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 This paper presents designing an adaptive state feedback controller (ASFC) 

for a magnetic levitation system (MLS), which is an unstable system and has 

high nonlinearity and represents a challenging control problem. First, 

a nonadaptive state feedback controller (SFC) is designed by linearization 

about a selected equilibrium point and designing a SFC by pole-placement 

method to achieve maximum overshoot of 1.5% and settling time of 1s (5% 

criterion). When the operating point changes, the designed controller can no 

longer achieve the design specifications, since it is designed based on 

a linearization about a different operating point. This gives rise to utilizing 

the adaptive control scheme to parameterize the state feedback controller in 

terms of the operating point. The results of the simulation show that 

the operating point has significant effect on the performance of nonadaptive 

SFC, and this performance may degrade as the operating point deviates from 

the equilibrium point, while the ASFC achieves the required design 

specification for any operating point and outperforms the state feedback 

controller from this point of view. 
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1. INTRODUCTION  

Magnetic levitation technology has recently become an interesting topic of study, since it is a good 

solution for many motion systems [1, 2]. The advantages of a MLS are its abilities to eliminate friction by 

eliminating the contact between moving and stationary parts [3], decreasing the cost of maintenance, and 

achieving precise position [4]. The MLSs has become suitable for trains, bearings, vibrating isolation 

systems, and levitation of wind tunnel [1, 4].  

By magnetic levitation, a ferromagnetic mass is suspended in the air by an electric magnetic  

field [5]. The basic control aim is to precisely position the levitating object [6]. To stabilize the MLS,  

the magnetic field strength must be varied by changing the current of the coil [5, 7]. Since the MLS  

is unstable and has high nonlinearity, designing a controller for this system with adequate specifications  

is not a trivial task; thus, the control of this system has received considerable interest [4], and it has become  

a platform to test different control algorithms [1, 5]. 

Several control approaches were used to stabilize the MLS, such as feedback linearization [8-10], 

which requires an accurate model of this system; however, obtaining an accurate model represents a problem 

because of the high nonlinearity of this system and the variation of the gain parameter with the distance 

between the levitating object and the magnet. Linearization-based methods were also used, where the system 

is linearized about a certain equilibrium point and a controller is designed to stabilize the system, such as  

PID controller [1, 2, 5, 6, 7, 11], fractional order PID controller [4, 12-15], LQR [1, 2, 16, 17],  

lead compensator [1], H_∞ controller [18, 19], fuzzy logic controller (FLC) [16, 20, 21], and adaptive  

FLC [22]; however, the performance of such controllers degrade when the deviation between the operating 
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point and the equilibrium point (the point that the system was linearized about) increases. To handle this 

problem, sliding mode controller (SMC) [23-25], adaptive SMC [26], PID-notch filters [27], and 

linearization-gain scheduling controller PID controller [28], linearization-gain scheduling PI controller [29], 

and linearization-adaptive PD controller [30] were designed to provide robustness against operating point 

variation. This paper proposes an ASFC to stabilize the MLS, where the controller parameters become  

a function of the operating point, and pole placement method is used to design the controller. The rest of  

this paper is: section 2 presents the mathematical model of the MLS, section 3 presents the design of an ASFC  

for this system by pole placement, simulation results and discussions are given in section 4, and finally  

the conclusions that can be drawn from the obtained results are given in section 5. 

 

 

2. MATHEMATICAL MODEL OF THE MLS 

In a MLS, a ferromagnetic ball is levitated by a magnetic field, and the ball position is fed back to 

control the current of the coil [31]. The position of the ball is 
 

𝑚�̈� = −𝑘�̇� + 𝑚𝑔 + 𝐹(𝑦, 𝑖) (1) 
 

where 𝑚 and 𝑦 are the mass the vertical position of the ball, k is a viscous friction coefficient, 𝑔 is the gravity 

acceleration, 𝐹(𝑦, 𝑖) is the electromagnet force, and 𝑖 is the coil current [31]. The inductance which is  

a function of the ball position is approximately 
 

𝐿(𝑦) = 𝐿1 +
𝐿0

1+
𝑦

𝑎

 (2) 

 

where 𝐿1 is the electromagnetic coil inductance without the suspended ball, 𝐿0 is the inductance due to  

the ball, and 𝑎 is the air gap when the levitated ball is in equilibrium [32]. The inductance has its highest 

value 𝐿1 + 𝐿0 as the ball touches the magnet and decreases to 𝐿1 when it is removed away from the coil. 

