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 In this paper, a nested square-shape dielectric resonator (NSDR) has been 

designed and investigated for antenna applications in the microwave band.  

A solid square dielectric resonator (SSDR) was modified systematically by 

introducing air-gap in the azimuth (ϕ-direction). By retaining the square 

shape of the dielectric resonator (DR), the well-known analysis tools  

can be applied to evaluate the performance of the NSDR. To validate  

the performance of the proposed NSDR in antenna applications, theoretical, 

simulation, and experimental analysis of the subject has been performed.  

A simple microstrip-line feeding source printed on the top of Rogers RO4003 

grounded substrate was utilized without any external matching network. 

Unlike solid square DR, the proposed NSDR considerably improves  

the impedance bandwidth. The proposed antenna has been prototyped and 

experimentally validated. The antenna operates in the range of 12.34 GHz  

to 21.7 GHz which corresponds to 56% percentage bandwidth with peak 

realized gain 6.5 dB. The antenna has stable radiation characteristics in  

the broadside direction. A close agreement between simulation and 

experimental results confirms the improved performance of NSDR in 

antenna applications. 
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1. INTRODUCTION  

Dielectric resonator antennas (DRAs) belong to the most promising types of antenna structures 

researched over the recent years. This is not only because of their attractive physical characteristics  

(low profile, small size, ease of excitation, and fabrication) but also their good performance at high 

frequencies [1]. The rich literature on DRAs shows that so far they are the best alternatives to  

the conventionally used metallic patch antennas which are generally criticized for their intrinsic narrowband 

operation [2, 3]. In contemporary communication systems, the antenna size is an important design 

consideration. DRA offers greater flexibility with this respect as its size scales down by a factor of r
–1/2, 

which is better than for its metallic counterparts. In particular, a DRA can be made ten times smaller by 

scaling the permittivity from 10 to 100. Another important feature of DRAs is the potential for achieving  

a wider impedance bandwidth, which is due to the direct dependence of the impedance bandwidth on  

the permittivity of the resonator [4-6]. 

https://creativecommons.org/licenses/by-sa/4.0/
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To meet the demands of modern communication systems, it is necessary to reduce the size of  

the antenna while maintaining a wide impedance bandwidth as well as stable radiation characteristics [7-11]. 

With high permittivity material, a small size along with a high radiation efficiency can be achieved only for  

a very narrow operating band [12-14]. Utilization of medium values of dielectric constants facilitates  

the realization of a required impedance bandwidth and a small area allocated for the antenna footprint in  

the communication systems but it is usually insufficient to fulfill all the design requirements [15-17]. In order 

to design a dielectric resonator antenna that can operate with stable radiation properties, it is required to 

excite a particular mode of the dielectric resonator that meets the radiation characteristics of the intended 

application. For the standard shapes of the DRA (cylindrical, rectangular, square) the in-depth analysis has 

already been done by many researchers. In particular, the fundamental modes are the preferred choices for 

electric and magnetic dipole-like radiation characteristics [18-23]. Given the rich literature and engineering 

knowledge on almost every aspect of homogeneous dielectric resonators, it is possible to explore  

the characteristics of inhomogeneous dielectric resonators [24].  

To date, very little research has been published in which the dielectric resonator physical shape and 

geometry is maintained while the permittivity is altered [25, 26]. In this work, novel inhomogeneous nested 

square-shape dielectric resonators (NSDR) are proposed, in which inhomogeneity (air-gap) will be 

introduced in the azimuth (ϕ) direction so that the original shape of the resonator and its radiating 

characteristics remain uninterrupted. The systematic design of NSDR involving theoretical, simulation,  

and approximate analysis, is followed by its application for antenna design. The contribution in this paper 

includes: (i) development of a new inhomogeneous nested-square shape dielectric resonator; (ii) theoretical 

and numerical analysis of the new dielectric resonator; (iii) implementation and validation of the newly 

developed resonator for antenna applications in the microwave band. 

 

 

2. NESTED-SQUARE SHAPE DIELECTRIC RESONATOR 

In this section, the design and configuration of a new inhomogeneous NSDR is presented. Square 

shape dielectric resonator was chosen for this design with the intent to use it for circularly polarized antennas 

due to its flexibility in exciting orthogonal modes. The idea behind this design is the fact that when  

a dielectric material of a relatively high permittivity is placed in an electric field, the density of the electric 

energy will increase in the surrounding of the dielectric material and it will decrease inside the high 

permittivity material. In case there is a direct contact between a conductor and a dielectric material (i.e. direct 

microstrip-line-fed dielectric resonator), the intensity of the electric field increases at the point of contact 

between the conductor and the resonator, in its immediate vicinity, and inside the resonator. Theoretically, 

the field strength may also increase to infinity depending on the type of connection between the conductor 

and the resonator as well as permittivity of the dielectric material placed on the top of the conductor [16]. 

