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 A partially isolated four-port converter is proposed in this paper for 

interfacing two renewable sources and a storage device with an isolated load. 

This converter is capable of achieving high power density because of the 

effective sharing of devices among the input ports. Combined PWM and 

secondary phase shift control is employed to have a decoupled power flow 

management of input and output side ports. PWM control is used at the input 

side for maximum power tracking of renewable sources and battery power 

management. At the output side, secondary Phase shift control is used for 

controlling the output voltage. The adopted secondary phase shift control 

allows the primary switching legs to be operated with 1800 phase shift which 

results in reduced current ripple at input ports. The working principle of the 

converter, its output characteristics and control strategy are discussed. 

Working of the converter and its control strategy is verified through simulation for 

different input and output conditions. Further, to validate the simulation results, 

the experimental results of a 500 W prototype are also provided.  
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1. INTRODUCTION 

Recently there is an increased penetration of renewable energy generation systems in various fields 

such as spacecraft power supplies, electric vehicles, and micro-grids. The use of more than one energy source 

with energy storage element becomes necessary in renewable power generation systems to ensure continuous 

supply to the load or grid, despite their intermittent nature [1-3]. For interfacing, multiple renewable energy 

sources and storage with the load or grid, either several individual two-port converters or a single multiport 

converter can be used. The multiport set-up is preferable due to its reduced size and cost, high power density, 

high efficiency and centralized control features [4-6].  

Various topologies of multiport converters, including non-isolated multiport [7-9], fully-isolated 

multiport [10-12] and partially-isolated multiport [13-16] topologies are reported in many works of literature. 

Non-isolated topologies have a compact structure and are mostly developed from the fundamental buck, 

boost and buck/boost circuits. The limitations of these topologies are that attaining ZVS in switching devices 

is complex and widely varying voltage levels at source ports cannot be interfaced. Fully-isolated topologies 

allow wide voltage variations at the ports by employing a multi-winding transformer. These topologies are 

derived from half or full bridge converters and almost all active switches achieve ZVS. The use of so many active 

devices without any sharing makes the system more complex and reduces the power density. Partially-isolated 

topologies are derived by integrating non-isolated converters with isolated converters. These topologies 

https://creativecommons.org/licenses/by-sa/4.0/
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achieve high power density, with a compact structure. In these topologies, a single winding transformer is 

used for providing necessary isolation with flexible voltage handling capability at the load port, while the 

primary sources and storage ports are not isolated. 

Many partially-isolated multiport topologies have been reported in works of literature because of 

their remarkable advantages. Some boost integrated full-bridge three-port converters derived by integrating non-

isolated boost converters with isolated full-bridge phase-shifted converters have been proposed in [17-20] and 

four-port converters in [21, 22]. In all these converters phase shifting at primary side is employed, i.e., for 

tracking the maximum power point of the sources and for battery management, the PWM control of the 

switches at primary side switching legs are used and the phase shift between the switching pulses of the same 

primary side switching legs are used for output regulation. Hence in primary phase shift control, the 

decoupling of power control loops becomes difficult, and the voltage of all the ports are happened to be 

regulated by the same control variable and duty cycle of primary side switches which increases the control 

difficulty. Similar to the primary side phase-shifted two-port converters, multiport converters also have the 

limitations of higher current ripple at input ports and higher conduction losses due to the current circulation 

at the free-wheeling interval, low duty cycle utilization and more recovery losses due to diodes of the 

secondary-side rectifier. 

The secondary phase-shift control technique has been introduced to overcome the above said drawbacks 

of primary phase shifting, and have applied to several single-input single-output converters [23-25]. In this paper, 

a partially isolated four-port converter with combined PWM and secondary phase-shifting control is 

introduced by adding controllable switches to the secondary side. In this combined PWM and secondary 

phase-shift control, the PWM control of the primary side switches is used for maximum power tracking and 

battery power management. And the difference in switching instants of primary and secondary side switches 

called as phase shift is used for controlling the output voltage. The control variables that determines the duty 

cycles of the input side boost converters only depends on the voltages and currents of sources or battery and 

not on the output voltage. This decoupling of the control variables of the phase shift and duty cycle simplifies 

the difficulty in control and decouples the power flow control of input and output ports. Also, due to the 

secondary side phase-shifting strategy, the primary side switches can be operated with 1800 phase shift (like 

interleaving), which results in a reduction of ripple currents at input ports and improves duty cycle usage of 

primary switches. 

