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 In cloud computing, load balancing, energy utilization are the critical problems 
solved by virtual machine (VM) migration. Live migration is the live 
movement of VMs from an overloaded/underloaded physical machine to  

a suitable one. During this process, transferring large disk image files take 
more time, hence more migration and down time. In the proposed adaptive 
deduplication, based on the image file size, the file undergoes both fixed, 
variable length deduplication processes. The significance of this paper  
is resumption of VMs with reunited deduplicated disk image files.  
The performance measured by calculating the percentage reduction of VM 
image size after deduplication, the time taken to migrate the deduplicated file 
and the time taken for each VM to resume after the migration. The results show 
that 83%, 89.76% reduction overall image size and migration time 

respectively. For a deduplication ratio of 92%, it takes an overall time of 
3.52 minutes, 7% reduction in resumption time, compared with the time taken 
for the total QCOW2 files with original size. For VMDK files the resumption 
time reduced by a maximum 17% (7.63 mins) compared with that of for 
original files. 
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1. INTRODUCTION  

The evolution of various technologies, such as grid computing, service-oriented architecture, 

virtualization, autonomic, and utility computing, leads to cloud computing. Cloud computing services consist 

of data centres in large scale to host the user’s applications through hardware virtualization. In a fully 

virtualized manner, vast amounts of processing power are accessed by the users by grouping the resources. 

The goals of cloud computing are a pool of resources, providing elasticity rapidly, broad network access, 
providing capabilities on-demand and measured service [1]. A hypervisor or virtualization layer or virtual 

machine monitor (VMM) or play a prominent role in the virtualization concept. It is introduced in the middle 

of the operating system and the hardware. The hypervisor is a virtualization program [2] which creates VMs 

and manages VMs on a system. As virtual machines share the physical resources like disk space, network 

bandwidth, and cores of CPU, resource management, load balancing, and power consumption become critical 

tasks. Some of these issues can be resolved by dynamic resource management. Live virtual machine migration 

or live migration is the dynamic VM management activity that resolves the challenges of resource management 

and power management. During the live migration process, the virtual disk image files which are larger size 

take more significant time to transfer to the target host and hence more migration time and downtime. Hence 
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the objective of this paper is to reduce the size of the virtual disk image file that is going to be migrated using 

the proposed solution adaptive deduplication. The performance of this process measured in terms of 

deduplication ratio, migration and resumption time. 

In this paper, the proposed adaptive deduplication implemented by using both fixed and  

variable-length block deduplication techniques together. They used to identify and eliminate redundant data in 

large virtual disk images to achieve better migration performance. As its name, depending on the size of 

the virtual disk image the type of deduplication was chosen. For smaller (at most 1GB) virtual disk image  

files fixed-length deduplication technique used with 4 KB as the chunk size. For larger VM disk files,  

both deduplication techniques, fixed and variable length together applied. The Rabin-Karp rolling hash 
algorithm found the boundaries of the chunks in variable-length block deduplication. As deduplication process 

performed double time, the VM disk file size reduced much. The adaptive deduplication technique deployed 

in the source host and the process done before transferring the VM memory pages to the target system. 

As the size of the virtual machine memory file to be transferred reduced, total migration time and downtime 

minimized significantly. As deduplication, an additional operation introduced in live VM migration, 

and deduplication time might become an overhead. Hence, the deduplication process parallelized using 

multi-threading in Akka stream. Once the total pages of VM migrated to the target host, these deduplicated 

pages are taken and reunited to build a single VM disk image file. The VM is resumed back in the target host 

within no time as the disk image file size reduced using adaptive deduplication. The deduplication ratio, 

migration time and the resumption time of the live migration process measured and analyzed in this paper. 

The remaining paper organized as, section 1 gives a brief description of live migration, deduplication and 
streaming analytics. The work is related to the live migration after deduplication presented in section “Related 

work”. Section 3 discusses the motivation and architecture of the system. Implementation section presents 

the experimental setup in section 4. Results discussed in section 5. The paper concluded with the conclusion 

and future work. 

