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 Clustering as unsupervised learning method is the mission of dividing data 

objects into clusters with common characteristics.  In the present paper, we 

introduce an enhanced technique of the existing EPCA data transformation 

method. Incorporating the kernel function into the EPCA, the input space can 

be mapped implicitly into a high-dimensional of feature space. Then, the 

Shannon’s entropy estimated via the inertia provided by the contribution of 

every mapped object in data is the key measure to determine the optimal 

extracted features space. Our proposed method performs very well the 

clustering algorithm of the fast search of clusters’ centers based on the local 

densities’ computing. Experimental results disclose that the approach is 

feasible and efficient on the performance query. 
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1. INTRODUCTION 

Clustering the data is the task of discovering natural groupings in data, named clusters according to 

their similarity. Objects are similar inside the same cluster whereas dissimilar compared to objects 

descending from other clusters. Clustering, as a class of unsupervised classification method, has been widely 

applied in different domains, machine learning, image segmentation, pattern recognition, text mining and 

many other domains [1-3]. Great number of clustering algorithms lie in literature, the famous K-mean 

clustering [4], hierarchical clustering [5], k-medoids [6], and mean shift [7] have been considered in various 

problems.  

Despite of the extensive studies in the past on clustering, a critical issue remains largely unsolved: 

how to automatically determine the number of clusters. Most of them assumed that the number of clusters 

either has been manually set or is known in advance [4, 8]. Recently, great attention has been accorded to 

tackle with this issue. Clustering by density peaks selection criterion [9-11] is a technique that tends to find 

intuitively the number of clusters independently of their shape and the dimension of the space containing 

them, so that to avoid the inherent shortcomings of providing the number of clusters as an input parameter 

like in the K-means. The approach proposed by Rodriguez and Laio [10] relies as a first step on the fast 

search of the density peaks referring the cluster centers characterized by having a higher local density 

compared to their neighborhood and relatively large distance regard to points having higher densities. As a 

result, the cluster centers are located in general at the upper right corner of the decision graph which is the 

plot of the density as a function of the distance of each point. Therefore, once centers are determined all 

https://creativecommons.org/licenses/by-sa/4.0/
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remaining data points are assigned to the same cluster as its nearest neighbors of higher density so as to form 

final clusters. 

As a further work, the Rodriguez and Laio’s method was improved by Wang and Xu [11] through 

substituting the step function by the Parzen estimator so that the truncated density becomes smoother. Here, 

we develop a method for data transformation and reduction based on the variable kernel estimator [12]. 

Aimed at the problems of clustering, many researchers are convinced that the dimensionality reduction is an 

important stage that must be adopted in data analysis before considering any classification step. In fact, many 

algorithms of clustering often do not work well in high dimension, so, to improve the efficiency, a data 

reduction is needed [1]. In this sense, we propose a hybrid method, which combines the entropy principal 

component analysis (EPCA) [13, 14] and the data mapping. The core element is to perform a data mapping 

using the kernel function before implementing the EPCA. Data mapping consists of transforming the data 

into a high-dimensional feature space, where patterns become linear and the nonlinearity disappears [15]. 

Then, using EPCA, we restrict the high-dimensional space to a subspace of the extracted features. 

 In many cases, the quality of clustering is approved by a low similarity of the inter-cluster and a 

high similarity of the intra-cluster. To this end, we integrate an automatic method for cluster centroid 

selection based on the validity index algorithm using the concept of entropy introduced by Jayens Edwin in 

[16] and computing the inter-cluster and intra-cluster similarities [17]. 

The present paper is organized as follows. Section 2 presents a brief review of PCA as a linear data 

transformation. We move to consider the kernel entropy principal component analysis (KEPCA) for 

dimensionality reduction. In section 3, we present the clustering by the fast search of centers relying on the 

estimation of the probability density function (PDF) as well as the automatic criterion for the selection of 

cluster centers using validity index algorithm. Section 4, is dedicated to the validation of the proposed 

method on both synthetic and real datasets including a comparison to other clustering algorithms. 

 

 

2. RESEARCH METHOD 

2.1.  Dimensionality reduction  

Clustering algorithms are facing problems of dimensionality especially when the dimension 

increases importantly. Therefore, in some cases, they lose their efficiency, likewise, their productivity 

especially when data present sparseness. As a solution, we consider the reduction of the dimensionality as an 

efficient preprocessing. Due to this effect, many researches have been done to get rid of this complication 

[18-21]. Thus, we establish a nonlinear method named KEPCA, which improves the existed linear EPCA 

method [13]. The purpose is to discard the redundant and irrelevant information and get only the valuable 

one. Using the maximum entropy principle [16], we can easily determine the reduced dimension of data in 

kernel space. 