Keeping this in mind, a new inhomogeneous nested square-shape dielectric resonator is designed and 

analyzed for wideband applications. 

The E-field pattern present in a solid square shape dielectric resonator and a square ring dielectric 

resonator is depicted in Figure 1. This indicates that by altering the geometry of the square DR, the electrical 

length of the resonator is increased which leads to enhancing the impedance bandwidth. The phenomenon of 

lengthening the electrical current path is also utilized to achieve a low profile structure that can be operated 

within a wide frequency range. A rigorous time-domain analysis of the resonator revealed that the bandwidth 

of each mode can be increased by altering the geometry of the resonator in such a way that  

the electromagnetic field of the fundamental mode remains the same. By properly optimizing the geometry of 

the square shape DR, the constructive interference of the electromagnetic fields inside the resonator for  

the desired mode can be increased which eventually leads to achieving a wideband response of the antenna. 
 

 

 
a b 

 

Figure 1. Orientation of electric field, (a) Square ring dielectric resonator (b) Solid square dielectric resonator 
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3. ANALYTICAL AND NUMERICAL ANALYSIS 

For the analytical solution of the proposed inhomogeneous NSDR, the dielectric waveguide model 

(DWM) is employed. The overall geometry of the inhomogeneous dielectric resonator was maintained 

similar to a solid square dielectric resonator (SSDR) to easily investigate and compare the mode patterns of 

the proposed NSDR. The resonant frequency of the TEmnl mode can be predicted using the DWM equations 

give below in its simplest form applied to a solid rectangular DR.  
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The mode patterns for the baseline design of a solid resonator having the same permittivity as that of 

the proposed DR have been visualized in Figure 2. A detailed discussion on the E-field and H-field patterns 

of the solid resonator based on the frequency domain analysis and the field distributions for the first three 

modes supported by a rectangular DR can be found in [11]. From this electromagnetic field analysis of  

a solid rectangular dielectric resonator and the theory mentioned in the previous section, it is assumed that  

the performance of the rectangular DR can be improved with proper alteration of its geometrical 

configuration. The isolated geometry of the proposed inhomogeneous nested square-shape DR is shown in 

Figure 3. The dimensions of the outer square ring are kept to 1.5 mm while inhomogeneity in the form of  

0.5 mm air was introduced followed by another square ring of 1 mm and the innermost square of 7 mm was 

kept solid to maintain electromagnetic energy field pattern in the core of the square DR.  

 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

 

Figure 2. Electric field distribution in x-y direction of a solid square (SS) and nested square (NS) dielectric 

resonator, (a) TE11 E-field in SS, (b) TE11 E-field in NS, (c) TE12 E-field in SS, (d) TE12 E-field in NS,  

(e) TE12d E-field in SS, (f) TE12d E-field in NS 

 

 

To achieve the best possible performance in terms of the impedance bandwidth of the antenna, 

dimensions of the NSDR are optimized through parametric analysis. Once a wideband response has been 

achieved, an in-depth analysis of the electromagnetic field distribution of an isolated SSDR and NSDR was 

performed using a finite-difference eigenmode (FDE) solver. The E-field and H-field values of the first three 

modes are illustrated and discussed to understand the wideband behavior of the proposed NSDR in 
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comparison with its solid counterpart. The electromagnetic field distribution in the SSDR is different from 

the fields in the NSDR which is highlighted in terms of the E-field of the first three modes. Figures 2(a) and 

2(b) depict the E-field for the first resonant mode TE11 in x-y direction of a solid square (SS) and nested 

square (NS) dielectric resonators, respectively. 

The arrows indicate a different pattern of the E-field for SS and NS which is mainly because of  

the presence of air-gap introduced in the NSDR. Figures 2(c) and 2(d) show the TE12 mode while the same 

mode has degenerated with a 90-degree phase-shifted field as illustrated in Figure 2(e) and 2(f). This mode is 

represented as TE12d, whereas d in the subscript refers to the degenerate nature of the mode. Maximum 

energy can be coupled to the dielectric resonator when the external feeding source is placed in the area where 

the electric (Js)/magnetic (Ms) fields are at their peak. For determining the exact amount of coupling from  

the source to the resonator, the reciprocity theorem can be applied with proper boundary conditions. As can 

be seen from the illustrated fields in the x-y direction of the first three modes in the proposed NSDR,  

the maximum energy is confined within the diagonal of the resonator. Hence, placing the external feeding 

source at the diagonal will result in maximum coupling to the resonator. 
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Figure 3. Geometry and prototype of the proposed nested square shape DR 

 

 

4. NSDR ANTENNA DEVELOPMENT 

To confirm the wideband response of the NSDR in antenna applications, simulation, and 

experimental analysis has been performed. For time-domain analysis, CST Microwave Studio was used 

whereas for experimental characterization roger RT6010 (r = 10.2) with thickness t = 8mm was utilized for 

NSDR due to its flexibility and easy mechanical processing. For antenna applications, the NSDR was loaded 

on top of the grounded Rogers RO4003 substrate (r = 3.38). The antenna has been developed in four stages 

as depicted in Figure 4(a). The impedance bandwidth is analyzed with each stage as shown in Figure 4(b).  