Virtual machine migration [3] is the migration of a VM from a given physical server to another,  

by which balancing the load, server consolidation, fault tolerance, online maintenance [4] and minimization of 

the utilization of resources and energy. The significant goals [5, 6] of VM migration are i) load balancing where 

equal load distribution achieved by moving VMs from overloaded host to machines having the minimum load; 

ii) Server consolidation in which the VMs from minimum load server is migrated to the server which is not 

overloaded, thus consolidating all VMs in a single server to reduce power consumption; iii) Fault tolerance is 

the prediction of the failure of a server to avoid performance degradation. There are two categories of VM 

migration [7]. One of them is non- live Migration where VM is switched off and transferred to the target host. 
The significant drawbacks are downtime and performance degradation.  

The other one is Live Migration. It is the movement of a VM from a given system to the other without 

shutting off the power of the VM. In live virtual machine migration, the internal components such as state of 

memory and processor registers migrated to target. The external state information such as virtual disk 

information is accessed through network attached storage (NAS) [8] by physical machines as and when 

required. All the components of a VM such as network connectivity, storage and memory are entirely moved 

from the source host to the destination host. As the migration process is seamless service, interruption not 

observed by the customer. Hence, suspended time and downtime of the VM is very less. Memory migration 

takes a prominent role in VM migration. This process of moving the instance of VM memory from the source 

server to the target server consists of the following phases [9]: 

a.  Push phase: At the point when a virtual machine on the source as yet running, the VMM moves the entire 
pages of memory to the target machine. The pages get dirtied (modified) during transmission.  

These modified pages transferred again until the copying rate of the pages greater than the rate of pages 

modified to guarantee consistency.  

b.   Stop-and- copy phase: The source VM halted, and all the VM pages are moved to the new instance and is 

resumed back on the target. c) Pull phase: The page fault happens when a page required by the VM and is 

not available on the target. As a result, the page is fetched from the source virtual machine through  

the network to the destination. There are two approaches to live virtual machine migration. They are  

i) Post-copy approach; ii) Pre-copy approach. The pre-copy approach is the predominant one. It contains 

push phase and stop and copy phases. High reliability of the system is achieved [10] by this approach. 

1) The hypervisor receives a request for migration from source destination. (Pre-Migration). 

2) After checking the available resources on the target, the resources reserved on the destination for VM. 

If the resources are not available, then the VM on the source machine does not affect. (Reservation). 
3) The working set of pages of VM memory from the origin moved to the destination. 

4) A few memory pages of a virtual machine are modified (dirtied) during the migration process and are 

transferred again and again iteratively in several rounds until the copying rate greater than the dirtying 

rate [11] (Iterative Pre-copy). 
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5) Stop the instance on the source machine, and the new destination receives further pages (Stop and  

Copy) [12]. 

6) The destination sends the acknowledgement to the source once the operating system image is received. 

This is to avoid receiving failure copies (Commitment). 

7) On the target machine, VM starts and resumes after successful migration (Activation). 

Figure 1 shows the pre-copy approach that contains push phases in which the dirty pages are moved 

to the destination repeatedly. During this process, many memory pages updated in the source host called dirty 
pages. The iterative pushing phases stopped when the rate of dirtying the pages is not more than  

the transferring rate of pages, then the stop and copy phase is executed [13]. In this iterative push phase, many 

pages with zeros (zero pages), the pages with similar content of above 80 % (identical pages) and  

the pages which contain 60% to 80% content similar (similar pages) migrated to the destination for VM [14] 

which are not at all required for instance to resume. In this approach, the entire state of an instance is to be 

migrated. This state contains little state information of the connected devices and is moved to the destination 

machine easily. There is no need of transferring the disk state information as NAS is having that. The time for 

migration and downtime is not affected by transferring the small amount of VMs CPU state. Gigabytes of 

information of Memory state necessary and hence transferred. Memory state information contains  

the information about processes running on VM and guest OS memory [15] virtual machine memory content 

includes dirtied memory, requested memory, VM used memory, Allocated memory, and VM configured 

memory. Among all, VM configured memory is vast in size, consisting of a virtual machine disk image file. 
 