 

2.1.1. Principal component analysis 

Principal component analysis (PCA) is very famous as a technique of multivariate statistics. Due to 

the fact of analyzing data in term of feature extraction and dimensionality reduction, PCA is adopted by 

almost all disciplines. The ultimate objective of PCA is to select variables from input data table which have 

higher statistical information then squeeze out this information as a set of new orthogonal variables called 

principal component based on mathematic notions: eigenvalues, eigenvectors, mean and standard deviation 

[14, 20].  

 

2.1.2. Shannon entropy 

 Claude Shannon established the entropy concept in information theory. He introduced the term 

– 𝑙𝑜𝑔 ((𝑋𝑖)) as a measurement of the information carried by the realization 𝑋𝑖 knowing the probability of 

distribution 𝑝 of the discrete variable 𝑋 [22]. Relating to a discrete variable, the entropy measures the 

uncertainty. The Shannon entropy related to 𝑋 is obtained calculating the following formula (1): 

 

𝑆(𝑝) = ∑ 𝑝(𝑋𝑖) 𝑙𝑜𝑔 𝑝(𝑋𝑖)

𝑛

𝑖=1

 (1) 


where  𝑝 =  {𝑝1 , 𝑝2 , … , 𝑝𝑛} . Thus, by combining the Shannon entropy and the PCA it gives the EPCA, where 

the core element is maximum entropy principle (MEP) [17] so as to determine the optimal dimension of the 

principal subspace keeping the maximum information. 
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2.1.3. Kernel entropy principal component analysis 

Our proposed approach, KEPCA, is a nonlinear version of EPCA [23]. The basic aspect of kernel 

EPCA method is to map input data 𝑥𝑡 = 𝑥1, … , 𝑥𝑁 such that 𝑡 = 1, . . , 𝑁 into kernel space through the kernel 

function. Then, kernel matrix is given by  Φ: ℜ𝑑 → ℱ where 𝑥𝑡 = Φ(𝑥𝑡) , is Φ = [𝜙(𝑥1), … , 𝜙(𝑥𝑁)]. As soon 

as data mapping is done,  EPCA  is implemented  in 𝐹. The positive semi-definite kernel function provides 

data mapping, 𝑘𝜎 = 𝑅𝑑 × 𝑅𝑑 → 𝑅  which produces an inner product in the Hilbert space 𝐹: 

 

𝑘𝜎(𝑥𝑡 , 𝑥𝑡′) = 〈𝜙(𝑥𝑡), 𝜙(𝑥𝑡′), 〉 (2) 

 

where every single element (𝑡, 𝑡′), of  the  (𝑁 , 𝑁) kernel  matrix 𝐾,  is equivalent to  𝑘𝜎(𝑥𝑖 , 𝑥𝑡′). Thus, the 

inner product is  𝐾 = Φ𝑇 × Φ. To elucidate more explicitly how we proceed in implementing the EPCA, let 

𝑋1, … , 𝑋𝑛 be the mapped data contained in 𝐾 defined by 𝑛 features 𝑓1, … 𝑓𝑛, and 𝐸𝑞  is the subspace with 𝑞 =

1, … , 𝑛.  

The average information supplied by the contribution of each mapped element to the construction of 

the subspace of projection is the explained inertia, whereas the average information given by the contribution 

of every mapped individual to the loss of inertia is the residual inertia. Both contributions to the explained 

inertia (EIC) and to the residual inertia (RIC) of each single individual 𝑋𝑖 all over the subspace of features  𝐸𝑞  

are successively given as a probability distribution in (3) and (4) [23]. 

 

𝑝𝑞
1 (𝑋𝑖) =  𝐸𝐼𝐶(𝑋𝑖 , 𝐸𝑞) (3) 

 

𝑝𝑞
2 (𝑋𝑖) =  𝑅𝐼𝐶(𝑋𝑖 , 𝐸𝑞)  (4) 

 

with ∑ 𝐸𝐼𝐶(𝑋𝑖 , 𝐸𝑞) = 1𝑛
𝑖=1 , and ∑ 𝑅𝐼𝐶(𝑋𝑖 , 𝐸𝑞) = 1𝑛

𝑖=1 . Thus, the Shannon entropy provided by these 

distributions respectively is given asin (5) and (6): 

 

