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 Forest fires have become a great risk for countries. To minimize their impact 

and prevent this phenomenon, scientific methods have emerged. Notably 

machine learning algorithms and decision-making Geographical Information 

Systems. Therefore, a competitive spatial prediction model for early fire 

forest detection system using geodata can be proposed. This model can help 

researchers to predict forest fires and identify risk zonas. System using 

machine learning algorithm on geodata will be able to notify in real time  

the interested parts and authorities by providing alerts and presenting on 

maps based on geographical treatments for more efficacity and analyzing of 

the situation. This research extends the application of machine learning 

algorithms for early fire forest prediction to detection and representation in 

geographical information system (GIS) maps. 
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1. INTRODUCTION  

Forest fires have become a crisis factor in the world. To measure the impact of forest fires, countries 

touch the economic, human, environmental, social side factors. Several causes are at the root of this problem 

like ignorance of people who have contact with forests, global warming and natural factors. In particular, 

Portugal is an affected country by this kind of disaster [1]. Between 1980 and 2005, almost 2.7 million 

hectares of forest were destroyed. In particular, the fires of 2003 and 2005 which affected 4.6% and 3.1% of 

the territory and which were tragic [2]. Predicting this phenomenon is the solution to minimize the damage. 

As a result, human intervention alone is insufficient. Therefore, it is necessary to rely on technological  

tools [3]: satellites, topography drones and sensors. Each country chooses the appropriate method according 

to these means. Other means can also be used to measure non-stationary factors such as meteorology [4]. 

Portugal has 162 stations providing data to be analyzed in real time [5].  

Forest weather structures provide numerical indices for preventing and warning probability of fire 

such as the Canadian Fire Weather Index (FWI) [6]. It is a system for indexes calculations based on: 

temperature, relative humidity, rain, etc.). This system is not only used in Canada but it has also been used in 

some European countries including Portugal [7]. recently these indices have become part of meteorological 

databases. They are subject study for different contexts, the main one being the extraction of knowledge from 

data based on the notions of datamining [8]. Certainly, these databases are very important but faced with their 

volumes are little exploited. Therefore, decision makers must not be satisfied with simple statistical analyses. 

For analysing and understanding of this phenomenon. Emerging machine learning methods will replace 
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conventional methods. Machine learning algorithms are used for training and learning algorithms for 

prediction of fires forests [9].  

Using machine learning algorithms, a predictive model based on geographical and meteorological 

explicative variables can predict fire propagation area from a localized fire one. Several machine learning 

algorithms are used in our approach and compared following a regression of data collected from control 

zonas. Over the past years, several studies have been conducted on fire detection. An adaptive flame 

recognition and segmentation algorithm was used to detect fire detection in large buildings [10]. An image 

processing method was tested to detect smoke in videos [11]. The field of optical remote sensing has seen 

much progress. Object detection from images has become more accessible [12]. In this work we are using 

different machine learning algorithms for forest fire prediction. The first one is the Support Vector Machine 

which is a supervised classification model. The regression method is considered to be more efficient and 

more suitable for forest fires given the division into clusters of all the areas likely to be affected [13].  

We also make comparison with decision trees and neuronal networks which are widely used in our 

context and that several recent studies have shown their performance compared to other methods [14]. 

Hybrid Methods are suitable for forest fires because they use simultaneously the concepts of classification 

and regression: naive Bayes and decision trees which increases the precision of this method. A mobile agent 

in a wireless sensor network could be used to predict forest fires during their surveillance [15].  

Finally, we also discuss event detection which requires a different method of clustering and Support Vector 

Machine (SVM) relating to the propagation of forest fires following a fire started [16]. Recently several 

hectares of forest are threatened by forest fires. This is due to several factors. We especially focus on  

the neglect of forest users, pollution, global warming and other environmental factors [17-19]. Modelling this 

type of phenomenon is not always an easy thing. The causes constitute non-linear vectors for  

the transformation into a model given the particularities and the diversity of these factors [20].  

Several disciplines can come into play for the treatment of this kind of problems. As a result of  

the intersection of computer science; geography, geology, physics and statistics; is a means for optimizing 

the results obtained [21-25]. In particular, for forest fires and given their complex and spatiotemporal nature; 

machine learning algorithms prove to be the most judicious means [26]. The literature contains cases using 

artificial neural networks [21, 27, 28] random forests (RF) [29-31] others use support vector machine 

(SVM) [32], the perceptron multilayer neural network (MLP) [28, 33] logistic regression of the nucleus 

(KLR) [34, 35] Naive Bayes [36, 37]. A study panorama was also studied to show the potential of each of  

the methods [20, 31, 38-40]. Therefore, it is clear that the methods mentioned above are the most suitable for 

solving the problems of forest fires, forest fires in particular given the possibility of analysing the pixels of 

the images [41].  

