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 The use of renewable non-conventional energy sources, as wind electric 

power energy and photovoltaic solar energy, has introduced uncertainties in 

the performance of bulk power systems.  The power system availability has 

been employed as a useful tool for planning power systems; however, 

traditional methodologies model generation units as a component with two 

states: in service or out of service. Nevertheless, this model is not useful to 

model wind power plants for availability assessment of the power system. 

This paper used a statistical representation to model the uncertainty of power 

injection of wind power plants based on the central moments: mean value, 

variance, skewness and kurtosis. In addition, this paper proposed an 

availability assessment methodology based on application of this statistical 

model, and based on the 2m+1 point estimate method the availability 

assessment is performed. The methodology was tested on the IEEE-RTS 

assuming the connection of two wind power plants and different correlation 

among the behavior of these plants. 
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1. INTRODUCTION 

The use of renewable energy in bulk power systems, such as wind power plants, have been gaining 

strength as it brings advantages over traditional sources. Unlike the latter, renewable energies, are clean 

energy sources which are inexhaustible, abundant and they do not produce greenhouse gases or polluting 

emissions. However, as these sources dependent on the climatic conditions of the region, the power generated 

will have a randomly behavior. Therefore, this behavior introduces uncertainties in the performance of bulk 

power systems [1, 2].  

In addition, the power system availability has been employed as a useful tool for planning power 

systems [3]. However, traditional methodologies model generation units as a component with two states: in 

service or out of service. Nevertheless, this model is not useful to model wind power plants (WPP) for 

availability assessment of the power system [4], because of a WPP is composed of multiple wind turbines 

connected by a medium voltage networks to a common connection point (CCP) to the high voltage 

transmission system [5, 6], and the wind is a random variable that makes the power injection of each turbine 

be a random variable also. As consequence, the total available injection power from a WPP can be 

represented by a multi-state model where for each power injection can be assigned a probability [4, 7]; or by 

the statistical characteristics given by the central moments: mean value, variance, skewness and kurtosis. 

https://creativecommons.org/licenses/by-sa/4.0/
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Other authors propose time-varying models of the behavior of WPP, in order to evaluate reliability 
in operational phase [8]. Thus, [8] proposes an autorregresive moving average model (ARMA), which is not 
useful for planning purposes. Some authors, by means of Monte Carlo simulation, represent the uncertainty 
of a WPP only associated to the wind speed without considering the MV network and assume not correlation 
between several WPPs [9, 10]. Other authors propose WPP probabilistic model for security assessment [11]. 

On the other hand, it is important to have in mind that within the same power system more than one 
WPP can be held which could be correlated within a geographical area as they are influenced by the same 
physical phenomena [12]. Therefore, the availability assessment of a power system most consider correlated 
wind power plants in the analysis.  Furthermore, this assessment is of great importance as it seeks to meet  
the needs of users as the continuous supply of energy in a secure, reliable way and at the lowest possible cost. 
For this reason, a reliability analysis is performed in order to determine how well the expected functions of 
the system are being performed, leading to an improvement in the level of acceptability of the system.  
Some authors model correlation between winds generators by a copula function to specify multi-variate 
cumulative distribution functions to be used in a Monte Carlo simulation [13] for the adequacy assessment at 
generation level.  

For the assessment of availability of bulk systems, a model of two states is used to represent  
the uncertainty of each synchronous generation unit, taking the states of in-service or out-of-service [3, 12]. 
Nevertheless, wind power plants (WPP) cannot be modelled in two states as shown in [12], as they depend 
directly on the uncertainty of the wind speed, the operation of the components of the network and  
the topology of the park [7]. For that reason, different methodologies have been implemented. In [12], a point 
estimate method (PEM) with 2m locations is proposed to simulate uncertainties in load and/or generation for 
solving the power flow. In addition, as [14] shown, the correlation between two WPP has an impact on  
the resulting reliability indices by using Monte Carlo’s simulation. However, [15] carries out a study that 
concludes that using a point-estimate method has higher computational efficiency compared to Monte Carlo 
to solve probabilistic load flow taking into account wind energy sources. Although many PEM schemes have 
been suggested, among them the 2m+1 method proposed by Hong [16] allows a high performance when 
there are a large number of input variables. PEM has been used, recently, to include wind uncertainties in 
load flow with FACTS devices [17], and analysis of congestion for interconnection of WPP [18]. 