 

 
 

Figure 1. Pre-copy approach with iterative push, stop and copy phases machines 
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The metrics to measure the live migration performance are: 

a. Application Degradation: During migration, the performance of the applications running in the migrated 

VM degrades. 

b. Preparation Time: The time duration when migration initiated, minimal CPU state transferred to  

the destination. It includes the entire process of iteratively pushing the dirty pages to the destination  

host [16]. 

c. Down Time: The duration that a VM suspended (out of service) before it resumes on the target host. 

d. Resume Time: The time took by the VM that migrated to resume its operation again at the target machine 

[17]. 
e. Total Migration Time: The entire time is taken for an instance on the source machine to migrate and to 

resume back on the target. 

f. Network Traffic Overhead: The additional operations overhead affect the VM migration technique [18]. 

g. Pages Transferred: The entire set of memory pages of a VM that moved in the migration process [19]. 

Data deduplication, a technology where the required space reduced by eliminating the duplicate data 

in a given file set and the unique data is stored. It merely stores the link to the original data, thus saving 

the space without storing duplicate data again [20]. The classification in Figure 2 shows the types of 

deduplication techniques [21]. Based on data, the techniques classified as file-level and block level. Further 

block-level classified into fixed-length and variable-length deduplication techniques. Based on the location 

where the data duplicated, they are client level and target level. The target level deduplication further 

categorized as in-line and post-process how the techniques are implemented based on that they classified as 
hash-based and content-based. In adaptive deduplication, block-level deduplication techniques, with hash 

computation and at client discussed. In Fixed length block deduplication, the file split into various blocks of 

fixed size. The blocks with similar content removed to decrease the file size. In Variable-length block 

deduplication, the boundaries of the blocks are computed depending on the block contents, and if identical 

blocks found, then they are removed. In Hash-based deduplication in which collision-resistant hash algorithms 

MD5, SHA are used to identify the redundant data. 

 

 

 
 

Figure 2. Classification of data deduplication techniques 

 

 

Streaming analytics [22] is the analysis of streams of data while it is on the wire. The analysis consists 

of understanding data patterns, data classification, or detecting anomalies in the moving data streams. 

In conventional data analytics data is stored into a database and queries are applied to it, which is a time taking 
process. Whereas, streaming analytics is where algorithms and queries are applied live and within a short 

duration of time. Hence, its applications become prominent in the areas such as networking, Internet of things 

(IoT), cloud computing and big data. Akka streams are only for reactive streams, where a large volume of live 

data not handled easily. OutOfMemoryErrors slows down the producers when the consumer cannot keep up. 

One component loses the messages as it is challenging to handle the incoming messages by the component. 

This is called Backpressure. Akka streams match the speed between producers and consumer messages by 

avoiding backpressure. Akka streams handle the data movement without resource exhaustion, buffering and 

losses. Akka is an actor model framework to build fault-tolerant, concurrent, scalable and message-based 

applications. It is easy and powerful to develop multithreaded applications using this framework. On top of 

the Akka framework, a high-level API, Akka streams API built. 

