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 Bearings are essential components in the most electrical equipment. 

Procedures for monitoring the condition of bearings must be developed to 

prevent unexpected failure of these components during operation to avoid 

costly consequences. In this paper, the design of a monitoring system for  

the detection of rolling element-bearings failure is proposed. The method for 

detecting and locating this type of fault is carried out using advanced 

intelligent techniques based on a perceptron multilayer artificial neural 

network (MLP-ANN); its database uses statistical indicators characterizing 

vibration signals. The effectiveness of the proposed method is illustrated 

using experimentally obtained bearing vibration data, and the results have 

shown good accuracy in detecting and locating defects. 
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1. INTRODUCTION 

The objective of condition-based maintenance is to detect failures of rotating machinery before  

a critical failure occurs. This maintenance approach has many advantages, as it avoids the need to dismantle 

the machine to check the condition of its components. In addition, the chances of detecting a defect before it 

becomes critical increase, thus avoiding a maximum of losses and failures of the machine. For these reasons, 

the automation of fault diagnosis in processes is indispensable. The industrial sector has aroused the interest 

of several researchers over the past decades. 

Bearings in rotating machinery are vulnerable components and the presence of defects in the bearings can 

lead to the failure of these machines. The bearings generally consist of two rings, an inner and an outer, 

between which there is a set of balls or rotating rollers. Ball bearing defects are generally classified in the category 

of eccentricity defects and can be classified as a defect of the outer ring, defect of the inner ring and defect  

of balls [1]. 

Therefore, early identification of the seriousness of these bearing faults during operation can prevent 

machinery malfunction and failure. Defective bearings cause vibrations, therefore these vibration signals can 

be used to evaluate them. The first defect detection approaches consisted of the analysis of vibration signals 

extracted from the machine [2-5]. 

Diagnostic techniques for bearing failures can be classified into three approaches: time analysis 

based on statistical parameters [5, 6], frequency analysis [7, 8], and time-frequency analysis, such as the wavelet 

transform (WT) [9-11] and the Hilbert-Huang transform (HHT) [12]. Time-based diagnostics is not very 

effective when applied to incipient faults, or when the system is exposed to low loads, as described in [6]. 
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Spectral analysis is the most classic approach to detecting failures in rotating machinery, and 

envelope analysis is the most popular method of diagnosing bearing failures. In a complex vibration signal 

from an industrial machine, envelope analysis can be used to extract periodic impacts such as those produced 

during bearing deterioration [6]. However, this classic tool is seriously affected by noise, especially in 

the early stages of defects. Another tool usually used to examine the frequency domain of signals is empirical 

mode decomposition (EMD), which allows to decompose a signal into different modes or IMFs (intrinsic 

mode function) [13, 14]. 

Due to the drawbacks of frequency analysis, it is necessary to find additional methods for analyzing 

the non-stationary of the signal. Time-frequency domain analysis is the most popular approach for 

the analysis of such signals; some can be cited such as the Wigner-file distribution (WVD) and the short-term 

fourier transform (STFT). These methods perform a one-dimensional signal transformation to a two-dimensional 

function; and can therefore provide true time-frequency representations of the signal, but each of 

the frequency-time analysis methods suffer from some problems. However, the use of these methods for 

identifying the nature of the defect and the estimation of its severity requires the knowledge of the expert 

who is not always available [15, 16]. Today, thanks to the development of artificial intelligence techniques, 

this obstacle is overcome. These techniques are capable of managing a monitoring procedure of which they 

represent the expertise side and thus take the role designed for the expert.  

In a diagnostic procedure, after the extraction of characteristics, an intelligent classification system 

is required. Several intelligent classification systems have been developed and used for monitoring and 

diagnosis, such as fuzzy classifiers, genetic algorithms, and support vector machines (SVMs) and artificial 

neural network (ANN) [17-19]. N. Talbi, et al., [19] proposed a robust bearing defect classification 

technique, which was used by the adaptive network reference information system (ANFIS). The results 

obtained by this technique gave a better accuracy of defect classification. In this context, we have tried to 

develop another approach for the detection and classification of bearing defects using again the advanced 

intelligent technique, but this time the technique is based on a perceptron multilayer artificial neural network 

(MLP-ANN). The method is proposed to combine vibration signal analysis and (MLP-ANN).  