This paper proposes the application of the method 2m+1 point-estimate method (PEM) for  
the availability assessment of a bulk power system considering m WPPs, where each WPP is a random 
variable. As the m WPP have a correlated behavior, a set on independent random variables must be defined 
by a linear model that correlates the WPP. Using these m independent variables, the method considers 2 
concentration points for each random variable (m variables) around the average value (+1, another 
concentration point); that is the reason of the name of the method [16]. In consequence, in the proposed 
methodology, the PEM method develops 2m+1 availability assessments of the bulk power system, where for 
each evaluation a set of power injection of correlated WPP is computed. In consequence, the method 
calculates the power generated from the WPP of the system for each 2m+1 conditions or concentration points 
and the weighting factor for computing the weighted average of the availability indices. In addition, each 
WPP is modeled through the four central moments that models the probability distribution function of the 
injected power by a WPP into the power system and the m number of WPP parks in the electrical system. 
These central moments can be also computed from statistical data obtained from WPPS. 

The independent (section 2.1.) and correlated WPPs central moments (section 2.2) are presented, 
taking into account [7]. In section 2.3., the method for availability assessment using PEM is shown. Then, in 
section 3, the proposed PEM-based availability assessment methodology is tested on the IEEE Reliability 
Test System RTS-24 [19]. Three scenarios were implemented to evaluate the impact of the WPPs in  
the system; taking a different value of correlation between the injected power by the WPPs. As availability 
indices, the expected energy non-served (EENS) and the loss of load probability (LOLP) are used.  
Finally, section 4 presents the conclusions of this paper and further work. 

 

 

2. RESEARCH METHOD 

2.1.  Power injection uncertainty in a single wind power plant – statistical model 
Figure 1 shows an example of network configuration of a WPP connected to a point of common 

coupling (PCC). Typically, a WPP has a number of medium voltage (MV) circuits where the wind turbines 
are connected through a transformer [20]. All these networks components can be out of service by fails or 
maintenance, among others. In addition, it is well known that the Wind speed has a random behavior, usually, 
modeled by a Weibull probability function [21], given by: 
 

𝑓(𝑣) = (
𝑏

𝑎
) (

𝑣

𝑎
)
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Wind speed (𝑣) is an input value that allows the computation of the power generation of each 

individual wind turbine. However, the wind speed is different for each wind turbine. In (1), b and a are  

the shape and scale parameters of the Weibull distribution. As [7] shown, a Monte Carlo simulation that takes 

into account the random state of operation of the network components (in-service or out-of-service), the state 

of operation of the turbine (in or out of service), and the random characteristics of the wind speed and  

the wind direction [22]; such as, the power injected at the PCC can be computed for a number of probabilistic 

realizations. With these simulations a probabilistic distribution function (pdf) can be adjusted, or a discrete 

pdf can be computed; following these steps: 

 Generate the random variables for wind direction and wind speed. 

 Randomly, determine the operating status of each turbine (in or out-of-service). 

 Calculate the power generation of each wind turbine.  

 Generate random variables for each circuit component and determine its operating state (in or out-of-

service). 

 Calculate power generated for each circuit and by the wind park by load flow. 

 Calculate the 2 central moments mean and variance of the total injected power at the PCC. 

 If the convergence criterion of the Monte Carlo simulation is satisfied continue to 8. Otherwise repeat 

steps 1- 6. 

 Obtain the histograms of the density and distribution functions of the power generation of the wind farm  

 Perform statistical analysis 

Considering the previous steps, in [7] the simulation was carried out for a WPP of 200 MW, 80 wind 

turbines arranged in 10 MV circuits connected like Figure 1 shows, and converged after 1569 realizations.  

As a result, the power characteristics of the power injection WPP model were obtained. Alternatively,  

in operating WPP, a historic data can be employed in order to count with a representative sample that allows 

the statistical modelling of the injected power of the WPP. 

 

 

 
 

Figure 1. Example of a WPP network 
 

 

So, from statistical data or from a Monte Carlo simulation; a statistical model of the injected power 

(Pi) by the WPP is fixed computing its four central moments which are: mean or average injected power 

(𝜇𝑝), its standard deviation (𝜎𝑝), and its skewness (𝜆𝑝,3) and kurtosis (𝜆𝑝,4). These four statistics are used by 

the PEM methodology (as section 2.3 explains), and are defined as follow: 
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where, N is the number of data samples, and 

 

𝑚2 =
∑ (𝑃𝑖−𝑃�̅�)

2𝑁
𝑖=1

𝑁
  (6) 
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3𝑁
𝑖=1
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  (7) 
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∑ (𝑃𝑖−𝑃�̅�)
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𝑖=1

𝑁
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2.2.  Correlated wind power plants uncertainties model 

From section 2.1, each WPP is represented by a statistical model of four statistics computed from 

the injected power at the PCC: mean or average injected power (𝜇𝑝), its standard deviation (𝜎𝑝), skewness 

(𝜆𝑝,3), and kurtosis (𝜆𝑝,4). Nevertheless, if a power system has m WPP, the wind behavior of these WWP 

can be correlated taking into account weather seasons, WWPs locations, among other factors [23].  