 
 

2. RELATED WORK 

Many researchers used a pre-copy approach to live VM migration. Memory compression concept 

introduced to reduce the volume of the memory to be transferred to the target before initiating the migration 

process. Later on, the memory pages were decompressed at the destination, after, all memory pages arrived 

there. Lossless compression algorithm with minimum CPU overhead (compression and decompression time) 

should be chosen. The compression time directly affects the migration time. Various workloads on VMs had 

several similarities in data. Choosing one algorithm for compression was not enough for better reduction of 

similarities. Hence, different algorithms of compression were chosen and implemented according to the type 
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of pages. Wilson-Kaplan direct-mapped (WKdm) [23] algorithm and Lempel-Ziv-Oberhumer (LZO) were 

used the type of pages accordingly in characteristic-based compression (CBC) algorithm. Concurrent execution 

of compression and decompression tasks performed using multithreading. Some researchers implemented  

the above tasks using the multi-core concept to minimize the time taken for compression. Experiments carried 

out assuming various workloads and 27.1%, 32% and 68.8% reduction in downtime, migration time and total 

pages transferred achieved respectively. 

Some researchers analysed that deduplication had the benefits of dividing the data into tiny chunk 
sizes and also associated with meta-data overhead. Even though compression not used, fixed-length 

deduplication with 4KB chunks yields most efficient storage usage and network resources. At this chunk size, 

storage requirements reduced by approximately 60% when compared Delta encoding techniques. In [24], 

block-level deduplication techniques are used to reduce the backup storage of images and achieved 87% of 

space-saving. Salted message digest5 (MD5) hash algorithm used to find the duplicates. The most significant 

number of unique hashes obtained when the chunk size is 8k. Extreme binning explains data deduplication in 

backup systems. In [25], Rabin fingerprints calculated using collision-resistant hash algorithms like MD5 and 

secure hash algorithm (SHA). These fingerprints used to identify the duplicated blocks based on file similarity 

instead of locality. 

Chunk index is split into two tiers to achieve parallelism in the deduplication process. Using this 

process, throughput increased with low overhead. An optimized Rabin-Karp algorithm used in incremental 

modulo-K(INC-K) algorithm [26], which is modulo arithmetic in nature used for deduplication with 
a minimum number of arithmetic operations. Least recently used (LRU)-based index partitioning used for 

fingerprint storing and lookup. To maintain better chunking speed and deduplication ratio context-aware 

chunking used. 66% better deduplication ratio achieved on efficient chunking. In [27] several data 

deduplication techniques like file-based, block-based and byte-based introduced in post-copy, pre-copy and 

hybrid types of live VM migration to reduce the count of pages that were to be moved from the origin server 

to target host to achieve load balancing with minimum migration time.  

Some researchers did reverse deduplication, RevDedup [28], a deduplication system for optimizing 

the latest backups reads of VM images. Unlike the traditional deduplication that removes duplicates from new 

data, RevDedup eliminates duplicates from old data, while keeping the structure of new data as sequential and 

thereby shifting fragmentation to old data. High deduplication efficiency, high read throughput and high 

backup throughput achieved by doing the experiments on the real world VM image snapshots of the users. 
In [29], a secure and efficient data deduplication technique for storing the data received from IoT sensors in 

the cloud. SecDedoop [30] in which a secure deduplication mechanism used for access control of bigdata over 

Hadoop Distributed File System. In adaptive deduplication [31], the virtual disk image files taken as input to 

the algorithm. If the file size was less than or equal to 1GB, a reasonable number of duplicates were found and 

eliminated using fixed-length block-level deduplication. If the VM disk image file greater than 1 GB, 

then the file was divided into chunks of size 1 GB each except the last one. For each chunk, that obtained here 

undergo fixed-length deduplication. The file undergoes fixed-length block deduplication with 4KB as 

the chunk size. In the first step, the method removes duplicates partially. Then the resultant files were given as 

input to the variable-length block deduplication, and much more duplicates identified and eliminated. By using 

this technique, the majority of duplicates found as the Rabin-Karp rolling hash algorithm used to determine 

the chunk boundaries. No researcher discusses the reunion of VM image pages at destination host and the time 
taken for the migrated VM to resume. Based on this motivation, the VM pages that migrated after adaptive 

deduplication reunited into a single disk image file and the time taken for the VM to resume discussed in 

this paper. 

