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 Pulse compression algorithm is widely used in radar applications. It requires 

a huge processing power in order to be executed in real time. Therefore,  

its processing must be distributed along multiple processing units.  

The present paper proposes a real time platform based on the multi-core 

digital signal processor (DSP) C6678 from Texas Instruments (TI).  

The objective of this paper is the optimization of the parallel implementation 

of pulse compression algorithm over the eight cores of the C6678 DSP.  

Two parallelization approaches were implemented. The first approach is 

based on the open multi processing (OpenMP) programming interface, which 

is a software interface that helps to execute different sections of a program on 

a multi core processor. The second approach is an optimized method that we 

have proposed in order to distribute the processing and to synchronize  

the eight cores of the C6678 DSP. The proposed method gives the best 

performance. Indeed, a parallel efficiency of 94% was obtained when  

the eight cores were activated. 
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1. INTRODUCTION  

Pulse compression algorithm is widely used in radar applications, such as pulse Doppler radar [1], 

ground-moving target indicator (GMTI) [2], and synthetic aperture radar (SAR) [3]. It is carried out on  

the acquired signal in order to extract distance of target from radar with high precision. Its major constraints 

is that it requires a high-computing power. Consequently, one processing element cannot holds its processing 

in real-time. Therefore, one solution is using multiple computing cores working together; each one of them 

execute a small portion of processing. 

This paper presents the C6678 DSP from TI as a processing platform. It provides a high 

performance floating-point calculation with a low power consumption. In fact, it contains eight independent 

C66x cores, each core run to a frequency of 1GHz. Moreover, it provides a maximum performance of  

128 GFLOPS for a single precision floating point calculation [4]. In addition, several research communities 

have developed high-performance computing systems using the C6678 DSP [3, 5-9]. 

Embedded systems based on DSP has proved its efficiency to execute a large number of signal 

processing algorithm in real time. It has been used by a large scientific community to build real time 

embedded systems. Abdelkareem et al. [10] have developed high performance software that requires  

real-time embedded systems for emerging technology areas like 5G Wireless and software defined 
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networking (SDN). Arsalane et al., [11-15] have developed an embedded system based on the C6678 DSP 

for beef meet freshness evaluation. 

In our previous works [1], we presented a real time parallel implementation of pulse Doppler radar 

signal processing chain, including beam forming, pulse compression and Doppler, on a parallel machine with 

2 C6678 DSPs boards (a total of 16 processing cores). A straightforward model has been used and optimized 

as a processing parallelization strategy. All communications, including data exchange and synchronization, 

between processing DSP cores goes through the inter-processor communication bus Serial RapidIO (SRIO), 

which we have optimized its use [16, 17]. The major obtained result is a parallel efficiency of about 90%. 

Huang et al., [18] have proposed a parallel implementation of beam forming algorithm on TI-based 

Tomahawk platform containing six DSP cores. The algorithm is widely used in radar applications. In fact 

Huang et al., [18] have used the OpenMP interface [19] to distribute the processing over the six DSP cores. 

Results show a maximum speedup about 3.7. Mego et al., [20] have evaluated the performance of 

parallelization of basics signal processing algorithms, such as finite impulse response (FIR) filter, discrete 

fourier transform (DFT) and fast fourier transform (FFT), on the C6678 DSP. In their study, authors have 

used the OpenMP interface to distribute the processing over the eight DSP cores. Obtained results show that 

the relative speedup is highly dependent on the algorithm and the amount of processed data. Results show  

a maximum speedup of about 6. Yu et al., [21] have implemented the pulse Doppler radar signal processing 

chain on computing platform based on the C6678 DSP. The studied algorithm include three steps: beam 

forming, pulse compression and Doppler filtering. They have used OpenMP framework for parallel 

implementation. Obtained results show that multi-threaded execution is less than single-threaded. According 

to authors, this difference was explained by the highly non-linear memory accesses required by the FFT and 

the inverse fast fourier transform (IFFT). Wang et al. [3] have implemented and optimized SAR algorithms 

on the eight core of the C6678 DSP. The studied algorithm include two steps of pulse compression method 

(range compression and azimuth compression), range cell migration correction (RCMC) and corner turn.  

The OpenMP framework was used to instantiate individual threads across the eight cores. Obtained results 

show that the timing required for range compression and azimuth compression scales very well with  

the increase of the number of operational cores. However, the other RCMC and corer turn steps saturates at 

around four cores. For the total execution time, the acceleration factor with eight cores relative to a single 

core is equal to 5.6.  

From all presented researches works, OpenMP has been successfully tested to distribute many 

signal-processing algorithms over multi-core DSP platforms. However, the obtained parallel efficiency does 

not exceed 70% in the best cases. In this paper, an optimized method is proposed as an alternative to 

OpenMP method in order to improve the performances.  