In addition, without any extraction of the entities, the classifiers directly use the input data which 

acts directly and positively on the accuracy of the classification. For much more complex problems,  

system performance can be improved by using learning-to-learn (DL) for the impressive results that can be 

obtained [42, 43]. This deep learning goes further than the use of imagery to also reach the recognition of 

objects, sounds which will clearly help in optimizing the prediction presented for our problem of forest fires 

[43]. The convolutional neural network (CNN) is one of the most formidable deep learning algorithms for 

forest fires [44, 45] characterized by a better classification of remote sensed images [41, 46] as well as 

cartography sensitivity to terrestrial translations [47]. Unfortunately, none of these studies has evaluated 

CNN's performance in predicting forest fires. The first law of geography [48] focuses on the pixels,  

on the other hand for forest fires each pixel of fires is a spark, in a span of time the pixel can generate 

adjacent pixels [41]. The performance of the proposed model tested using Mathworks and ToolsBox,  

which is an environment for the construction and evaluation of machine learning algorithms. 

 

 

2. METHOD  

This study used the combination of GIS and algorithms of machine learning to detect or predict  

a spatiotemporal dynamics of fire Forest Area vulnerability in the northeastern region of Portugal. Northern 

Portugal is the most populous region in Portugal, ahead of Lisboan, and the third most extensive by area.  

A cartographic representation by fuzzy surfaces for a forest region was developed and evaluated by 

comparing the ground truth for two forest parameters: the basal surface and population. The representation 

based on Voronoi algorithm and blurred surfaces witches makes better estimation of these variables than  

a conventional thematic map as shown in Figure 1. Since the representation based on blurred surfaces offers 

the possibility of highlighting local variations and of representing the borders between forest types such as 

transition zones, it seems that it constitutes a representation of the real world which is more realistic and 

more useful than conventional thematic maps. As a result, system users will be able to analyze data that is 

closer to actual field conditions. 

https://en.wikipedia.org/wiki/Portugal


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Comparative study on machine learning algorithms for early fire forest detection ... (Zouiten Mohammed) 

5509 

 
 

Figure 1. Voronoi algorithm on population and forest data 

 

 

Classifications are one of the major problems that many researchers face when working on common 

business problems in all sectors. In this article, we will compare three major techniques among many, 

Random Forest, SVM and KNN. 

- Random Forest is a collection of decision trees applied to avoid the instability and risk of overtraining 

that can occur with a single tree. It consists in suppressing the decision nodes without reducing 

the overall precision of the tree [49]. Characterized by an adjustment of only two parameters which are 

the number of trees and the set of attributes to be chosen during the construction of each node, which 

simplifies  

the generation of decision forests [50] 

- Support vector machines are a classification method that transforms a linear problem into a higher 

dimensional space entity. They manage non-linear decision limits and the application of limit cases 

allows them to manage missing data [51]. 

For a binary classification on the data, a classification hyperplane is used for sampling: 

(𝑋1, 𝑌1), (𝑋2, 𝑌2), (𝑋3, 𝑌3), … . , (𝑋𝑚, 𝑌𝑚), where𝑋𝑖 ∈  𝑅𝑛,𝑌𝑖 ∈ {−1, +1}, and the vector 𝑋1is the vector directly 

created by some features of the sample [35]. The key of the SVM algorithm is to find a function F. So that X, 

apart from the sample, can obtain the corresponding Y by F after the training of the sample, it is then possible 

to find a hyperplane indicated by F after the training; it can divide the learning samples into positive and 

negative categories and then separate the other X from the sample. If the data is not linearly separable,  

the algorithm acts by mapping the data to a higher-dimensional feature space adopting a non-linear kernel 

function Φ (X), and then an optimized hyperplane is produced in the same space. The algorithm can be 

written as below. 

 

𝑚𝑖𝑛
𝑤,𝑏,𝝃

1

2
𝑤𝑇 + 𝑤 + 𝐶 ∑ 𝝃𝑖

𝑝
𝑖=1  (1) 

 

Subject to 𝑌𝑖(𝑤𝑇  ∅(𝑋𝑖) + 𝑏) ≥ 1 − 𝝃𝒊, 𝝃𝒊  ≥ 0, 𝑖 = 1, … , 𝑚 
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In this algorithm, 𝑤𝑇  ∅(𝑋𝑖) + 𝑏 = 0 defines the separating hyperlane, w is normal vector of hyperplane, 

b is offset of hyperplane. The C > 0 is the penalty parameter of the error term and w are the weight 

coefficients of the hyperplane. 

The K-NN algorithm can be used to find the k training samples closest to the target object being 

taught. It finds dominance from the k learning samples; then assign these dominant classes to the target 

object, where k is the number of training samples. The basic element of K-NN is that all samples have  

the same properties when they are classified in the same class in functional space, this class comprising the k 

closest samples [52]. In which Xu belongs to the category of (1). The machine learning methods defined 

above are applied according to the model below in Figure 2. The models are developed and tested by using 

Mathworks ToolsBox, which is an environment for building and evaluating machine-learning algorithms. 

