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 In the scientific studies of the electric machines, cylindrical and Cartesian 

laminated models have long proved their operability when it is necessary to 

transform the general solutions of the partial differential equations into four-

terminal network equations and to create the cascade equivalent circuits of 

the electric machines. In the case of the salient-pole machines, piecewise 

continuous Sturm-Liouville eigenfunctions are usually used as the general 

solution. Unfortunately, we cannot create the cascade equivalent circuit of 

the salient-pole electric machine when (to ensure both the uniqueness and the 

accuracy of the solution) the field is modeled with many piecewise 

continuous Sturm-Liouville eigenfunctions (in the zone of poles) and many 

sinusoidal functions (in the air gap). Nevertheless, the author developed the 

approximate method for modeling the magnetic field of the salient-pole 

electric machines when only one piecewise continuous Sturm-Liouville 

eigenfunction is used and many sinusoidal functions. In this case, it becomes 

possible to transform the general solution of the partial differential equation 

into four-terminal network equations and to create the cascade equivalent 

circuit of the salient-pole electric machine. In this paper, the cascade 

equivalent A-H-circuit of the synchronous salient-pole machine is considered 

(without using piecewise continuous Sturm-Liouville eigenfunctions but also 

without properties averaging). 
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1. INTRODUCTION 

In the second half of the twentieth century, many papers were published [1-7] that examined the 

problem of modeling the electromagnetic field of electric machines based on the laminated models. Each 

layer of the laminated model corresponded to some zone of the machine (air gaps, teeth, slots, the yokes of 

the stator and the rotor). The general solution of the partial differential equation had to be found in each layer 

of the laminated model and integration constants had to be defined (according to the boundary conditions). 

Unfortunately, the calculations were so complex, and the results were so cumbersome that the 

laminated models did not receive any practical development in the future. However, it became apparent that 

the solutions of the partial differential equations that were obtained for the laminated models could be 

reduced into the four-terminal network equations known in the circuit theory. If now the electric intensity is 

considered equivalent to the voltage and the magnetic intensity is considered equivalent to the current, it is 

possible to create the equivalent circuit of the four-terminal network equations (the so-called E-H-cascade 

equivalent circuit). If the vector magnetic potential is considered equivalent to the voltage and the magnetic 
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intensity is considered equivalent to the current, we have the A-H-cascade equivalent circuit. The cascade 

equivalent circuits were created for the different types of cylindrical rotor machine [8-20], as well as for 

electric technological installations [21-27]. 

In the case of the salient-pole machines, in which alternating poles and air spaces between poles 

cannot be considered as the homogeneous zone, piecewise continuous Sturm-Liouville eigenfunctions are 

usually used as the general solution of the partial differential equation [28-30]. Unfortunately, we cannot 

create the cascade equivalent circuit of the salient-pole electric machine when (to ensure both the uniqueness 

and the accuracy of the solution) the field is modeled with many piecewise continuous Sturm-Liouville 

eigenfunctions (in the zone of alternating poles and air spaces between poles) and many sinusoidal functions 

(in the air gap). Nevertheless, the author developed the approximate method for modeling the magnetic field 

of the salient-pole electric machines when only one piecewise continuous Sturm-Liouville eigenfunction is 

used (in the zone of poles) and many sinusoidal functions (in the air gap) [31, 32]. In this case, it becomes 

possible to transform the general solution of the partial differential equation into four-terminal network 

equations and to create the cascade equivalent circuit of the salient-pole electric machine [33-36]. This paper 

deals with the same subject as [36]. However, as opposed to [36], the A-H-circuit of the electric machine is 

created without using piecewise continuous Sturm-Liouville eigenfunctions (but also without properties 

averaging). 

 

 

2. THE EQUIVALENT A-H-CIRCUIT OF THE ROTOR 

The object of the study is the synchronous generator with the salient-pole rotor (that is also the 

inductor). Both the rotor yoke and the stator yoke are perfect ferromagnetic, their magnetic permeability is 

infinite. The magnetic permeability of poles is constant and finite. Poles and air spaces between poles are 

bounded by coordinate surfaces of the cylindrical coordinate system as shown in Figure 1. 

 

 

 
 

Figure 1. The salient-pole synchronous generator 

 

 

The current 0I  creates the exciting field. Let us substitute equivalent current sheets (that will be 

located on the rotor yoke between poles) for the exciting current. Fourier’s expansion turns the current sheet 

into 

 

  0
0

1,3,5 1

sin
cos

k

I kp
H kp

r kp


 










  (1) 

 

where 2p is the number of poles. 

It is known that in case of both the exciting field and the longitudinal armature reaction, field lines 

are directed generally parallel to the r-axis within the poles and generally perpendicular to the r-axis within 

the air spaces between poles. Therefore, we can substitute the anisotropic zone for the poles and the air 

spaces where the components of the magnetic permeability must be 
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where 
f  is the magnetic permeability of poles and 

0  is the magnetic permeability of air. 

