
11 6 11 103.8 0.92704 3 
10 10 11 121.8 0.95850 4 
13 6 13 151.8 0.92583 5 
9 4 9 152.5 0.99857 6 
7 7 8 165.5 0.99388 7 
5 1 5 352.5 1.09191 8 
4 3 4 361 0.94732 9 

 
 

It was also observed that buses with many interconnected lines tend to have higher reactive power 
margins and this is because, with more lines, any increase in reactive power can be apportioned amongst  
the lines [1, 19, 20]. With the developed neural network model, being proposed in this paper, an R-value of 
0.99745 and an MSE value of 2.182415 × 10−5 were obtained after cross-validation was carried out to solve 
the inherent stability problem faced by ANN. When compared with the results obtained in [19], the proposed 
approach was found to be superior in terms of better accuracy and generalization of the developed model. 
 
4.2.  Voltage collapse prediction on NNG 28-bus system 

Voltage collapse prediction for load buses in the NNG 330kV 28-bus network was carried out using 
an MLPNN. The developed MLPNN has one input layer, three hidden layers, and the output layer. Table 4 
presents the predicted index values using the developed MLPNN model for base case analysis, and the actual 
index values are also shown for comparison. It is observed from Table 4, that all the buses and interconnected 
lines in the network are stable, as indicated by the index values that are below. 
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Table 4. Comparison of base case actual with the predicted index values 
Base Case 

From To Actual value* Predicted value Errors State 
3 1 0.03412 0.03229 0.00184 Stable 
4 5 0.05608 0.05513 0.00095 Stable 
1 5 0.21602 0.21584 0.00018 Stable 
5 8 0.34797 0.34781 0.00017 Stable 
5 9 0.13737 0.13729 0.00008 Stable 
5 10 0.08155 0.08065 0.00090 Stable 
6 8 0.02291 0.02296 -0.00004 Stable 
2 8 0.12603 0.12662 -0.00059 Stable 
2 7 0.01220 0.01242 -0.00022 Stable 
7 24 0.01557 0.01556 0.00001 Stable 
8 14 0.18769 0.18849 -0.00080 Stable 
8 10 0.16847 0.16863 -0.00016 Stable 
8 24 0.15687 0.15646 0.00040 Stable 
9 10 0.13871 0.13873 -0.00001 Stable 
15 21 0.30913 0.30834 0.00079 Stable 
10 17 0.06247 0.06190 0.00058 Stable 
11 12 0.14814 0.14817 -0.00004 Stable 
12 14 0.15478 0.15416 0.00062 Stable 
13 14 0.18048 0.18053 -0.00005 Stable 
16 19 0.26757 0.26724 0.00033 Stable 
17 18 0.01085 0.01099 -0.00014 Stable 
17 23 0.18890 0.18904 -0.00014 Stable 
17 21 0.05237 0.05141 0.00095 Stable 
19 20 0.12447 0.12453 -0.00006 Stable 
20 22 0.41818 0.41809 0.00009 Stable 
20 23 0.30394 0.30364 0.00030 Stable 
23 26 0.14388 0.14310 0.00077 Stable 
12 25 0.25509 0.25507 0.00002 Stable 
19 25 0.03086 0.03103 -0.00017 Stable 
25 27 0.21627 0.21670 -0.00043 Stable 
5 28 0.20626 0.20632 -0.00006 Stable 

*Adopted from (Samuel et al., 2019) 
 
 

Table 5 (see in appendix) presents the actual with the predicted index values at maximum reactive 
power loading for each of the load buses. The results obtained indicate the ability of the proposed approach 
to predict voltage collapse in more complex test networks. These results are validated by those obtained  
in [1, 28]. Table 6 shows the ranking of buses in the NNG-28 bus system in ascending order from weakest to 
strongest. From the table, bus 16 was identified as the weakest bus in the system with a reactive power 
margin of 139.5 MVar and a percentage change of 32.06% in the voltage magnitude as it satisfies  
the criterion listed in [26]. The results obtained by the proposed approach agrees with those obtained  
in [1, 28]. An R-value of 0.9989 and an MSE value of 1.2527× 10−7 were obtained using the developed 
neural network model after cross-validation was done. 

