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 Assistance robotics is presented as a means of improving the quality of life of 

people with disabilities, an application case is presented in assisted feeding. 

This paper presents the development of a system based on artificial 

intelligence techniques, for the grip of a glass, so that it does not slip during 

its manipulation by means of a robotic arm, as the liquid level varies.  

A faster R-CNN is used for the detection of the glass and the arm's gripper, 

and from the data obtained by the network, the mass of the beverage is 

estimated, and a delta of distance between the gripper and the liquid.  

These estimated values are used as inputs for a fuzzy system which has as 

output the torque that the motor that drives the gripper must exert. It was 

possible to obtain a 97.3% accuracy in the detection of the elements of 

interest in the environment with the faster R-CNN, and a 76% performance 

in the grips of the glass through the fuzzy algorithm. 
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1. INTRODUCTION 

Assistance robotics has gained importance in research in the last decade. An example of this,  

the international federation of robotics mentions in [1], which is estimated by the end of 2019 that about 31 

million robots will perform tasks in homes around the world. In [2], the development of assistant robots 

stands out, especially in areas related to medicine, where robotic systems are used, among multiple 

applications, in tasks focused on patient care. Currently, several pathologies and/or musculoskeletal problems 

affect daily life of people, whether caused by an accident or by their advanced age, causing them to not be 

self-sufficient in the feeding process, e.g. Guillain – Barré syndrome which affects the peripheral nerves of  

a person [3], or because of some disease derived from a partial cerebral palsy [4]. 

Taking into account the possible motor limitations that people can present to feed themselves, 

various research have focused on the development of robotic support systems to assist them in this process. 

An example is shown in [5], where a robotic arm that establishes a trajectory to feed a user from an algorithm 

that is based on the 3d capture of the environment by means of a Kinect sensor is presented. With this, it is 

possible to identify the position of the user's mouth and a PID controller is implemented where its constants 

are calculated from a multilayer neural network. In [6], based on electroencephalography (EEG) signals and 

their analysis by implementing steady state visual evoked potentials (SSEVP), the intentions of the food that 

the patient wishes to consume are estimated, and by implementing a machine vision system, a cascading  

Haar classifier is used, the user's mouth is detected so that a robotic agent takes the food to it. In [7],  

the development of a robotic system to bring the food to the user is presented, which is based on an RGB-D 

camera and discriminative optimization (DO) method for locating the mouth of the person, managing to 

operate said system in real time. 
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In the state of the art, it can be identified that current systems to assist people in the feeding 

assistance process are supported by machine vision techniques. Nowadays, the most robust machine vision 

systems implement deep learning (DL) algorithms [8], within which are convolutional neural networks 

(CNN) [9], that are used primarily for image processing tasks focused on pattern recognition. CNNs were 

introduced in [10] and initially used for the recognition of handwritten numbers, but given the high 

computational cost in hardware and software for the equipment of the time, they were not viable for 

applications with greater complexity. In 2012, in the ImageNet [11], which is a challenger focused on 

implementing machine vision techniques for the classification of more than one million images, a CNN 

called AlexNet [12] was presented. This was supported by a GPU for network calculations, reducing training 

and classification times, and surpassing the traditional machine learning techniques in percentage accuracy. 

Since then, they have been implemented in various applications, for example, in [13] they are used for  

the recognition of food products in a refrigerator, obtaining an accuracy of 94% in their classification.  

In [14], CNNs for the identification of people are implemented, from being trained with face images 

obtaining a 97.3% accuracy in the detection of more than 2600 people. In [15], CNNs are used for  

the identification of actions in people from UFC100 database [16], obtaining a 78.76% accuracy in  

the identification of the action in video sequences. 