So, the statistical behavior of a set of WWPs is given not only for their individual statistics (𝜇𝑝, 𝜎𝑝, 𝜆𝑝,3, 𝜆𝑝,4) 

but also by the covariance between the injected power of these WWP. So these covariance of injected power 

by the WPPs ([𝐂𝐩]) is given by: 

 

[𝐂𝐩] =

[
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  (9) 

 

where 𝜎𝑝𝑖 is the standard deviation of the injected power by the i-th WWP obtained in section 2.1; and 𝜎𝑝i𝑝j 

is the covariance between the power injections of i-th WWP and the j-th park; which is given by: 

 

𝜎𝑝𝑖𝑝𝑗 = 𝑟𝑝𝑖𝑝𝑗 × 𝜎𝑝𝑖 × 𝜎𝑝𝑗    (10) 

 

where 𝑟𝑝i𝑝j is the correlation factor between the power injections of i-th WWP and the j-th park [15]. 

This correlated model is useful to take into account this statistical characteristic that cen be present 

in a set of WWPs. However, these model must be transformed in a decoupled (non-correlated) set of random 

variables that allows probabilistic treatment by the Point Estimate Method (proposed in the next section 2.3) 

and for Monte Carlo simulation, also. Thus, transformation of correlated variables 𝒑 = [𝑝1 … 𝑝𝑚]𝑻 into  

a set of non-correlated variables 𝐱 = [𝑥1 … 𝑥𝑚]𝑻 is obtained by the following linear transformation: 

 

[𝒙] = [𝑳]−𝟏 [𝒑]  (11) 

 

Such as the covariance of the non-correlated variables x ([𝐂𝐱]) be given by [15]: 

 

[𝑪𝒙] = [𝑳]−𝟏 [𝑪𝒑] [[𝑳]−𝟏]𝑻 = [𝑰]  (12) 
 

where [𝐋] is computed from the Cholesky decomposition of the covariance matrix [𝐂𝐩], such as [3, 15]: 

 

[𝑪𝒑] = [𝑳] [𝑳]𝑻  (13) 

 

Now, for the application of PEM (see section 2.3) is necessary to compute the four central moments 

of each variable x.  Thus, from the initial variables p, the statistical central moments for the new variables x 

are calculated as [15]: 

 

[𝝁𝒙] = [𝑳−𝟏] [𝝁𝒑]  (14) 
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where [𝛍
𝐱
] = [𝝁𝒙𝟏

… 𝝁
𝒙𝒎] is the vector of the average values of the m variables x. 𝜆𝑥𝑙,3 and 𝜆𝑥𝑙,4 are 

the skewness and the kurtosis of the l-th variable x. In addition, as [𝐂𝐱] = [𝐈], the value of the variance of 

each 𝑥𝑙 is 1; then 𝜎𝑥𝑙 = 1. 
 

2.3.  Availability assessment using point estimate method 

Monte Carlo simulation and state enumeration have been the traditional methodologies used to 

assess the availability of bulk power systems [3, 24-27]. Some commercial software have reliability 

assessment tools based on these techniques. These software, traditionally, uses for the assessment of 

availability/reliability of bulk systems a model of two states to represent the uncertainty of each synchronous 

generation unit, taking the states of in-service or out-of-service [3]. Nevertheless, as it has shown in sections 

2.1 and 2.2, wind power plants (WPP) cannot be modelled in two states, as they depend directly on  

the uncertainty of the wind speed, the operation of the components of the network and the topology of  

the park [7], and the correlation between the different WPPs connected to the power system. 

The proposal of this paper is to apply the concepts of the Point Estimate Method (PEM) in order to 

take into account uncertainties model of WPP and correlated behavior of a set of WPP. Although many PEM 

schemes have been suggested [12-16] and have been used to solve the problem of probabilistic power  

flow [15, 26], this paper proposes the use of the 2m+1 PEM proposed by Hong in [16]. The purpose is to 

compute the common reliability (availability) indices: Loss of Load Probability (LOLP) and Expected 

Energy Not Supplied (EENS) as are defined at [26, 27], using the state enumeration method. 