If 𝐸(𝑦, 𝑖) =
1

2
𝐿(𝑦)𝑖2 is the electromagnet stored energy, the force F is [31] 

 

𝐹(𝑦, 𝑖) =
𝜕𝐸

𝜕𝑦
= −

𝐿0𝑖2

2𝑎(1+
𝑦

𝑎
)2

 (3) 

 

The magnetic flux linkage is 
 

𝜙 = 𝐿(𝑦)𝑖 (4) 
 

and according to Kirchhoff's voltage law, the coil voltage is 
 

𝑣 = �̇� + 𝑅𝑖 (5) 
 

where 𝑅 is the circuit resistance. Using 𝑥1 = 𝑦, 𝑥2 = �̇�, and 𝑥3 = 𝑖 as state variables, 𝑢 = 𝑣 as control input, 

and 𝑦 as the controlled output, the state matrix equation and the output equation become: 
 

�̇� =

[
 
 
 

𝑥2

𝑔 −
𝑘

𝑚
𝑥2 −

𝐿0𝑎𝑥3
2

2𝑚(𝑎+𝑥1)2

1

𝐿(𝑥1)
(−𝑅𝑥3 +

𝐿0𝑎𝑥2𝑥3

(𝑎+𝑥1)2
+ 𝑢)]

 
 
 

= 𝒇(𝒙, 𝑢) (6) 

 

𝑦 = 𝑥1 (7) 
 

The equilibrium point of system (6) can be found by setting �̇� = 0. If this point is designated by (𝒙ss, 𝑢ss) 

where 𝒙ss = [𝑥1ss 𝑥2ss 𝑥3ss]
𝑇 = [𝑟, 𝑥2ss, 𝐼ss]

𝑇, and 𝑢ss = 𝑉ss, then 
 

0 = 𝑥2ss, (8) 
 

0 = 𝑔 −
𝑘

𝑚
𝑥2ss −

𝐿0𝑎𝐼ss

2𝑚(𝑎+𝑟)2
 (9) 

 

0 =
1

𝐿(𝑟)
(−𝑅𝐼ss +

𝐿0𝑎𝑥2𝐼ss

2𝑚(𝑎+𝑟)2
+ 𝑉ss) (10) 

 

Solving (8)-(10) for 𝑟, 𝑥2ss, and 𝐼ss in terms of 𝑉ss yields 
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[𝑟, 𝑥2ss, 𝐼ss]
𝑇 = [

1

𝑅
√

𝐿0𝑎

2𝑚𝑔
𝑉ss − 𝑎, 0,

𝑉ss

𝑅
]𝑇 (11) 

 

The linearization of system (6) about the equilibrium point (𝑥ss, 𝑢ss) is 
 

�̇� = 𝑨𝒙 + 𝑩𝑢 (12) 
 

where 𝑨 =
𝜕𝒇

𝜕𝒙
|
(𝒙ss,𝑢ss)

 and 𝑩 =
𝜕𝒇

𝜕𝑢
|
(𝒙ss,𝑢ss)

. For any equilibrium point (𝒙ss, 𝑢ss), at least one of the three 

eigenvalues of matrix 𝑨 has positive real part. Thus, by indirect Lyapunov's Theorem, the system is unstable. 

The values of the parameters of the MLS are given in Table 1. 