The major contribution of this paper is the distribution of the pulse compression algorithm over  

the eight processing core of the C6678 DSP. We have implemented two parallelization approaches. The first 

one, is based one the OpenMP, which is  a shared-memory application programming interface (API) whose 

features, are based on prior efforts to facilitate shared-memory parallel programming. As the C6678 DSP 

integrates two levels of memory shared between the eight cores, which are the internal multi-core shared 

memory (MSM) and the external DDR memory, the OpenMP is fully adapted. The second approach is an  

optimized method that we have proposed to distribute the processing of the pulse compression algorithm on 

the eight cores. The performance of the two parallelization methods are compared to each other based on 

speedup and parallel efficiency indicators. 

This paper is organized as follows. Section 2 presents an overview of pulse compression method, 

experimental platform, and metrics used for evaluating parallel processing performance. Moreover,  

it presents the proposed mehod to distribute pulse compression algorithm on multiples cores. Section 3 

provides the experimental results of parallel implementation of pulse compression using the OpenMP API 

and the proposed approach. Finally, a conclusion is provided in section 4. 

 

 

2. RESEARCH METHOD  

2.1.  Pulse compression algorithm 

A convolution operation between the transmitted and the received pulse is performed in order to 

detect radar targets [22]. In fact, two closely targets are fully merged in case where the wave sent by the radar 

is a sinusoidal signal as shown in Figure 1. To improve detection accuracy of closely targets, the transmitted 

wave undergoes a linear frequency modulation operation shown in Figure 2(b). The obtained signal is called 

‘Chirp’ shown in Figure 2(a). 

To optimize the processing of the pulse compression, the convolution operation is realized in  

the frequency space. It is carried out by performing the product of the FFT [23, 24] of the input signal and  

the pulse compression coeficients followed by the IFFT in order to return to the time domain as shown in 
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Figure 3. Its computing complexity depends on FFT, inverse IFFT, and point-wise vector multiplication.  

The complexity of computing radix-2 FFT is equal to 5𝑁𝑙𝑜𝑔2(𝑁) floating-point operations; N is the FFT 

size and must be a power of two. The complexity of computing the IFFT is the same as for the FFT.  

For the point-wise vector multiplication, 6𝑁 floating-point operations are needed. Therefore, the throughput 

of the pulse compression in the frequency domain is equal to (10𝑁𝑙𝑜𝑔2(𝑁) + 6𝑁)/𝑇 FLOPS, in which N is  

the number of range gates and T is the execution time in second.    

 

 

 
 

Figure 1. Detection of two closely targets using sinusoidal signal wave [1] 

 

 

 
(a) 

 
(b) 

 

Figure 2. (a) Chirp signal, (b) detection of two closely targets using the pulse compression [1] 

 

 

 
 

Figure 3. Cross-correlation between time and frequency [1] 
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2.2.  C6678 DSP overview   

The experimental platform consists of one development board EVM6678 as shown in Figure 4,  

which integrates one C6678 DSP and 512MB of DDR3 memory [25, 26]. The multi-core C6678 DSP 

provided by TI is a high-performance computing and low power system. It contains eight independent DSP 

cores, each core run at a frequency of 1GHz and has a peak performance of 16 GFLOPS for single precision 

floating point calculation. The C66x DSP core is based on a very long instruction word (VLIW) architecture. 

The instruction set also includes single input multiple data (SIMD) operating up to 128-bit vectors [4].  

The DSP C6678 integrates three levels of memory. Each core has a 32-KB of level 1 for program 

(L1P) and 32-KB of level 1 for data (L1D). The level 1 is the nearest, and it is usually used as cache memory. 

In addition, each core has a local level 2 memory; it is slower than level 1, and its size is 512 KB. The level 3 

or MSM is shared and is concurrently accessed by eight cores; its size is 4 MB. Furthermore, the eight DSP 

cores also access simultaneously to the external DDR memory. 

For code development, the integrated development environment (IDE) code composer studio (CCS) 

has been used with C6000 compiler version v8.3.5. All optimization options provided by the compiler  

have been activated. The compiler also supports OpenMP 3.0, which allows rapid porting of existing  

multi-threaded codes to the multicore DSP. TI’s C66x compiler translates the OpenMP into multi-threaded 

code with calls to a custom runtime library. The OpenMP framework was employed to instantiate individual 

threads across multiple cores. Pulse compression coefficients and input/output data have been allocated in 

MSM memory in order to be sahred between all cores, while L1 memory has been fully activated as cache.  