 

 

 
 

Figure 2. Schematic illustration of predictive machine learning models 

 

 

3. RESEARCH METHOD 

The FWI system is our resource data of the areas burned during the fires between 2000 and 2003 in 

Portugal. They contain a clear description of the climatic conditions. These data are difficult to collect from 

local sensors available in Portugal given the number of stations. They also contain additional time values 

such as days, months, and coordinates of burned areas. The calculated values of the indices by the FWI 

system are a direct indicator of the intensity of the fire. By examining the data, we can say that when  

the wind blows around 15 km / hour, the risk of fire is high, for example. 

Our method is mainly based on division of data into several equal size classes. Each data item is 

treated separately. Therefore, we can use the nearest neighbor method or the average of the values in order to 

stop the task. Consider the output variable is the area. We find that it has a positive bias. The majority of area 

valuesis null. The positive tilt illustrates the majority of forest fires. The asymmetric character system is also 

available in other countries [53]. The constraint is to increase precision and decrease asymmetry. We add  

a class column as response variable, which contains two values 0 for areas of fire less than 50 ha and 1 for 

areas greater than 50 ha. In order to find the meaningful attribute, the correlation matrix is used. We note that 

the attributes DC and area have a more positive correlation with the response variable and Le RH has a more 

negative correlation with the output variable. 

 

 

4. RESULTS AND DISCUSSION 

In this step, we must choose the best predictive model to use. The basic comparison parameter is 

accuracy. The results of the different models as follows: 

In order to better situate the predictive machine learning models, we start by the confusion matrix 

which help us calculate the accuracy of the model. The formula to calculate is given below. = (True positive 

+True Negative)/(True positive +True Negative + False positive + False Negative). Confusion Matrix is  

a table shows actual vs predicted values. It is one of the easiest ways to find accuracy and also it helps to 

avoid over fitting. The Figure 3 presents the confusion matrix values for each ML model. 

RF model produces 100 % of positive predictive value where the rate of both small (Class=0) and 

larger (Class=1) fire prediction is 100 % while the false discovery rate – error type – is 0%. For SVM and 

KNN, the rate of error that they produce respectively 35%, 45% for the small fire and 29%, 45% for the large 

fire. In consequence, the performance classification rate of the two models SVM and KNN decrease.  

The prediction accuracy of random forest is interesting. Hence, it reduces the noise in the dataset. 
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(a) 

 

(b) 

 
(c) 

 

Figure 3. Confusion matrix for RF, SVM and KNN, (a) confusion matrix for random forest,  

(b) confusion matrix for SVM method, (c) confusion matrix for KNN method 

 

 

 

Overall accuracy of RF is 100%. This shows that RF has the best prediction results comparing with 

SVM and KNN which they respectively get 67.7% and 54.9% (uci). The receiver operating curve (ROC 

curve) will summarize the performance of the model by assessing the trade-off between sensitivity and 

specificity. We must always think of p> 0.5 when we draw the ROC, because we are concerned about the 

success rate. Area under the curve (AUC) or concordance index, is a metric of the excellent performance of 

the ROC curve. The accuracy results of the three methods are represented as follows: 

In this article, we have simulated three machine learning algorithms using data from the Montesinho 

Park in Portugal. According to Table 1, the classification performance of the three methods is as follows:  

the random forest is at 100% while the SVM provides 74% and K-NN offers 58% which represents a limit in 

terms of classification. 
 

 

Table 1. Accuracy for RF, SVM and KNN method 
Method RF SVM KNN 

Accuracy 1 0.74 0.5 
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5. CONCLUSION 

The field of data science is booming. This pushes researchers to develop increasingly complex 

problem-solving methods. Our approach based mainly on extracting data from existing databases used three 

different machine learning algorithms. Between the K-NN Support Vector Machine and RF algorithm we 

have shown that the K-NN has the best accuracy. This algorithm has a set of data detection and recognition 

assets which makes spatial manipulation much easier for the detection of at-risk or burnt areas. The choice of 

the algorithm of the highest precision is justified by the simulation of the different algorithms and  

the comparison of the experimental results obtained. In addition, the system, using data collecting sensors, 

generates large data which is analyzed by various machine learning methods cited and compared in this study 

to predict with high accuracy the amount of land burned in a forest. In the northeast region of Portugal.  

The use of technology is then the strength of this prediction system. Geographic information systems and 

machine learning can help decision makers to minimize the natural and human damage caused by forest fires. 

The use of these methods is increasingly optimizing the treatment of this phenomenon and those of its kind. 

The players in the sectors in question are then invited to join hands in fighting against late interventions. 
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