 

 

2. PROPOSED PARTIALLY ISOLATED FOUR-PORT CONVERTER 

2.1.  Circuit description 

The proposed partially isolated four-port converter with combined PWM and secondary side phase-

shifted control is shown in Figure 1. It is applied for connecting two PV sources and a battery to a standalone 

dc-load. The MOSFETs S1 and S2 and inductor L1 form a boost converter, connecting source PV1 and the 

battery. While MOSFETs S3 and S4 and inductor L2 form another boost converter connecting source PV2 

and battery. Thus from PV to the battery, the proposed converter works as a boost converter. A dc blocking 

capacitor CB is introduced between the phase legs to compensate for the differences in voltage across the 

switching legs, which arises due to the asymmetrical operation caused by the difference in duty cycles. The 

output port is isolated from the source and storage ports through a high-frequency transformer. To the 

secondary of high-frequency transformer, a full bridge active rectifier with four controllable MOSFET 

switches S5-S8 is connected. From battery to load port, the converter works as an isolated full-bridge 

converter with secondary side phase shifting. Lx is the leakage inductance of the high-frequency transformer 

and the required external inductance which determines the maximum power transferred between the primary 

and secondary sides. Here, the primary side switches are shared by both boost and phase-shifted converters 

thus reducing the component count and increases the power density. 
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Figure 1. Proposed partially isolated four-port converter 
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2.2.  Working of boost converters 

The section of the converter from the PV sources to the battery is equivalent to two boost 

converters. The waveforms depicting the operation of the boost converters are shown in Figure 2. Inductor L1 

gets charged when S2 is ‘on’ and when S1 is ‘on’ it gets discharged. Similarly, the inductor L2 gets charged 

when S4 is ‘on’ and when S3 is ‘on’ it gets discharged. The power flow between the sources (PV1 and PV2) 

and the battery is controlled by duty cycles of the corresponding switches S2 and S4. The tracking of the 

maximum power of the PV sources is also achieved through duty cycle control of the switching devices. The 

voltage transfer ratio of the boost converter section is given by, 

 

  𝑉𝐵 =
𝑉𝑃𝑉1

1−𝐷1
=

𝑉𝑃𝑉2

1−𝐷2
 (1) 

 

where VB is the voltage at battery port, VPV1 and VPV2 are the voltages at PV ports, D1 and D2 are the duty 

ratios of the boost converter one and two respectively. 
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Figure 2. Operational waveforms of primary side boost converters 

 

 

2.3.  Working of full bridge secondary side phase shifted converter 

The section of the converter from the battery to the load is equivalent to a secondary phase-shifted 

full-bridge converter. The voltage conversion ratio (m) of this section is given as, 

 

𝑚 =
𝑉𝑂

𝑛𝑉𝐵
 (2) 

 

where VO is the voltage of output port and n is the turn’s ratio of the high-frequency transformer. 

The load conditions of the output port determine the shape of the secondary side inductor current. 

For heavy load conditions, the secondary side inductor current will be continuous and for light load 

conditions, it will be discontinuous. Operational analysis for continuous current conduction mode is given in 

the following section. For analysis, it is considered that a switching cycle consists of five intervals and the 

circuit representing the state of the converter in each interval is shown in Figure 3 and waveforms related to 

each interval are shown in Figure 4. ‘VAB‘ and ‘VCD‘ are the voltages of primary and secondary bridges 

respectively.′ 𝜑′ (angle of phase shift) is used to represent the difference in switching instants of input side 

switches and the corresponding output side switches. By adjusting this phase angle, the power transfer from 

the primary to the secondary side is controlled. 

Interval I [t0-t1]: MOSFET switch S1 is turned ‘on’ at the time ‘t0’ and its body diode will be 

conducting due to the current flowing through inductor LX, achieving zero voltage turn-on. S4, S6, and S7 

remain ‘on’. The secondary side inductor current, ILX increases linearly and reaches its peak at time ‘t1’, 

ending the switching state. The change in inductor current is given by, 

 
𝑑𝐼𝐿𝑥

𝑑𝑡
=

𝑛𝑉𝐵+𝑉𝑜

𝐿𝑥
 (3) 
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 𝐼𝐿𝑥(𝑡) =
𝑛𝑉𝐵+𝑉𝑜

𝐿𝑥
(𝑡 − 𝑡0) + 𝐼𝐿𝑥(𝑡0);   𝑡0 ≤ 𝑡 < 𝑡1 (4) 
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Figure 3. Equivalent circuits in continuous conduction mode, a) interval-i (t0-t1), b) interval-ii (t1-t2),  

c) interval-iii (t2-t3), d) interval-iv (t3-t4), e) interval-v (t4-t5) 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 11, No. 2, April 2021 :  1086 - 1094 

1090 

S1 S2 S1

S4 S3 S4

S5,S8 S6,S7 S5,S8

t

t

t

t

t

t

t

Vgs5,gs6,gs7,gs8

Vo

-Vo

VB-VC

S2

S3

-VC

-VB-VC

n(VB-VC)+Vo

-nVC-Vo
n(VB-VC)-Vo

-n(VB-VC)-Vo

-n(VB-VC)+Vo

t1 t2 t3 t4 t5t0

Vgs1,gs2

Vgs3,gs4

VAB

VCD

VLX

ILX

 
 