Several statistical indicators exist in the literature, more or less efficient and adequate to characterize 

a given signal. The indicators most sensitive to defects have been selected and used as inputs for (MLP-ANN).  

This technique is used for the detection and localization of bearing faults under different load conditions.  

The effectiveness of the proposed approach tests with experimental results. 

 

 

2. EXPERIMENTAL RESULTS 

The database used is a set of rolling vibration signals from "Case Western Reserve University 

Bearing Data Center, [20]. The database of normal or defective ball bearings is collected on a test bench 

consisting of a motor, a coupling and a generator. Defects in the form of dots of different diameters and 

depths have been created on the different parts of the bearings. As shown in Figure 1, the test bench consists 

mainly of a motor on the left side, a coupling "transducer / encoder" at the center, a dynamometer at the right 

side and the control circuits not visible in the Figure 1. 

 

 

 
 

Figure 1. Experimental test-bed (Data bearing center) 

 

 

2.1.  Identification of the bearings used 

The tested bearings support the motor shaft on both sides (drive side and fan side). Simple dot-shaped 

faults are created on the test bearings, using electro-discharge machining. Faults ranging from 0.007 inches to 

0.028 inches in diameter are introduced separately in: 

 The bearing inner ring; 
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 The rolling element (the ball); 

 The bearing outer ring. 

All data files are in Matlab format (* .mat). Each file contains three data: vibration signals on both 

coupling and fan sides as well as the speed of rotation of the motor. The bearings used in our work are  

the side coupling bearings. 

 

2.2. Representation of time signals 
For the validation of the diagnostic procedure used, the acquisitions of time-domain vibration 

signals recorded on the coupling side for four load levels (0, 1, 2, 3 HP) and 12,000 points/second are for 

the following operating modes, see Figures 2 and 3: 1 mil = 0.001 inches, 1 inch = 25.4mm, 1 HP = 1 Horse 

Power = 745.69 Watt 

 

 

 
 

 
 

 
 

Figure 2. Vibration time signals for healthy and faulty operation for different resistive torques  

and defect diameters (0.007 ") 
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Figure 3. Vibration time signals for faulty operation for different resistive torques  

and defect diameters (0.007 ") 

 

 

3. APPLICATION OF ANN FOR DETECTION OF BEARING DEFECTS 

The amplitude of the shocks applied to the bearing depends directly on the diameter of the defect.  

The larger the defect, the greater the shock. The vibration signal, which is the response to the shock, is also 

directly related to the size of the defect. To characterize a vibration signal, several time descriptors exist, 

allowing having information by means of a unique value. The best known are the PEAK (maximum value), 

the RMS (root mean square) which represents the RMS value of the signal, the crest factor and the kurtosis. 

Table 1 summarizes the main conventional descriptors that we are going to use in our work. 

 

 

Table 1. Temporal descriptors [21] 
Temporal indicators Expression 

Peak peak =  sup1≤K≤N|ak| 
 

 

Root Mean Square RMS = √
1

𝑁
= ∑ 𝑎2

𝑘

𝑁

𝐾=1
 

 

Kurtosis Kurtosis =

1
𝑁

= ∑ (𝑎𝑘 − �̅�)4𝑁
𝐾=1

𝑅𝑀𝑆4
 

Impulse Factor 
IMF =

peak

1
𝑁

= ∑ |𝑎𝑘|𝑁
𝐾=1

 

Crest Factor 
CF =

peak

RMS
 

TALAF 
TALAF = log [𝑘𝑢 +

𝑅𝑀𝑆

𝑅𝑀𝑆0

] 

THIKAT THIKAT= log [(𝑘𝑢)𝐶𝐹 + (
𝑅𝑀𝑆

𝑅𝑀𝑆0
)𝑃𝑒𝑎𝑘] 

 

 

In order to determine the type of existing bearing defect, a fault detection and diagnosis procedure 

are proposed using a combination of a statistical analysis technique based on vibration signal indicators and 

an intelligent technique based on artificial neural networks (ANN) [21-26]. Figure 4 shows a simplified flow 

chart of the proposed process. 