A simple microstrip line feeding technique is employed for the excitation of NSDR by placing it diagonally 

with respect to the T-junction at the open end of the microstrip line. For the first stage, a resonance near  

20.5 GHz can be observed but the impedance matching is not sufficient. By adding the first square-ring in  

the second stage of the design, an impedance matching below – 10dB is achieved covering the frequency 

range from 17.8 GHz to 22 GHz. For the third design stage, a wide impedance bandwidth from 12.9 GHz to 

almost 22 GHz. By adding an additional ring to the resonator in the fourth stage the starting frequency is 

lowered from 12.9 GHz to 12.4 GHz but the impedance matching is compromised. It is imperative to 

mention here that until this point the lateral position of the DR with respect to the feedline has not  

been optimized. 

 

 

1-Ring 
NSDRSquare 

DR

2-Ring 
NSDR

3-Ring 
NSDR

  
(a) (b) 

 

Figure 4. Antenna analysis through different nest size, (a) Development stages, (b) Impedance matching 
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Due to fabrication limitation the NSDR with two number of rings has been selected and tuned for 

final prototyping. By properly adjusting the orientation of the NSDR at the top of the microstrip line, 

transverse electric (TE) modes can be efficiently excited in the DR with broader bandwidth due to  

the inhomogeneity introduced in the square dielectric resonator. The simulated and prototype profile of  

the nested square shape DRA is shown in Figure 5. 

 

 

 
 

Figure 5. Simulation and prototype of the proposed NSDRA 

 

 

5. RESULTS AND DISCUSSION 

5.1.  Impedance bandwidth 

Provide the impedance bandwidth characterization of the proposed inhomogeneous NSDRA is 

implemented through the time domain simulation at the full-wave EM level of the description using CST 

microwave studio. For the experimental characterization and validation, the impedance bandwidth 

measurements are performed using the Agilent Technology PNA-XN6245A network analyzer. The simulated 

and measured scattering parameter |S11| < –10 dB is illustrated in Figure 6. The impedance bandwidth of  

the antenna is 12.34 GHz to 21.72 GHz (56 percent) with a close agreement between simulation and 

measurement. In comparison to the simulated impedance bandwidth of NSDRA, a 130 MHz upward shift in 

the measured frequency is observed. These slight changes can be attributed to human error, imperfect 

experimental environment, and mechanical stability of the antenna.  

 

 

 
 

Figure 6. Impedance bandwidth response of NSDRA, simulated (- - -), measured (──) 

 

 

5.2.  Radiation pattern characterization of NSDRA  

Radiation pattern characteristics of inhomogeneous nested square dielectric resonator antenna is 

evaluated at three different frequencies within the operating bandwidth of the antenna. The co-polarized  

(Co-pol) and cross-polarized (X-pol) E-plane and H-plane magnitudes and phase values at the main lobe 

direction are analyzed. Similar to the previous designs, three different frequency points are evaluated near  

the low-end frequency of 13.5 GHz, center frequency 17 GHz, and near high-end frequency of 21 GHz in  

the operating impedance bandwidth of the proposed antenna.  

The simulated and measured E-plane and H-plane at 13.5 GHz which is close to the lower end of  

the operating bandwidth of the antenna is given in Figure 7(a) and 7(b) for both X-pol and Co-pol planes. 

The maximum magnitude and phase value achieved for the Co-pol main lobe of the E-plane were found to be 

8.09 dB at 0ᴼ and 8.15 dB at 0ᴼ for simulation and measurement respectively. For X-pol, the highest 

magnitude found was –1.11 dB at 30ᴼ for simulation and –0.594 at –80ᴼ for measurement as shown in  

Figure 7(a). Similarly, the maximum magnitude of the Co-pol H-plane at 13.5 GHz for simulation and 
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measurement was recorded as 7.9 dB and 8.05 dB both oriented at 0ᴼ while the highest X-pole magnitudes 

were –2.49 dB at –69ᴼ and 0.439 dB at –46ᴼ for simulation and measurement.  