Figure 4. Waveforms of secondary side phase-shifted converter 

 

 

Interval II [t1-t2]: At time ‘t1’, the secondary side switches S5 & S8 turn ‘on’, the current through the 

inductor Lx,   discharges, delivering power to the load. Thus,  

 
𝑑𝐼𝐿𝑥

𝑑𝑡
=

𝑛𝑉𝐵−𝑉𝑂

𝐿𝑥
 (5) 

 

 𝐼𝐿𝑥(𝑡) =
𝑛𝑉𝐵−𝑉𝑂

𝐿𝑥
(𝑡 − 𝑡1) +    𝐼𝐿𝑥(𝑡1);   𝑡1 ≤ 𝑡 < 𝑡2 (6) 

 

Interval III [t2-t3]: At time ‘t2’, MOSFET switch S1 turns ‘off’ while S2 turns ‘on’. S4, S5, S8 remain 

‘on’. The secondary side inductor discharges, delivering power to the load in this interval. Hence, 

 
𝑑𝐼𝐿𝑥

𝑑𝑡
=

−𝑉𝑜

𝐿𝑥
 (7) 

 

𝐼𝐿𝑥(𝑡) =
−𝑉𝑜

𝐿𝑥
(𝑡 − 𝑡2)  𝐼𝐿𝑥(𝑡2);     𝑡2 ≤ 𝑡 < 𝑡3 (8) 

 

Interval IV [t3-t4]: While MOSFET switch S4 turns off at time ‘t3’, S3 turns ‘on’ with ZVS. The 

switches S2, S5, S8 remain conducting. The voltage across the inductor LX will be negative which results in a 

linear decrease of current (ILX) through it. Thus,  

 
𝑑𝐼𝐿𝑥

𝑑𝑡
=

−𝑛𝑉𝐵−𝑉𝑜

𝐿𝑥
 (9) 

 

 
−𝑛𝑉𝐵−𝑉𝑜

𝐿𝑥
(𝑡 − 𝑡3) + 𝐼𝐿𝑥(𝑡3);    𝑡3 ≤ 𝑡 < 𝑡4    (10) 

 

Interval V [t4-t5]: At time ‘t4’, the secondary side switches S5 and S8 goes to ‘off’ state while S6 and 

S7 turn ‘on’. The switches S2, S3 at the primary side keep conducting. The current through the inductor ILx 

reverses and increases in the opposite direction. Thus, 
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𝑑𝐼𝐿𝑥

𝑑𝑡
=

−𝑛𝑉𝐵+𝑉𝑜

𝐿𝑥
 (11) 

 

𝐼𝐿𝑥(𝑡) =  
−𝑛𝑉𝐵+𝑉𝑜

𝐿𝑥
(𝑡 − 𝑡4) + 𝐼𝐿𝑥(𝑡4);  𝑡4 ≤ 𝑡 < 𝑡5  (12) 

 

2.4.  Output characteristics 

For deriving the expression for output voltage, the average current of the secondary side inductor is 

considered, 

 

𝐼𝑎𝑣𝑔 =
1

2𝑓𝑠𝐿ℎ𝑓
𝜑(1 − 𝜑)𝑉𝑜 (13) 

 

The supplied input power is,  

 

𝑃𝑖𝑛 = 𝑛𝑉𝐵𝐼𝑎𝑣𝑔 =
𝑛𝑉𝐵𝑉𝑂

2𝜋2𝑓𝑠𝐿𝑋
𝜑(𝜋 − 𝜑) (14) 

 

Output power is 𝑃𝑜 =
𝑉𝑂

2

𝑅𝐿
, 

Neglecting the transformer and switching losses and considering 𝑃0 =  𝑃𝑖𝑛, 

The output voltage is given by, 

 

𝑉𝑜 =
𝑛𝑉𝐵

2𝜋2𝑓𝑠𝐿𝑋
𝑅𝐿𝜑(𝜋 − 𝜑) (15) 

 

The output power is given by, 

 

𝑃𝑜 = (
𝑛𝑉𝐵

2𝜋2𝑓𝑠𝐿𝑋
)

2

𝜑2(1 − 𝜑)2𝑅𝐿 (16) 

 

From the output voltage and power equations, it can be inferred that the output voltage and power is 

the function of phase shift alone and not on the duty cycles of primary side switches. 