An important stage that is not commonly addressed in food systems is the supply of beverage to  

the user. Although there are investigations such as the one presented in [17], which focuses on the detection 

of the glass and on giving the drink to the user by means of a robot, the amount of liquid that can be in  

the glass is not foreseen so that the torque that the gripper actuator must exert is also established. The above 

observation raises a problem that can cause the glass to fall due to lack of exerted torque or, on the contrary, 

due to excess torque, the structure of the glass is affected. This article presents the development of a system 

in which two types of artificial intelligence techniques are implemented together, specifically a faster  

R-CNN [18] and a fuzzy system [19]. With them, it is estimated the torque that a motor must exert for  

a gripper to make the grip of a glass, in order to be able to lift it without it slipping, or the internal fluid spills. 

Thus, an alternative to the variation of liquid level is provided when it is supplied to a user by means of  

an assistance robot, by means of a visual control algorithm. 

This article is divided into five main parts. In the first part, a general outline of the process for  

the manipulation of glass and the established virtual environment is presented. The second part shows  

the acquisition of the database, the training parameters of the network and the results obtained with it.  

The third part shows the fuzzy system proposed to estimate the torque that must be exerted by the motor  

that drives the gripper. In the fourth part, a user interface is presented that allows the acquisition of  

the image database, the training of the faster R-CNN, the test section and the performance of the system as  

a whole for the manipulation of the glass. Finally, the conclusions derived from the results obtained  

are presented. 

 

 

2. RESEARCH METHOD 

In Figure 1, a general scheme of the designed system is shown, where from an RGB-D supervisory 

camera, the capture of the scene of interest (gripper + glass) is taken. This is used as input for a faster  

R-CNN, which is trained to detect the existence of the glass with liquid and the gripper, indicating in turn  

the region of the image where each one is located. With the detection of the position of the glass in  

the image, its centroid is calculated, and from this value on the camera´s depth map, the distance to the fluid 

is calculated and its mass is estimated. To calculate the torque to be exerted, a fuzzy system is implemented, 

which receives as inputs the estimated mass and a delta of the distance of the fluid from the gripper. These 

two parameters were chosen since, depending on the estimated mass, a different torque must be exerted and, 

if the delta increases, it means that the torque is not sufficient and the glass is slipping when it is held by  

the gripper. 

In the development of the system, the tests are implemented in a virtual environment, in order not to 

put the user at risk. Currently there are several virtual environments, among the most common are  

Gazebo [20] or V-REP [21]. In [22], a comparison between each software is described, highlighting V-REP 

for its physics, allowing simulate situations similar to reality. In Figure 2, the test environment in V-REP is 

presented, in which a robotic agent equipped with a gripper and an RGB-D camera is shown.  

It should be noted that the architecture of the robotic agent is focused on facilitating the testing of the system, 

therefore, once the glass has been grasped, there will only be displacement in the coordinate axis Z. 
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Figure 1. General flowchart of the system designed for the manipulation of a glass with liquid 

 

 

 
 

Figure 2. Virtual test environment for the designed system 

 

 

3. GLASS AND GRIPPER POSITION DETECTION SYSTEM 

Currently, faster R-CNN has gained importance in various research focused on the detection of  

the position of elements in images. Faster R-CNN, unlike a traditional CNN, generates bounding boxes in  

the image, where each of these indicates where an object of interest is located and to which category it 

belongs. To achieve this, the faster R-CNN implements a region proposal network (RPN), which is an 

additional branch in the architecture. In this, anchors of different sizes are generated throughout the image 

and it is detected in which of them there may be an object. Then, with the proposed regions detected,  

the CNN classified to which category it belongs. In [23], a faster R-CNN is implemented for the detection of 

malaria infected cells, obtaining 72% accuracy in detection. In [24], it is implemented for the detection of 

small elements in satellite images, obtaining a 78.9% accuracy in the detection of ships and airplanes. In [25], 
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a faster R-CNN with a VGG-16 architecture [26] is used, where this architecture was one of the winners of 

the ImageNet. For the training of the network, 2 categories are established (drink and gripper), a database of 

1000 images as shown in Figure 3 is built in which the position of the gripper or the glass can vary slightly, 

in addition, the fluid color and its amount vary. From the total data in the database, 80% equivalent to 800 

images are set for training and the remaining for tests after training.  