 

 

 
 

Figure 4. EVM6678 development board 

 

 

2.3.  Metrics for evaluating parallel processing performance  

There are two metrics to evaluate performance of parallel processing: speedup (1) and parallel 

efficiency (2) [19]. An ideal parallel implementation leads to a speedup equal to the number of cores and to  

a parallel efficiency of 100%.    

 

speedup =  
Execution time of an application on 1 processor

Execution time on P processors
 (1) 

 

parallel efficiency =  
Speedup 

Number of cores
∗ 100 (2) 

 

2.4.  Proposed approach 

The proposed approach aims to distribute the processing over the eight cores of the C6678 DSP.  

This approach is based on using MSM memory shared between all cores. We have placed pulse compression 

coefficients, input and output data in MSM memory in such a way that they are accessible to all cores at  

the same time. We have reserved seven memory boxes for synchronization; one box is dedicated for each 

core. Indeed, during the initialization phase, the master core (core 0) resets all these memory boxes and once 

arriving at the start of the parallel region, the master core set all boxes to one and begins processing its 

portion of data. Once the memory box of each core is set to one, the core starts processing its data portion. 

When ending its processing, the master core examines the states of the seven boxes and it would wait until it 

returns to state zero. This means that the other cores have also finished the processing. A diagram that 

illustrate the proposed method is presented in Figure 5.  
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Figure 5. The proposed method 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Parallel implementation based on OpenMP 

As described in section 2.1, pulse compression algorithm consists of three operations, FFT on input 

data, point-wise vector multiplication with pulse compression coefficients, and finally the IFFT to generate 

the output data. These three operations must be applied on all beams and pulses in case of pulse Doppler and 

GMTI applications, and on all pulses in case of SAR applications. In this work a use case of 256 iterations 

was chosen. Therefore, the software of the pulse compression consists of an external loop For, which repeats 

the three operations on all input data. OpenMP provides three scheduling techniques to control the manner in 

which loop iterations are distributed over the multiple cores. Thus, the scheduling method could have a major 

impact on performances. These methods are: static, guided and dynamic [19]. Experimental results are 

presented in Figure 6.  

 

 

 
 

Figure 6. Parallel implementation results using OpenMP  

 

 

From these results, it can be concluded that the three scheduling techniques give good performances. 

The speedup scales very well with the increase of the number of operational cores. When the eight cores are 

activated, the maximum speedup is equal to 5.6 with a corresponding parallel efficiency of 70%. This result 

can be explained by the overhead added by OpenMP framework to distribute data over the cores and to 
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synchronize the start and the end of a parallel region. Wang et al., [3] have obtained exactly the same result, 

however, Yu et al., [21] have obtained less value of the speedup that is equal in the best case to 1. 

 

3.2.  Parallel implementation using the proposed method 

The proposed method presented in section 2.4 has been used to distribute the processing of pulse 

compression algorithm on multiple cores of the C6678 DSP. Experimental results are presented in Figure 7. 

Obtained results show that the speedup scales very well with the increase of the number of operational cores, 

with a small performance degradation in case where six and seven cores where activated. This depends on  

the number of iterations, which it is not a multiple of six and seven in our use case. A good choice of 

iterations number will lead to a best performance. When the eight cores are activated, the speedup achieves 

7.5 with a corresponding parallel efficiency of 94%. Compared to Wang et al., [3] and to our previous 

research work [1], the proposed method gives the best performance.  

Figure 8 presents a comparison between obtained results using the OpenMP framework and  

the proposed method. Thus, the proposed method leads to a gain of one core when the number of activated 

cores is equal to five and seven and a gain of two cores when the eight cores are activated. Therefore,  

our proposed method could be used as an alternative to OpenMP framework to distribute signal-processing 

algorithms over multi-core DSP. Radar applications are a good example.      

 

 

 
 

Figure 7. Parallel implementation results using the proposed method 

 

 

 
 

Figure 8. Parallel implementation result comparison 
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4. CONCLUSION  

Pulse compression is the main processing step in several radar applications, such as pulse Doppler 

radar, GMTI and SAR. Its processing is based on cross-correlation. In order to optimize its processing, 

the cross-correlation was performed in frequency domain. We proposed the multi-core C6678 DSP as 

a real-time computing platform, which integrates eight independent cores with a shared memory. The goal of 

this paper was the evaluation of the OpenMP framework and the proposition of an optimized approach to 

distribute the processing over multiples cores. The proposed method consists of using shared memory to store 

synchronization flags, input and output data. Three scheduling techniques of OpenMP framework have been 

tested: static, guided and dynamic. These three techniques give the same performances with a maximum 

parallel efficiency of about 70% when the eight cores were activated. Obtained results using the proposed 

method lead to a speedup of about 7.5 and a parallel efficiency of about 94%, which is better than 70 % 

found in the previous works and obtained using OpenMP framework. 
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