 

 

3. MOTIVATION 

In the live migration process, there will be service disruption in less than tens of milliseconds: 

additional network and CPU resources consumed due to iterative tracking, scanning and transfer of VM pages. 

Hence there will be VM performance degradation that is being migrated. Hosts and network performance that 

is, all the hosts, VMs or other processes can be affected [32, 33]. This brownout [34] condition avoided by 

reducing the time that a VM spends in live migration. This condition achieved by eliminating the count of VM 

pages migrated during the live migration process. Many researchers suggest compression and deduplication 
techniques to minimize the size of VM pages. Data deduplication [35] is the best way to reduce the memory 

pages. At the target host, the deduplication process done in a reverse manner, and the migrated VM also 

resumed within a short time as the size of VM disk image is reduced with several deduplication techniques at 

the source before migration.  

In cloud computing, live migration of VMs plays a vital role to achieve the goals like load balancing, 

server consolidation, fault tolerance and system maintenance. In this research work, the cloud environment was 
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built using the OpenStack [36]. The VMs with configuration 2GB of RAM and 10GB of the hard disk was 

created and launched with different operating systems. In glance component of the OpenStack, image registry 

maintains VDI, VHD, VMDK, QCOW2 images of instances as shown in Figure 3. These virtual disk images 

take larger memory and include many zero pages, similar pages and duplicate pages which are not required to 

transfer to the target host. It also takes more migration time to move these additional pages. Here, an adaptive 

deduplication algorithm is used to remove the extra pages by applying deduplication process twice. In adaptive 

deduplication, VM disk pages undergo both fixed-size and variable-size deduplication processes.  

In the variable-size deduplication process, content defined chunking [37] is done, and many duplicates are 

removed. Only the unique data transferred to the target host, which optimizes the total time for migration and 
downtime. The architecture shows how an adaptive deduplication algorithm performed. In adaptive 

deduplication algorithm, based on the size of the virtual disk image file the type of deduplication process 

applied. For smaller files (1GB or less), only fixed-length block-level deduplication process with 4KB chunk 

size applied as it was efficient on smaller files. For larger files (more than 1GB) the file was split into 1GB 

chunks except the last one. Each chunk undergoes both fixed and variable-length block-level deduplication 

processes, as explained in the previous sections. 

 

 

 
 

Figure 3. System architecture 

 

 

The larger virtual disk file was split into multiple splits because, for a single large file, the execution 

time of the deduplication process was more. Many experiments with different sizes of file splits were carried 

out and based on the practical experience, the split size decided as 1GB. In adaptive deduplication,  

multi-threading concept was used in variable-length block-level deduplication as it is computationally 

expensive [38]. This process implemented using Akka stream with multi-threading to accelerate  

the deduplication process as content defined chunking (CDC) [39] was challenging to parallelize because of 

content dependency. In this work, identifying chunk boundaries and hash code computation by SHA-1[40] 

algorithm performed in parallel by using two threads. The hash code of two chunks compared and if it was 
unique, then only the chunk was stored in the hash table. The reduced VM disk image file migrated to  

the destination and after receiving all the unique chunks at target one thread is used to reunite all the pages 

received into a single virtual machine disk image file with less size. The VM is resumed back on the target 

within no time and is ready to run its applications. The reunion of deduplicated VM pages at target and 

resumption of VM implemented. The system architecture is as shown in Figure 3. 

 

 

4. RESULTS AND DISCUSSIONS 

Different formats of VM images such as VDI, QCOW2, VMDK, VHD, files took from OpenStack 

image registry. The VMs were created with a standard configuration of 2GB memory and 10GB hard disk. 

The Table 1 shows the size of several VM images of various operating systems such as CentOS, Ubuntu of 
different formats. This dataset collected from the real private cloud environment that was created by OpenStack 

with the mentioned. After adaptive deduplication, the deduplicated chunks of VM image disk image files 
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migrated to the destination host and all the deduplicated chunks are reunited into a single VM disk image file.  