 

 

 
 

Figure 3. Examples of the database 

 

 

The training parameters of the network used are presented in Table 1, where these values were 

chosen based on iterations in the training, identifying which showed a greater accuracy in the classification of 

the test images. In stage 1 and 2, a more aggressive learning factor and a greater number of epochs than in stage 3 

and 4 are set, since in the last ones, a fine tuning is performed between the weights of the RPN and CNN. 

 

 

Table 1. Training parameters of the faster R-CNN 
 Stage 1 Stage 2 Stage 3 Stage 4 

Learning 

Rate 
1x10-5 1x10-5 1x10-6 1x10-6 

Epoch 30 70 15 40 

 

 

3.1.  Results of the faster R-CNN for the detection of the drink and the gripper 

In Figure 4, some examples of the network activations in the convolution layers are shown.  

These activations represent features that were learned, allowing the detection of the elements and 

differentiate them from others in the environment. Mainly, there are activations in the detection of the drink, 

the gripper, edge recognition and from the user that is sit (right side). 
 

 

 
 

Figure 4. Activations of the faster-RCNN 
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In Figure 5(a), the confusion matrix of the classification of the test images is shown, where,  

in the green colored diagonal, the images that were correctly classified are located and, outside this,  

the incorrect classifications are presented. In Figure 5(b), the recall vs precision graph is shown, where 

the area under these curves corresponds to the average accuracy (Av. P). This value represents how precise 

were the regions of interest generated by the network compared to the ground truth. Both results were very 

close one from another, making the lines look almost overlapping. 

 

 

  
(a) (b) 

 

Figure 5. (a) Confusion matrix of the test images (a), where 1 = drink, 2 = gripper and 3 = background,  

(b) recall vs. Precision graph using the test images 

 

 

It can be evidenced that 97.3% accuracy was obtained in the classifications of the test images,  

with average precision of 100% and 95% for gripper and drink, respectively. This favors that the calculation 

of the centroids from the regions of interest (RoI) generated are right and an adequate grip of the drink is 

achieved. Figure 6 shows some examples of the detections and classifications of the network, where the true 

positives are visualized, which represent the categories that were in the image and were correctly detected. 

False negatives are also shown, these indicate examples of categories that were in the image but were  

not detected. Taking into account the false negatives given in the tests, it can be evidenced that these cases 

only occurred when the amount of fluid particles was low. This does not represent an error in the system,  

since there is practically no fluid, it would not be necessary for the gripper motor to be operated since there 

would be no drink to be supplied to the user. 

 

 

True Positive False Negative 

  
 

Figure 6. Faster R-CNN classifications for drink and gripper detection 
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4. FUZZY SYSTEM 

Fuzzy systems have been widely used in research in which there is no mathematical certainty of  

the response of a system, such as highly nonlinear systems. As examples of application associated with this 

work, in [27], a fuzzy system is implemented together with a CNN to estimate the quality of fruits,  

taking into account, as system inputs, the estimation of its mass, number of defects and equatorial diameter. 

In [28], they are used to control the force exerted by a hand prosthesis, concluding that the implementation of 

fuzzy systems is effective for this type of tasks. In this article, it is decided to implement a fuzzy system, 

since it is sought to generate a grip control where the weight of the glass varies. Since the feedback of  

the action is visual, it is not necessary to establish the mathematical model of the general system if visual 

control techniques are used that usually integrate fuzzy systems [29]. 

The first input parameter for the fuzzy system is the mass of the fluid. For this, the centroid of  

the RoI of the drink is calculated and, from the depth map, the height of the liquid in the glass can be 

calculated and finally, according to its geometry with the known volume, the mass is calculated. The second 

parameter is a distance delta between the gripper and the fluid. In Figure 7, the membership functions 

established for fuzzy system inputs and output are shown. 