The second point in operating impedance bandwidth of the antenna was taken at 17 GHz which is 

near the center frequency. The co-polarized and cross-polarized magnitudes and phases were evaluated in 

simulation and verified in measurement for both E-plane and H-plane. As per the recorded data,  

the maximum magnitude and phase of the Co-pol E-plane at 17 GHz was 8.28 dB and 9.34 dB both at 0ᴼ for 

simulation and measured result. Likewise, the X-pol magnitude and phase values were found to be –11.7 dB 

at –2ᴼ and –5.84 dB at 45ᴼ as shown in Figure 7(c) for E-plane at 17 GHz. Similarly, the Co-pol and X-pol 

magnitude of the H-plane at 17 GHz is shown in Figure 7(d), and the maximum values for simulated and 

measured Co-pol were 7.46 dB and 7.24 dB both oriented at 0ᴼ. The X-pol magnitude for this frequency was 

–4.32 at 2ᴼ for simulation and –2.94 dB at –69ᴼ for measurement results.  

The third and last point of radiation pattern characterization was taken near the upper end of  

the operating range, i.e., at 21 GHz. Figure 7(e) and 7(f) show Co-pol and X-pol or E-plane and H-plane of 

the antenna for both simulation and measurement. The maximum main lobe magnitude and phase of  

the E-plane Co-pol field were observed to be 9.01 dB in simulation and 10.1 dB in measurement both are 

predominantly oriented at 0ᴼ. The X-pole values for E-plane simulation were –4.47 dB which is the highest 

value achieved in simulation at –49ᴼ while the experimental values of X-pol were found to be –0.0656 dB at 

–56ᴼ. Similarly, the Co-pol and X-pol magnitude and phase of H-plane at 21 GHz is shown in Figure 7(f).  

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure 7. Simulated (- - -), measured (──) Co-polarized (black) and cross-polarized (red) radiation pattern of 

NSDRA, (a) E-Plane 13.5 GHz, (b) H-plane 13.5 GHz, (c) E-Plane 17 GHz, (d) H-Plane 17 GHz,  

(e) E-Plane 21 GHz, (f) H-Plane 21 GHz 

 

 

The maximum main lobe magnitude of Co-pol was found to be at 0ᴼ for both simulation and 

measurement having magnitude values of 7.25 dB and 7.35 dB. The X-pol magnitude of the simulation was  

–0.684 dB oriented at 75ᴼ and for measurement, this value increases slightly to 0.291 dB oriented at –70ᴼ and 

away from the maximum magnitude value of Co-pol planes.  

The radiation pattern characterization results indicate that the proposed inhomogeneous nested 

square shape dielectric resonator was excited in the transverse electric (TE11) mode having magnetic  

dipole-like radiation characteristics. The broadside radiation pattern of the antenna throughout the operating 

bandwidth of the antenna confirms the presence and excitation of TE mode with enhanced bandwidth due to 

the presence of air-gap in the resonator. Further, the magnitude and phase values of Co-pol and X-pol of  

the proposed inhomogeneous NSDRA suggests that this antenna can be effectively used for wideband 
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application in modern communication devices requiring stable radiation characteristics and simple planer 

circuits. The average value of the Co-pol field was found to be approximately 7.5 dB oriented at 0ᴼ while  

the average X-pol magnitude throughout the operating bandwidth of the antenna was recorded as –2.1 dB 

away from the angular orientation of the co-polarized main lobe. 

The realized gain characterization results are presented for both simulation and experimental 

measurements using the ‘gain standard’ antenna technique. A linearly polarized gain standard horn antenna 

with accurately known gain value was used in the experimental characterization of the inhomogeneous nested 

square shape DRA. The simulated and measured gain of the proposed antenna is illustrated in Figure 8 which 

shows a stable gain response within the operating impedance bandwidth. 

 

 

 
 

Figure 8. Simulated and measured gain of the inhomogeneous nested square DRA 

 

 

As it can be seen from the graph, the simulated value of the gain is approximately 0.5 dBi higher 

than that of the measured gain which is because of the imperfect prototyping, human and mechanical errors. 

The average gain values of both the simulation and measurement were calculated to be approximately  

6.5 dBi which is acceptable for this type of wideband antennas. 

 

 

6. CONCLUSION  

In this paper, a new nested square dielectric resonator has been investigated for wideband antenna 

applications in the microwave. A detailed theoretical, simulation, and experimental analyses showed that by 

using NSDR for antenna applications, a remarkable improvement in its performance can be achieved.  

The inhomogeneity (air-gap) in a solid square dielectric resonator was introduced in the ϕ-direction so that its 

basic geometry and field characteristics are maintained. With this approach, the impedance bandwidth 

response of the antenna can be effectively enhanced. The radiation pattern characterization also showed  

a relatively stable response throughout the operating impedance bandwidth with a high magnitude of  

co-polarized fields. It can be concluded that the appropriate introduction of inhomogeneity in the solid single 

permittivity resonators can greatly improve the performance of DRA’s without compromising their simple 

geometry and mechanical stability. 
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