 

 

3. PROPOSED CONTROL METHOD 

The combined PWM and secondary phase-shifting control is employed for power management of 

ports and is shown in Figure 5. Four control loops are employed for tracking the maximum power of two PV 

sources, charging and discharging control of battery and regulation of load. At PV ports, voltages and 

currents are sensed and maximum power tracking is achieved through MPPT control loops. In the battery 

port, constant current charging and constant voltage charging control are achieved with battery current (BCC) 

and battery voltage (BVC) control loops. For primary side control, the minimum of the control variables 

coming from the MPPT and battery regulator blocks are used for generating duty cycles D1 and D2 for the 

primary side switches. For MPPT widely used Perturb and observe algorithm is used to generate the duty 

cycles. The output voltage regulation (OVR) control loop employs a simple voltage control technique, where 

the voltage at the output is sensed to calculate the corresponding phase-shift required between the switching 

instants of primary and secondary switches. 
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Figure 5. Combined PWM and secondary side phase-shifting control 
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Here, the currents and voltages at PV and battery ports determine the duty cycles D1 and D2. The 

output voltage determines the phase-shift between the primary and secondary switches. The voltage at the 

output port doesn’t have any impact in the process of duty cycle determination. Thus power control of input 

ports is decoupled from output ports. 

 

 

4. RESULTS AND DISCUSSIONS 

Simulation is carried out for verifying the working principle of the proposed four-port converter and 

its control structure using the following parameters: Battery voltage (VB=80 V), PV voltages=30-40 V, Load 

voltage=100-120 V, Load power=0-500 W, switching frequency=10 KHz, Transformer turns ratio=1.5, 

secondary side inductor (LX=60.61 𝜇H), Boost inductors=0.49 mH, Blocking capacitor (CB=15  𝜇f). In 

Figure 6, the steady-state inductor current waveforms of the buck/boost converters at the primary side are 

shown. The midpoint voltages from the switching legs of input and output side bridges and the corresponding 

load voltage waveform for that phase-shift are given in Figure 7. 

 

 

 
 

Figure 6. Gate pulses and boost inductor current 

waveforms 

 
 

Figure 7. Phase-shifted voltages and output voltage 

 

 

Further simulation is performed by varying power levels of different ports and the observations are listed 

in Table 1 and Table 2. It is evident from Table 1, that the variations in power generated by PVs have no effect on 

the output voltage as the duty cycle control loop and output voltage regulator loop are decoupled from each other. 

And from Table 2, it is evident that the load changes does not have any effect on PV power but only on battery 

power, which ensures that the control loops for phase-shifting and duty cycle are decoupled from one other. Thus 

the output regulation can be done simultaneously while tracking the maximum power of PVs, by adjusting the 

battery power. 
 

 

Table 1. Power at different ports when load  

power is constant 
 SISO DI DO 

PPV1+ PPV2 (W) 0 360 600 

PB(W) 500 140 -100 

Po(W) 500 500 500 
 

Table 2. Power at different ports when PV power 

remains constant 
 SISO DI DO 

PPV1+ PPV2 (W) 300 300 300 

PB (W) 80 125 -100 

Po (W) 380 425 200 
 

 

 

After verifying the working of the four-port converter with simulation, a prototype model of 500 W 

rating shown in Figure 8 has been built for further validation of the analysis and simulation. The inductor 

currents of boost converter section at steady state with the gate pulse are shown in Figure 9. In Figure 10, 

primary and secondary phase-shifted voltages and the corresponding output voltage at steady state are given. 

From Figure 11, it is clear that for load changes, there is only a change in battery current and not in output 

voltage. Figure 12 shows that current from PV1 is constant and PV2 decreases, for this change the battery is 

compensating by discharging. The experimental results match the simulation results pretty well. 
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Figure 8. The prototype of four-port converter 

 

 

 
 

Figure 9. Current waveforms of boost inductors at 

the primary side 

 
 

Figure 10. Phase-shifted voltages from the primary 

and secondary bridge 

 

 

 

 
 

Figure 11. Battery current variations for load current 

 
 

Figure 12. Battery current variations for PV current 

variations 

 

 

5. CONCLUSION 

A partially isolated four-port converter, employing combined PWM and secondary phase-shifting 

control has been developed and applied for connecting two PV sources and a battery to a dc-load. This 

converter has the advantage of simplified structure and higher power density due to the effective sharing of 

components among the input ports.The complexity in control of the converter also has been reduced due to 

the adoption of combined PWM and secondary phase-shifting control technique. This control technique 

effectively decouples control variables of the duty cycle and phase-shift and provides an independent power 

flow control of input and output ports. Also, the current ripple at the PV ports of the two boost converters is 

reduced significantly in the secondary phase-shift control technique than primary phase-shift control. The 

working principle of the converter and its output characteristics and control strategy were discussed. 

Simulation and experimental results demonstrate the working of the proposed converter and the feasibility of 

its control strategy for different operating conditions. Thus, the proposed converter can be applied for 

renewable energy based stand-alone or micro-grid applications due to its remarkable merits. 
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