In case of the quadrature-axis armature reaction, field lines are directed generally parallel to the 

r-axis within the air spaces between poles and generally perpendicular to the r-axis within the poles. Then the 

components of the magnetic permeability must be 
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In the anisotropic zone, Maxwell’s equations determine electromagnetic field: 
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In case of the cylindrical coordinate system, Maxwell’s equations (4) are equivalent to the partial 

differential equation for the vector potential: 
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where A  is the z-component of the vector potential. 

When the rotor revolves, we can see the traveling waves of the field. Therefore, the complex plane 

representation of the vector potential can be used. For the each k-th harmonic, the (5) turns into 
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The general solution of the equation (6) is 
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The tangential component of the magnetic intensity (excluding the exciting field source) is 
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Suppose that at the boundaries of the anisotropic zone, the vector potential and the tangential 

component of the magnetic intensity vector are known. As in Figure 1 for the first field harmonic, if 1r r , 
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If 2r r  (see Figure 1), 
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Suppose that, for the first field harmonic, the equivalent A-H-circuit (in which vector magnetic 

potential is considered equivalent to the voltage and the tangential component of the magnetic intensity 

vector multiplied by a radius is considered equivalent to the current) corresponds to the rotor as shown in 

Figure 2. 

 

 

 
 

Figure 2. The equivalent A-H-circuit of the rotor 

 

 

The ideal current source 
0 1H r  corresponds to the first harmonic of the current expression (1): 
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The expressions (9)-(12) describe the operation conditions of the equivalent A-H-circuit. On the 

other hand, when operation conditions change, the constants of the equivalent A-H-circuit (including the 

impedances 11Z , 12Z , 13Z ) shall not change. Therefore, we can determine the impedances 11Z , 12Z , 13Z  by 

analyzing the expressions (9)-(12) in the short-circuit conditions and the no-load conditions: 
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3. THE CASCADE EQUIVALENT A-H-CIRCUIT OF THE GENERATOR 

The cascade equivalent A-H-circuit of the generator has two cells as shown in Figure 3. The first cell 

( 11Z , 12Z , 13Z ) corresponds to the rotor and the second cell ( 21Z , 22Z , 23Z ) corresponds to the air gap. 

Constants of the second cell may be deduced from expressions (14) and (15) when 0r     . For the 

first field harmonic, 
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The air gap irregularity can be taken into account if the air gap is multiplied by 
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 (18) 

 

where   is the pole overlap factor and k  is Carter’s factor. 

If the magnetic permeability of stator teeth is infinite then the zone of stator teeth may be removed 

from the A-H-circuit and the ideal current source 
2I  (that corresponds to the armature reaction) will be 

connected to the output of the second cell. In compliance with Ampere’s circuital low, this current source is 

determined as 
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where  

  is the current density in the stator slots (the amplitude of the first harmonic);  

2z  is the number of stator teeth;  

h  is the tooth height; 

1b  and 2b  are the widths of the slot (on the air gap and on the stator yoke). 

 

 

 
 

Figure 3. The cascade equivalent A-H-circuit of the generator 

 

 

4. RESULTS AND ANALYSIS 

Table 1 contains the initial data of the control calculations. The results of control calculations are 

offered in Figure 4 (the normal component of the magnetic induction vector on the stator). Both the 

numerical simulation and the calculations of the A-H-circuit lead to the same result. It is evidence of the 

correctness of modeling. 

 

 

Table 1. The initial data of the control calculations 
Parameter Value Parameter Value 

The number of poles 8 Carter’s factor 1.22 

The pole relative permeability 500 The pole overlap factor 0.73 

The rotor diameter 632 mm The exciting current 4582.5 A 

The pole height 83.4 mm The current density in the 

stator slots 

2 A/mm2 

The air gap 4 mm 

The number of stator teeth 96   8
  

The tooth height 53 mm 

The slot width (on the air gap) 11.11 mm   16
  

The slot width (on the yoke) 14.57 mm 
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Figure 4. The magnetic induction vector on the stator (the normal component, the first field harmonic,  

the quadrature-axis armature reaction): the solid line is the cascade equivalent A-H-circuit; points are  

the numerical simulation (ELCUT 5.1) 

 

 

5. CONCLUSION  

In this paper, the cascade equivalent A-H-circuit of the synchronous salient-pole generator is 

considered. In this model, both the poles of the rotor and air spaces between the poles are replaced by the 

anisotropic zone. It makes it possible to avoid piecewise continuous Sturm-Liouville eigenfunctions. The 

constants of the A-H-circuit change depending on the field configuration (the exciting field or the 

longitudinal armature reaction or the quadrature-axis armature reaction). The air gap irregularity can be taken 

into account if the air gap is increased. Control calculations of the cascade equivalent A-H-circuit and the 

numerical simulation lead to the same result. It is evidence of the correctness of modeling. 
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