 

 

Table 1. Parameters of the MLS 
Parameter Description Value 

𝑚 Mass of the ball 0.1kg 

𝑘 Viscous friction coefficient 0.001N/m/s 

𝑔 Gravity acceleration 9.81m/s2 

𝑎 Air gap when the levitated ball is in equilibrium 0.05m 

𝐿0 Inductance due to levitated ball 0.01H 

𝐿1 Electromagnetic coil inductance without the suspended ball 0.02H 

𝑅 Series resistance of the circuit 1Ω 

 

 

3. CONTROLLER DESIGN 

To demonstrate the enhanced performance of the proposed ASFC, a nonadaptive SFC  

 

𝑢𝑓 = −𝑲𝒙 = [𝑘1 𝑘2 𝑘3] [

𝑥1

𝑥2

𝑥3

] (13)  

 

Is designed to stabilize the closed loop system at 𝑟 = 0.04m, which corresponds to the equilibrium  

point (𝒙ss, 𝑢ss) = ([
0.04
0

5.6377
] , 5.6377 ). For this equilibrium point, the linear system (12) becomes 

 

�̇� = [
0 1 0

218 −0.1 −3.4801
0 13.6178 −39.13304

] 𝒙 + [
0
0

39.13304
] 𝑢 (14)  

 

The gain matrix 𝑲 is designed to locate the closed loop poles at positions so that the percentage overshoot is 

1.5% and the settling time is 0.5s (5% criterion). 
 

𝑀𝑃 = 𝑒

−𝜉𝜋

√1−𝜉2
 ⟹  

1.5

100
= 𝑒

−𝜉𝜋

√1−𝜉2
 ⟹  𝜉 = 0.8 and 𝑇s =

3

𝜉𝜔𝑛
 ⟹  0.5 =

3

0.8𝜔𝑛
 ⟹  𝜔𝑛 = 7.5 

rad

s
  

 

Thus, the two complex conjugate poles are −6 ± j4.5. To make the poles 𝑠1,2 dominant, the third pole is 

selected such that |Re(𝑠3)| ≥ 5|Re(𝑠1,2)|; let 𝑠3 = −30. Using Ackerman's formula, the gain matrix is  

 

𝑲 = [0 0 1][𝑩 𝑨𝑩 𝑨2𝑩]−1((𝑨 − (−6 + 𝑗4.5)𝑰)(𝑨 − (−6 − 𝑗4.5)𝑰)(𝑨 − (−30)𝑰))  

= [−79.6114 − 4.3064 0.0731] (15) 
 

and the control law becomes 

 

𝑢 = 𝑢𝑓 + 𝑢𝑠𝑠 = −79.6114𝑥1 − 4.3064𝑥2 − 0.0731𝑥3 + 5.6377 (16) 

 

A block diagram of the MLS with SFC is shown in Figure 1. A drawback of this controller is that it assures 

the stabilization of the system and it achieves the required design specifications only in a certain 

neighborhood of the linearization-based point, i.e., the equilibrium point that corresponds to 𝑟 = 0.04 m. 

To stabilize the system at another position, the controller may fail to stabilize the system, or at least it will not 

achieve the required design specifications.  
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To overcome this problem, an adaptive state feedback controller is designed. This can be  

achieved by parameterizing the linear system (14) in terms of its equilibrium point, i.e., the quantities 

𝒙ss = [𝑥1ss 𝑥2ss 𝑥3ss]
𝑇 and 𝑢ss = 𝑉ss are not given constant values; rather, they are considered as parameters, 

and system (14) can be rewritten as  
 

�̇� = 𝑨(𝒙ss, 𝑢ss) + 𝑩(𝒙ss, 𝑢ss)𝑢 (17) 
 

𝒙ss = [

1
0

√
𝐿0𝑎

2𝑚𝑔

] 𝑟 + [

0
0

√
𝐿0𝑎

2𝑚𝑔
𝑎
] = 𝒈𝒙(𝑟) (18) 

 

𝑢ss = 𝑅√
𝐿0𝑎

2𝑚𝑔
(𝑎 + 𝑟) = 𝑔𝑢(𝑟) (19) 

 

and system (17) can be rewritten as  
 

�̇� = 𝑨(𝑟) + 𝑩(𝑟)𝑢 (20) 
 

and the ASFC is 
 

𝑢 = −𝑲(𝑟)𝒙 = [𝑘1(𝑟) 𝑘2(𝑟) 𝑘3(𝑟)] [

𝑥1

𝑥2

𝑥3

] (21) 

 

where 𝐾(𝑟) is given by 
 

𝑲(𝑟) = [0 0 1] [𝑩(𝑟) 𝑨(𝑟)𝑩(𝑟) (𝑨(𝑟))
𝟐
𝑩(𝑟)]

−1

 

((𝑨 − (−6 + 𝑗4.5)𝑰)(𝑨 − (−6 − 𝑗4.5)𝑰)(𝑨 − (−30)𝑰)) (22) 
 

The control law (21) is a family of controllers, i.e., an adaptive state feedback controller, whose parameters 

𝑘1, 𝑘2, and 𝑘3 are changed (designed) according to the value of the reference input 𝑟. A block diagram of  

the MLS with ASFC is shown in Figure 2. 
 