 

 

 
(a) Where w = mass / LW = low mass / MM = Medium Mass / HM = High Mass 

 

 
(b) Where D = distance delta / LD = negative distance delta / MD = neutral distance delta  

/ HD = positive distance delta 

 

 
(c) Where LT = Low torque / MLT = Medium low torque / MT = Medium torque  

/ MHT = Medium high torque / HT = High torque 

 

Figure 7. (a) Membership functions for the entry of estimated weight, (b) Membership functions for the delta 

distance between the gripper and the drink, (c) Membership functions of the force that the motor must exert 
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As can be seen, Gaussian-type membership functions were implemented which allow a smooth 

change in the system without presenting over breaks. The Mamdani method is used for the fuzzy system 

controller [30]. This method has been used in works such as the one presented in [31], where a fuzzy system 

focused on the detection of photovoltaic failures is implemented, or in [32], for the detection of software 

failures. Table 2 shows the fuzzy associative matrix (FAM) used for the system. 

 

 

Table 2. FAM of the fuzzy system designed 
W D T 

LW MD LF 

LW LD MF 
LW HD LF 

MM MD MF 

MM LD MHF 

MM HD MLF 

HM MD HF 

HM LD HF 
HM HD MHF 

 

 

5. GRAPHIC USER INTERFACE AND PERFORMANCE TESTS 

Figure 8 shows the section of the designed user interface, which focuses on the acquisition of 

training and testing databases. For this, the maximum number of fluid particles that can be generated in  

the environment must be set, in addition to their density and the number of images to be acquired.  

The images that are stored are those of the local camera and the depth map. The external camera is presented 

only for viewing the work environment. 

 

 

 
 

Figure 8. Section of training and testing databases acquisition 

 

 

Figure 9 shows the section in which the training parameters for each Stage of the faster R-CNN are 

set, this stage is used once the acquisition of the databases has already been made. Once the network is 

trained, the confusion matrix and activations of the trained model can be generated. In "Train", dstrain 

corresponds to the image database that will be used for training and in "Test", dstest contains the test images. 

In Figure 10, the test section is shown, in which the user can establish the number of particles,  

their density, the network that will be used for the detection of the gripper and the drink, as well as the fuzzy 

system that will calculate the torque that the motor that drives the gripper must exert. With “Fill”, the color of 

the fluid is selected and the filling of the glass begins and with the “Pickup” option, the manipulation of  

the glass is performed, generating the grip and lifting it. 

Although the interface for the virtual environment is presented, if it is wanted to extrapolate this 

system to a real environment, it would be enough to design a special automatic filling system for the glass in 
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order to automatically acquire the databases. For the calculation of the performance in the manipulation of 

the glass with fluid, 100 tests were performed, in which the density of the particles and their number were 

varied. Figure 11 shows the different cases presented during the tests, where 76% corresponded to correct 

manipulations and 24% to cases in which there was a slip. It was identified that in cases where there is 

slippage, they occur when the densities of the fluid have no values that resemble that of a drink. 

 

 

 
 

Figure 9. Section of training parameters selection of the faster R-CNN 

 

 

 
 

Figure 10. Real-time testing section for glass manipulation 

 

 
Correct handling 

Particles: 200 
Density: 997kg/m3 

Correct handling 

Particles: 200 
Density: 800kg/m3 

Incorrect handling 

Particles: 200 
Density: 1500kg/m3 

Incorrect handling 

Particles: 200 
Density: 2700kg/m3 

    

 

Figure 11. Examples of grip tests 
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6. CONCLUSION 

It was possible to show that the integration of a faster R-CNN with a fuzzy system allows visual 

control tasks aimed at the proper manipulation of the glass with variations in weight due to changes in  

the level of liquid it contains, applicable to assistance robots for assisted feeding. The developments obtained 

are based on liquid density parameters similar to water. In general, the faster R-CNN obtained a 97.3% 

accuracy in the detection of the elements of interest and coupled, with the tests, 76% accuracy was obtained 

in proper handling of the glass, without loss of grip, making them applicable to real environments. 

The results obtained allow to identify that, although the performance of the system is adequate under 

realistic fluid parameters, no action forces other than that of the gripper and that caused by the normal were 

taken into account. Therefore, it is necessary to evaluate the system for possible disturbances that may 

destabilize it or making trajectories that are not on a single coordinate axis. 
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