The PEM-based adequacy assessment here proposed starts computing the set of 2m+1 concentration 

points named ([𝐩]𝑙,𝑘, 𝑤𝑙,𝑘), where [𝐩]𝑙,𝑘 is the injected power of the m WPPs in the power system for the k-th 

concentration (k=1, 2, and 3) associated to the l-th random variable (l=1, 2, …, m); and 𝑤𝑙,𝑘 is the weighting 

factor computed for this concentration point.  

As, the WPPs are correlated, as a general assumption, the [𝐩]𝑙,𝑘 is computed from (11) as: 

 

[𝒑]𝑙,𝑘 = [𝑳] [𝒙]𝑙,𝑘  (17) 

 

It means, that previously it must be computed the concentration points and the weighting factors 

using the decoupled variables, which are statistically independent. Thus, the vector [𝐱]𝑙,𝑘 is given by: 

 

[𝒙]𝑙,𝑘 = [𝜇𝑥1, ⋯ , 𝑥𝑙,𝑘, ⋯ , 𝜇𝑥𝑚 ]  (18) 

 

where 𝜇𝑥1 means that all random variable xi different to the l-th random variable takes the first central 

moment; i.e. the mean value of xi. For each l-th random variable are 3 concentration points; i.e. k =1, 2, 3. 

The l-th random variable takes the value  

 

𝑥𝑙,𝑘 = 𝜇𝑥𝑙 + 𝜉𝑙,𝑘𝜎𝑥𝑙  (19) 

 

where 𝜉𝑙,𝑘 is the standard location, and 𝜇𝑥𝑙 , 𝜎𝑥𝑙, 𝜆𝑥𝑙,3, 𝜆𝑥𝑙,4 the central moments of the input random variable 

xl. Thus, 

 

𝜉𝑙,𝑘 =
𝜆𝑥𝑙,3

2
+ (−1)3−𝑘  √𝜆𝑥𝑙,4 −

3

4
𝜆𝑥𝑙,3

2    for 𝑘 = 1, 2  (20) 

 

𝜉𝑙,3 = 0    𝑓𝑜𝑟 𝑘 = 3  (21) 

 

where the skewness (𝜆𝑥𝑙,3) and the kurtosis (𝜆𝑥𝑙,4) of xl are computed from (15) and (16). Note that for  

all l-th random variable [𝐱]𝑙,3 is a common vector given by: 
 

[𝒙]𝑙,3 = [𝜇𝑥1, ⋯ , 𝜇𝑥𝑙 , ⋯ , 𝜇𝑥𝑚 ]  (22) 

 

On the other hand, the weighting factor 𝑤𝑙,𝑘 is computed as: 
 

𝑤𝑙,𝑘 =
(−1)3−𝑘

𝜉𝑙,𝑘(𝜉𝑙,1−𝜉𝑙,2)
    for 𝑘 = 1, 2  (23) 

 

𝑤𝑙,3 =
1

𝑚
−

1

(𝜆𝑥𝑙,4−𝜆𝑥𝑙,3
2 )

    𝑓𝑜𝑟  𝑘 = 3   (24) 
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Once the concentration points [𝐩]𝑙,𝑘 is obtained from (17), an availability assessment of the bulk 

power system is carried out using state enumeration. In each assessment, the reliability indices EENS and 

LOLP are computed for every load point of the system and/or for the system. Let 𝑍𝑖(𝑙, 𝑘) the reliability index 

(EENS or LOLP) computed for bus i (i.e. a load bus) using the power injections WPP  [𝐩]𝑙,𝑘, the mean value 

and the standard deviation of the reliability index at bus i considering all the concentration points is obtained 

as the weighted average, given by:  

 

𝜇𝑧𝑖
= ∑ ∑ 𝑤𝑙,𝑘𝑍𝑖(𝑙, 𝑘)3

𝑘=1
𝑚
𝑙=1   (25) 

 

𝐸[𝑧𝑖
2] = ∑ ∑ 𝑤𝑙,𝑘(𝑍𝑖(𝑙, 𝑘))23

𝑘=1
𝑚
𝑙=1   (26) 

 

𝜎𝑧𝑖
= √𝐸[𝑧𝑖

2] − 𝜇𝑧𝑖
2  (27) 

 

Figure 2 presents the general procedure of availability assessment using PEM. The calculation of 

concentration points is made applying (17) to (23). The calculation of reliability indexes makes use of (23)  

to (27). In Figur, m is the number of WPPs in the power system. Note that k=1, 2, 3. When k=3, for any l, the 

concentration point is the same, given by (22). 