𝑆1(𝑝𝑞
1) =  ∑ 𝑝𝑞

1(𝑋𝑖) 𝑙𝑜𝑔 𝑝𝑞
1(𝑋𝑖)

𝑛

𝑖=1

 (5) 

 

𝑆2(𝑝𝑞
2) =  ∑ 𝑝𝑞

2(𝑋𝑖) 𝑙𝑜𝑔 𝑝𝑞
2(𝑋𝑖)

𝑛

𝑖=1

 (6) 

 

The variation of the quantities in (5) and (6) is antagonist. According to the maximum entropy 

principle, the maximized sum of the both entropies of the probability distributions corresponds to the 

minimum dimension of the subspace of features. 

 

𝑆(𝑞∗) = 𝑚𝑎𝑥 (𝑆1(𝑝𝑞
1) + 𝑆2(𝑝𝑞

2) (7) 

 

𝑞∗ is the optimal dimension of the feature subspace. 

 

2.2.  Clustering by density peak selection  

Recent researches give big interest to the clustering by the fast search of cluster centroids based on 

the nonparametric estimation of the PDF. The extended version of Rodriguez and Laio’s method [10] given by 

Wang and Xu [11] is summarized here through the Parzen estimator rather than the step function. The main 

aspect of the method is the measurement of the couple (density, distance) values characterizing each data 

point. 

 

2.2.1. Density estimation and distance 

Relying on Rodriguez and Laio’s clustering method [10], we resume here the computation of the 

density and distance values. The main role is to identify the cluster centroids based on the two assumptions: 

the first one establishes the fact that each cluster center is enclosed by elements, which have local densities 

lower than the center density. The Second one esteems that each cluster center is far enough from all other 

points with higher density. For a given data point  𝑋𝑖, the local density and the distance are defined 

respectively as (8) and (9): 
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𝜌𝑖 = ∑ 𝐼(𝑑(𝑋𝑖 , 𝑋𝑗) < 𝑑𝑐)

𝑛

𝑗=1

, (8) 

 

�̂�(𝑥𝑖) = 𝑚𝑖𝑛
𝑗:�̂�(𝑥𝑖)<�̂�(𝑥𝑗)

𝑑(𝑥𝑖 , 𝑥𝑗). (9) 

 

where 𝐼(𝐴) is the step function of the set 𝐴; 𝑑(𝑋𝑖 , 𝑋𝑗) is the Euclidian distance between two different data 

points; and 𝑑𝑐 is the cut-off distance defined in advance. Analyzing definition (8), we could understand that 𝜌𝑖 

is simply the count of points that are closer than 𝑑𝑐 to the 𝑖𝑡ℎ data point, whereas in (9), the measurement 𝛿 is 

determined as the minimum distance among distances computed between the 𝑖𝑡ℎ data point and all other 

points having higher density. Finally, the point, which has the highest density, 𝛿𝑖 is defined to 

be 𝑚𝑎𝑥𝑗  𝑑(𝑥𝑖 , 𝑥𝑗). 

Nonetheless, the choice of 𝑑𝑐 is not always useful because the result of the algorithm fundamentally 

depends on it. The cause is that 𝑑𝑐 describes the average number of neighbors, close to 1% and 2% of the 

whole number of data points. Consequently, the choice of 𝑑𝑐 is unsystematic and unstable when the size of the 

sample is changing. To get rid of the bad effect of 𝑑𝑐, we opt using the Parzen estimator and the variable 

kernel estimator in lieu of the step function that has good effect on the query of performance [10]. Concerning 

the bandwidth parameter, it is efficiently computed using the rule of Silverman [24]. 

 

2.2.2. Variable kernel estimator 

The variable kernel estimator (VKE) is a combination of Parzen estimator where the scale of the 

bumps placed on the data points are allowed to vary from data point to another [25, 26] and the kNN 

estimator. 

 The estimator of Parzen-Rosenblatt is defined as in (10: 

 

𝑓(𝑥) =
1

𝑛ℎ𝑑
∑ 𝑘𝑑  (

𝐷(𝑥, 𝑋𝑖)

ℎ
)

𝑛

𝑖=1

  (10) 

 

where 𝐾𝑑 is the kernel, ℎ is the smoothing parameter and 𝐷(𝑥, 𝑋𝑖) is the Euclidean distance between 𝑥 and 𝑋𝑖. 