 
 

Table 6. Bus ranking in the NNG 28- bus system 
Load Bus No From To Qmax Predicted value Ranking 

16 16 19 139.5 1.05762 1 
15 15 21 199.9 0.98822 2 
22 20 22 202.6 0.98580 3 
19 16 19 232.5 1.0001 4 
6 6 8 273.8 0.98247 5 
13 13 14 384.5 0.98340 6 
20 20 23 418.9 0.84600 7 
25 12 25 462.7 0.92991 8 
26 23 26 632 1.00207 9 
14 8 14 656.3 0.98340 10 
9 9 10 778.8 1.23798 11 
10 10 17 832.5 0.89647 12 
4 4 5 1881.9 1.01000 13 
8 8 24 2073.9 0.98060 14 
5 5 28 2438.9 1.00119 15 
7 24 7 2565.9 0.941532 16 
12 11 12 2572.5 0.887145 17 
3 3 1 3948.5 0.99890 18 
17 17 23 5639.2 0.98192 19 
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5. CONCLUSION 
This paper presented an ANN-based online voltage collapse prediction using the New Line Stability 

Index (NLSI_1). Simulations were carried out on the IEEE 14-bus system, and the Nigerian 330 kV,  
the 28-bus system and the results indicate that the proposed multilayer perceptron neural network-based 
approach could accurately predict the pre and post-contingency NLSI_1 index values under various reactive 
power loading. The results also suggest that there is an agreement between the actual and predicted index 
values obtained by conventional AC load flow and the proposed ANN approach. These results are further 
validated by those found in previous research work. 
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APPENDIX 
 
 

Table 5. Comparison of actual with the predicted index values at maximum load- ability 
 From To Actual value* Predicted value Rank** State** MVar Loading* 

Bus 3 3 1 0.99930 0.99890  Critical Q = 3948.5 
Bus 4 4 5 1.02492 1.01000  Collapsed Q = 1881.9 
Bus 5 5 28 1.00208 1.00119 1 Collapsed Q = 2438.9 

 1 5 1.00721 0.91085 3 Collapsed 
 5 8 1.33425 1.30569 2 Collapsed 
 5 10 0.53316 0.50089 4 Stable 
 4 5 0.08959 0.080949 5 Stable 
 5 9 0.00429 0.00402 6 Stable 

Bus 6 6 8 0.99675 0.98247  Critical Q = 273.8 
Bus 7 7 24 0.95708 0.941532 1 Critical Q = 2565.9 

 2 7 0.77561 0.716675 2 Critical 
Bus 8 8 24 0.9992 0.98060 1 Critical Q = 2073.9 

 2 8 0.91323 0.91637 2 Critical 
 8 10 0.68406 0.60421 4 Stressed 
 5 8 0.59238 0.59726 3 Stable 
 8 14 0.12945 0.09992 5 Stable 
 6 8 0.03723 0.02165 6 Stable 

Bus 9 9 10 1.05784 1.23798  Collapsed Q = 778.8 
Bus 10 10 17 0.90965 0.89647 1 Critical Q = 832.5 

 8 10 0.83207 0.63451 2 Critical 
 5 10 0.55624 0.50434 3 Stable 
 9 10 0.14537 0.11735 4 Stable 

Bus 12 11 12 0.98217 0.887145 1 Critical Q = 2572.5 
 12 14 0.30060 0.208119 2 Stable 
 12 25 0.06609 0.193331 3 Stable 

Bus 13 13 14 0.99494 0.98340  Critical Q = 384.5 
Bus 14 8 14 0.97247 0.98987 1 Critical Q = 656.3 

 12 14 0.99723 0.94087 2 Critical  
 13 14 0.33927 0.361638 3 Stable  

Bus 15 15 21 0.97797 0.98822  Critical Q = 199.9 
Bus 16 16 19 1.01439 1.05762  Collapsed Q = 139.5 
Bus 17 17 23 0.99890 0.98192 1 Critical Q = 5639.2 

 17 21 0.63433 0.53793 2 Stable 
 17 18 0.49867 0.40495 3 Stable 
 10 17 0.30917 0.34590 4 Stable 

Bus 19 19 16 0.99999 1.0001 1 Critical Q = 656.3 
 19 20 0.80442 0.79987 2 Critical 
 19 25 0.46203 0.44689 3 Stable 

Bus 20 20 23 0.86652 0.84600 1 Critical Q = 418.9 
 20 22 0.81585 0.80604 2 Critical 
 19 20 0.00265 0.00194 3 Stable 

Bus 22 20 22 0.99681 0.98580  Critical Q = 202.6 
Bus 25 12 25 0.92971 0.92991 1 Critical Q =462.7 

 25 27 0.26292 0.549578 2 Stable 
 19 25 0.69787 0.13227 3 Stable 

Bus 26 23 26 1.00227 1.00207  Collapsed Q = 632 
*Adopted from (Samuel et al., 2019) 
**Based on the predicted value 
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