 

 

 
 

Figure 2. Algorithm of availability assessment using PEM 

 

 

3. RESULTS AND ANALYSIS 

3.1.  Study system 

Figure 3 shows the test system, which corresponds to the IEEE Reliability Test System 24  

nodes [19], modified. In order to apply the proposed methodology, two WPPs are placed at nodes 7 and 16; 

replacing the original synchronous generation given at [19]. Each WPP consist of 10 MV circuits with 8 

turbines each one, for a total of 80 wind turbines of 2.5 MW, based on [5]. In addition, a static var 
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compensator device (SVC) is placed in both nodes for voltage regulation of the system. As [7] shows,  

a Monte Carlo simulation is run to get a statistical characterization of the injected power by the WPP. Table 1 

shows this characterization based on a Monte Carlo simulation of 1569 realizations, showing the four central 

moments (𝜇
𝑝
, 𝜎𝑝, 𝜆𝑝,3, 𝜆𝑝,4). 

 

 

 
 

Figure 3. Test system – IEEE reliability test system modified 

 

 

Table 1. Central moments of the WPP 
Central Moments Value 

Mean (𝜇𝑝) [MW] 60.36 

Standard Deviation (𝜎𝑝) [MW] 60.94 

Skewness (𝜆𝑝,3) 0.849 

Kurtosis (𝜆𝑝,4) 2.427 

 

 

3.2.  Study cases 

Three scenarios based on the correlation between the behaviors of power injections of WPP1 (placed 

at node 16) and WPP2 (placed at node 7) are analyzed. These scenarios are: 

 Scenario 1: The injection of both WPPs are assumed as independent random variables; i.e. the correlation 

𝑟𝑝1𝑝2 = 0.  

 Scenario 2: The injection of both WPPs are inversely correlated; assuming a correlation 𝑟𝑝1𝑝2 = −0.5. 

 Scenario 3: The injection of both WPPs are directly correlated; assuming a correlation 𝑟𝑝1𝑝2 = 0.5. 

In this case, there are 2 WPPs, then 𝑚 takes the value of 2. In consequence, 5 concentration points 

(𝑝𝑙,𝑘, 𝑤𝑙,𝑘) are established (2m+1) according to section 2.3. These concentration points are defined at  

Table 2. It is important to explain the characteristic of the first concentration point: 

 Concentration Point 1: this case will be the common concentration point derived from (18). When k=3 for 

each random variable l, both WPP are generating the value of their mean value 𝜇𝑃1 and 𝜇𝑃2. In such case 

[𝐱]1,3 = [𝐱]2,3, then from (17) [𝐩]1,3 = [𝐩]2,3. In addition, the weighting factor of the common 

concentration point is the sum of the weights 𝑤1,3 + 𝑤2,3. 
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On the other hand, the other concentration points [𝐱]𝑙,𝑘 are defined based on (18), when l takes  

the values of 1 and 2; and k = 1 and 2 (k=3 is the common concentration point). Then, [𝐱]𝑙,𝑘 is transformed to 

[p]𝑙,𝑘 using (17). Table 2 shows the general definition of the concentration points. The values depend on  

the scenario under analysis. Table 3 shows for the three scenarios the power generated in MW for each WPP 

according to the 5 concentration points. Table 4 presents the weighting factor for the concentration points 

according to Table 2. 

 

 

Table 2. Concentration points – test case 
Concentration Point Injected Power at WPP1 Injected Power at WPP2 Weight Factor 

1 𝑝1,3 = 𝜇P1 𝑝2,3 = 𝜇P2 𝑤1,3 + 𝑤2,3 

2 𝜇P1 𝑝2,1 𝑤2,1 

3 𝜇P1 𝑝2,2 𝑤2,2 

4 𝑝1,1 𝜇P2 𝑤1,1 

5 𝑝1,2 𝜇P2 𝑤1,2 

 

 

Table 3. Power generated (MW) by WPP - scenarios de analysis 
WPP Concentration Points Correlation Scenarios 