As the chunks have given the unique reference number while doing the chunking process in adaptive 

deduplication, these reference numbers ensure the order of pages that are to be reunited. After reuniting all 

the deduplicated pages at the target host, the size of all the virtual disk image files noted and compared with 

their original sizes. The results are shown in Figure 4 and Figure 5. They clearly show that adaptive 

deduplication reduces the size of VM to be migrated in a better way.  By using the proposed technique, 6.61% 

minimum for Ubuntu files and 95.5% maximum deduplication rate obtained for centos files. 
To resume the migrated VM at the target host, not only the virtual disk image is required but also  

the metadata file is required. These are of small size and are migrated separately from source to destination 

host as the unique pages. These data files do not affect migration time. Virtual disk image file of each format 

is reunited along with their metadata files and resumed at the target host. The time taken to resume for each 

VM with reunited disk pages at the target host noted and compared with that of the original virtual disk image 

file. The results in Figure 6 shows the comparison of the total size of VMDK, VHD, VDI and QCOW2 formats 

of different operating systems such as CentOS7, CentOS6.9, Ubuntu12.04, Ubuntu 14.04, Ubuntu11.10 before 

deduplication (original size) and after reuniting the adaptive deduplicated pages. The Figure 6 also shows 

the time taken for the VMs of different formats to resume in the target host. It clearly shows that as the size of 

the VM image reduces the resumption time for a VM after migration on target host also reduced. Figure 7 

represents the comparison of the deduplication ratio of adaptive deduplication and the percentage of resumption 

time of all virtual disk images with different formats. It clearly shows that the better the deduplication ratio, 
the less the time taken for a VM to resume on the target host. For a deduplication ratio of 92%, it takes an 

overall time of 3.52 minutes, which is a 7% reduction in resumption time when compared with the time taken 

for the total QCOW2 files with original size. For VMDK files the resumption time is reduced by a maximum 

17% (7.63 mins) when compared with that of for original files. 

 

 

Table 1. Dataset of virtual disk images in bytes4 
Image Format CentOS7 CentOS6.9 Ubuntu12.04 Ubuntu14.04 Ubuntu 11.10 

VMDK 1242859 446922 3511238307 4882761848 1831810 

VHD 146448 24576 3511646874 149467 477556 

VDI 2322209 2216387 3412228224 4856112381 2423744118 

QCOW2 161368 131729 3462770688 4855561190 498630 

Total (in bytes) 3872884 2819614 13897884093 14594584886 2426552114 

 

 

 
 

Figure 4. Fixed length vs variable length vs adaptive deduplication technique 
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Figure 5. Original size vs after reunion of the deduplicated pages 

 

 

 
 

Figure 6. Total size vs resumption time 

 

 

 
 

Figure 7. Deduplication ratio vs resumption time 

 
 

5. CONCLUSION 

In this paper, the results show that adaptive deduplication is an efficient deduplication technique to 

reduce the virtual disk image file when compared to the existing fixed length and variable length deduplication 

techniques. It shows that 83% of reduction in overall storage achieved. The migrated deduplicated chunks after 

adaptive deduplication then reunited into a single virtual disk image file at the target host. The metafiles also 
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migrated to the target host. The VM with reunited virtual disk image file along with metadata files resumed at 

target host and the time noted. This time compared with the VM resumption time with the original disk image 

file. The results show that the better the deduplication ratio, the less time taken for a VM to resume on 

the target host. For a deduplication ratio of 92%, it takes an overall time of 3.52 minutes, which is a 7% 

reduction in resumption time when compared with the time taken for the total QCOW2 files with original size. 

For VMDK files the resumption time is reduced by a maximum 17% (7.63 mins) when compared with that of 

with original files. 
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