 

 
 

Figure 1. Block diagram of the MLS with SFC 

 
 

Figure 2. Block diagram of the MLS with ASFC 
 

 

4. SIMULATION RESULTS AND DISCUSSION 

A simulation of the closed loop MLS was carried out using script MATLAB program. Four cases 

were considered, regarding the operating range of the system. The first case is when the system operates in  

a range that lies relatively close to the equilibrium point that corresponds to 𝑟 = 0.04 m; this range was 

achieved by taking an initial position 𝑦0 = 0.02 m and a desired position 𝑟 = 0.06 m. The second case is 

when the system operates in a range that deviates from the equilibrium point by a relatively moderate 

distance; this range was achieved by taking an initial position 𝑦0 = 0.06m and a desired position 𝑟 = 0.10 m. 

The third case is when the system operates in a range that deviates from the equilibrium point by a relatively 

large distance; this range was achieved by taking an initial position 𝑦0 = 0.10m and a desired position 

𝑟 = 0.14 m. The fourth case is when the system operates in a wide range; this range was achieved by taking 

an initial position 𝑦0 = 0.01 m and a desired position 𝑟 = 0.10 m. Figure 3 shows the ranges of the operating 

points of the four cases relative to the linearization-based point, and Table 2 shows the performance of  

the system with the SFC and with the ASFC, for all cases. 
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Figure 3. Ranges of operating points of  

the four cases 

Table 2. Performance of the system 
  Rise time 

(s) 

Settling 

time (s) 

Percentage 

overshoot 

Case 1 SFC 0.26 0.94 3.30% 

ASFC 0.29 0.58 0.73% 
     

Case 2 SFC 0.28 1.10 4.92% 

ASFC 0.31 0.54 0.47% 
     

Case 3 SFC 0.30 1.21 5.08% 

ASFC 0.32 0.51 0.35% 
     

Case 4 SFC Unstable   

ASFC 0.34 0.69 0.53% 
 

 

 

The results given in Table 2 shows that as the operating point deviates from the linearization-based 

point, the performance of the SFC degraded (the rise time, the settling time, and the percentage overshoot are 

increased), and it became unstable in the fourth case. However, the ASFC showed better performance and 

robustness, since the controller gain matrix was adapted with every new reference input to maintain the same 

required design specifications of the system. The responses of both controllers for the four cases are shown in 

Figures 4-11. 

 

 

 
 

Figure 4. Step response of MLS with SFC: case 1 

 
 

Figure 5. Step response of MLS with SFC: case 2 

 

 

 
 

Figure 6. Step response of MLS with SFC: case 3 

 
 

Figure 7. Step response of MLS with SFC: case 4, 
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unstable system 
 

 
 

Figure 8. Step response of MLS with ASFC: case 1 

 
 

Figure 9. Step response of MLS with ASFC: case 2 

 

 

 
 

Figure 10. Step response of MLS with ASFC: case 3 

 
 

Figure 11. Step response of MLS with ASFC: case 4 

 

 

5. CONCLUSION  

In this paper, the design of an ASFC for a MLS has been proposed. The SFC was design by first 

linearizing the MLS about a selected equilibrium point, then the closed loop poles are positioned at locations 

so as to achieve certain design specification. However, when the reference input changed, the nonadaptive 

state feedback controller could no longer satisfy the closed loop design specifications and its performance 

degraded, or even it fails to stabilize the MLS, while the ASFC satisfied the closed loop design specifications 

for all reference inputs. Several conclusions can be drawn from the obtained results. First, the linearization 

design method has a limitation when applied to highly nonlinear system, such as the MLS. Second, 

the ASFC is a suitable solution to stabilize highly nonlinear system, and it outperforms the nonadaptive state 

feedback controller. 
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