𝑟𝑝1𝑝2 = 0 𝑟𝑝1𝑝2 = −0.5 𝑟𝑝1𝑝2 = 0.5 

Node 16 1 60.36 60.36 60.36 

2 60.36 60.36 60.36 

3 60.36 60.36 60.36 

4 169.93 169.93 169.93 

5 2.53 2.53 2.53 

Node 7 1 60.36 60.36 60.36 

2 169.93 190 190.72 

3 2.53 8.32 0 

4 60.36 5.58 115.14 

5 60.36 89.28 31.44 

 

 

Table 4. Weighting factors by concentration point - scenarios de analysis 
Concentration Points Correlation Scenarios 

𝑟𝑝1𝑝2 = 0 𝑟𝑝1𝑝2 = −0.5 𝑟𝑝1𝑝2 = 0.5 

1 -0.172 0.001 0.109 

2 0.203 0.118 0.107 

3 0.383 0.295 0.199 
4 0.203 0.203 0.202 

5 0.384 0.384 0.384 

 

 

Once the power generation of WPPs are computed for each scenario and its concentration points;  

the reliability indices following the algorithm of Figure 2 is run. Table 5 presents the system EENS index and 

Table 6 shows the system LOLP index, computed for each concentration point under each scenario. Applying 

the weighting factors of Table 4 and (25)-(27) the mean value and the standard deviation of the EENS and 

the LOLP are computed. The concentration point 1 also represents the case where WPP are assumed as non-

random variables, i.e. without uncertainty. As the results of the other concentrations, there is an important 

impact on the uncertainty of the reliability indexes introduced by the uncertainty on the WPPs. On the other 

hand, the scenario of inverse correlation between WPP1 and WPP2 shows a reduction of the reliability indexes; that 

is an expected result. By contrast if the WPPs are directly correlated the EENS and LOLP increase. 

 

 

Table 5. Results of EENS [MWh/yr] - Scenarios de Analysis 
Concentration Points Correlation Scenarios 

𝑟𝑝1𝑝2 = 0 𝑟𝑝1𝑝2 = −0.5 𝑟𝑝1𝑝2 = 0.5 

1 178,449 178,449 178,449 

2 46,215 32,075 31,321 
3 240,053 245,282 268,636 

4 119,911 153,439 66,687 

5 229,848 148,643 250,965 

𝜇𝐸𝐸𝑁𝑆 [MWh/yr] 185,316 160,790 183,485 

𝜎𝐸𝐸𝑁𝑆 [MWh/yr] 48,166 30,921 74,092 
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Table 6. Results of LOLP [%] - Scenarios de Analysis 
Concentration Points Correlation Scenarios 

𝑟𝑝1𝑝2 = 0 𝑟𝑝1𝑝2 = −0.5 𝑟𝑝1𝑝2 = 0.5 

1 2.436 2.436 2.436 

2 0.799 0.667 0.677 

3 2.163 2.254 2.670 
4 2.238 1.567 1.885 

5 2.471 1.943 2.937 

𝜇𝐿𝑂𝐿𝑃 [%] 2.351 2.013 2.477 

𝜎𝐿𝑂𝐿𝑃 [%] 0.283 0.396 0.495 

 

 

4. CONCLUSION 

This paper proposed the application of the 2m+1 point-estimate probabilistic method (PEM) for  

the availability assessment of a bulk system considering the existence of several correlated WPPs.  

The proposed methodology, firstly, show how to model the power injection or generation of a wind power 

plant based on the four statistical central moments: mean value, variance, skewness and kurtosis.  

Thus, the behavior of WPP can be simulated or analyzed with historical data for obtaining this statistical 

model. In addition, as the behavior of the power injection of several WPPs can be correlated among them;  

the proposed methodology makes use of linear transformation in order to decouple them into independent 

random variables, which are useful for the availability assessment based on PEM.  

The 2m+1 PEM methodology used for the availability assessment helps to develop the reliability 

analysis based on conventional tools (state enumeration or Monte Carlo) based on an appropriate set of 

powers injected by the WPPs that takes into account theirs individual statistical model (i.e. the four central 

moments) and the correlated behavior of these power sources. The application of PEM on the reliability of 

bulk power systems with several wind power parks opens the opportunity to extend the research to  

the utilization of other non-conventional renewable sources, as the photovoltaic generation (PV farms). 

Further work is required to make the statistical characterization of PV farms, make statistical studies about 

the correlation between several WPPs and several PV farms. Thus, further research can be started to measure 

the impacts of the high level penetration of non-conventional energy sources on reliability performance of  

the power system; that have an important uncertainty. 
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