The steps of construction and validation of neural networks are diving into three phases: 

-  Choice of network inputs 

The learning base of the ANN is presented in the form of a file or a table (matrix). It is represented 

by classes of vectors, where each class represents a type of operation, and each vector is represented by  

the sampled values. In our case study, there are several vectors, which represent the four types of operation 

modes, and these represent four vectors for the different loads (0, 1, 2, 3 HP) and 12,000 points/second 

concerned.  



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 5, October 2020 :  5288 - 5295 

5292 

The sampled values chosen as inputs of the neural network are the statistical indicators of 

the vibration signals, their mathematical expressions are given in Table 1. Hence the number of inputs on this 

network is equal to 7: 

 

[Peak   RMS   Ku   IMF   CF   TALAF   THIKAT]𝑇 
 

-  Choice of network outputs 

When a fault is detected, the network must indicate a binary number through its output, which 

corresponds to a type of fault; this is called the classification step. In this work, four types of faults are 

considered and are binary coded as shown in Table 2. 

 

 

Table 2. Classification of types of rolling defects 
Bearing condition Codification/desired output 

Healthy state 1000 

Fault in the inner ring 0100 

Fault in the outer ring 0010 
Fault in the ball 0001 

 

 

-  Choice of activation function  

Since the outputs are binary and the inputs are real, the activation function is a sigmoid function as 

depicted in Figure 5. This figure illustrates the structure of the MLP-ANN neuron network used in our work. 

 

 

 
 

Figure 4. Classification scheme by RNA-based on values of the temporal indicators 

 

 

 
 

Figure 5. Neural network design 
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3.1.  Results of learning 

The best learning performances obtained through a good choice of the ANN structure and after 

several learning tests. The resulting network is characterized by a simple architecture comprising an input 

layer (retina), an output layer for the decision and a hidden layer composed of ten neurons whose transfer 

function is of sigmoid type and of linear type for the neuron of the output layer as shown in Figure 6. 

The learning performance of the used ANN is evaluated through the mean squared error (MSE). For our case, 

the ANN reaches a value of 7.1192e-11 after 18 iterations as shown in Figure 7. From the results obtained in 

the test phase, can be seen that the outputs of the ANN follow almost exactly (with an error of 7.1192e -11) 

the desired pre-established outputs. 

 

 

 
 

Figure 6. Building the ANN block 

 

 

 
 

Figure 7. Performance of the neuron network 

 

 

3.2.  Tests of the ANN for fault detection 

Once the ANN has built and its learning has achieved satisfactory performance, we move to  

the comparison stage between examples at the entrance of the network. In fact, these examples belong to two 

databases, the first being the learning base and the second being the test base on which one tests the ability of 

the network to recognize normal examples (not learned). The last operation makes it possible to estimate  

the generalization capacity of the ANN network. As for the network test on the examples that are not learned 

in the learning phase (new examples), their results are shown in Figure 8. From the results obtained in the test 

phase, it can be seen that the outputs of the ANN evolve according to the pre-established desired outputs for 

the different types of operation (healthy state and faulty state with bearing defects). 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 5, October 2020 :  5288 - 5295 

5294 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 8. Outputs and errors of ANN learning, (a) Healthy machine: desired output 1000, (b) Machine with 

Fault in the inner ring: desired output 0100, (c) Machine with Fault in the outer ring: desired output 0010  

and (d) Machine with Fault in the ball: desired output 0001 
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4.  CONCLUSION  
This work is devoted to the proposal of the bearing defect classification using artificial neural 

networks (ANN). The resulting network is characterized by a simple architecture with an input layer (retina), 

an output layer for the decision and a hidden layer of 10 neurons, and graphical results that show the results 

of the training. It can be concluded that better learning performance achieves through a good choice of an 

ANN structure after several learning tests. 
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