The k-nearest neighbors (kNN) estimator is defined as in (11) [24]: 

 

𝑓𝑘𝑛𝑛(𝑥) =
(𝑘 ⁄ 𝑛)

(𝑉𝑘(𝑥))
=

𝑘 𝑛⁄

𝑐𝑑𝑟𝑘(𝑥)
 (11) 

 

where 𝑘 is a positive integer, 𝑟𝑘(𝑥) is the distance from 𝑥 to the 𝑘𝑡ℎ nearest point and 𝑉𝑘(𝑥) is the volume of a 

sphere of radius 𝑟𝑘(𝑥) and 𝑐𝑑is the volume of the unit sphere in 𝑑 dimensions. The smoothness degree of this 

estimator is affected by the parameter 𝑘, taken to be very smaller than the sample size. The VKE is constructed 

similarly to the classical kernel estimator. It is defined by (12) [24]: 

 

𝑓(𝑥) =
1

𝑛ℎ𝑑
∑

1

(𝑟𝑖,𝑘)
𝑑 𝑘𝑑  (

𝐷(𝑥, 𝑋𝑖)

ℎ𝑟𝑖,𝑘

)

𝑛

𝑖=1

   (12) 

 

with 𝑟𝑖,𝑘 is a Euclidean distance between a data point 𝑋𝑖 and the 𝑘𝑡ℎ nearest point of the other 𝑛 − 1 data 

points. 

 

2.2.3. Cluster validity index 𝑽𝑴𝑬𝑷 

 For every clustering process, a group of clusters 𝑐1, … ,  𝑐𝑗 , … , 𝑐𝑘 is obtained from a given dataset. 

The measurement  𝑃𝑖𝑗  is the relation between each point 𝑖 and the cluster 𝑐𝑗, for 𝑗 =  1, … , 𝑘. For all the pre-

defined clusters 𝑐𝑗, we set 𝑃𝑖𝑗 = 0 in case  𝑖 ∉ 𝑐𝑗 and, when 𝑖 ∈ 𝑐𝑗 , 𝑃𝑖𝑗 > 0, we have [12, 17, 23]: 

 

∑ 𝑃𝑖𝑗 = 1

𝑖∈𝐶𝑗

,   𝑓𝑜𝑟 𝑗 = 1, … , k  (13) 

 

Each class provides information which is measured using the entropy formula (14): 
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𝑆𝑗  =  ∑ 𝑃𝑖𝑗

𝑘

𝑗=1

𝑙𝑜𝑔(𝑃𝑖𝑗  ) (14) 

 

Finally, the 𝑉𝑀𝐸𝑃 index is recognized as an entropy by (15): 

 

𝑉𝑀𝐸𝑃  =  𝑆 =
1

𝑘
 ∑ 𝑆𝑗

𝑘

𝑗=1

+  𝑙𝑜𝑔( 𝑘∗) (15) 

 

where 𝑆𝑗 is an entropy and  𝑘 ∗is the optimal number of classes  for which the entropy 𝑆 is maximal. 

 

2.2.4. Algorithm of the Kernel entropy principal component analysis  

 According to the kernel method, the input space can be indirectly mapped into a high-dimensional 

feature space through which the nonlinearity could be removed or reduced. The GRB Function is the principal 

element of the kernel function because it is typically used in Reproducing Kernel Hilbert Space (RKHS) with 

the objective of maximizing the feature space variance of the output variables. Subsequently, the mapped data 

were reduced using the EPCA as a linear method for data reduction with the ultimate objective to maintain 

features expected to preserve as possible the valuable information. Eventually, a simple algorithm of clustering 

would be able to achieve significant results based on both Parzen estimator and variable kernel estimator. 

Our proposed algorithm of clustering considering our proposed KEPCA method, is resumed in the 

next steps. 

 Normalize the input data ; 

 Map the input data;  

 Perform the EPCA; 

 Reduce the transformed data; 

 Compute the bandwidth ; 

 Compute the pair density-distance of reduced data; 

 For 𝐶 = 1, … , 𝐶𝑚𝑎𝑥 

 Select the cluster peaks and assign each element into its cluster; 

 Compute the cluster validity index 𝑉𝑀𝐸𝑃 ; 

 The correct number of clusters and the best grouping for the input data corresponds to the one that have 

maximum value of 𝑉𝑀𝐸𝑃 . 
 

 

3. RESULTS AND DISCUSSION  

Our present section has as concern, demonstrating the performance query of our approach by 

reducing data and extracting only the valuable information. Inspired by computing the couple density-distance 

values through the fast search of cluster centers. The use of either the Parzen estimator [27] or variable kernel 

estimator integrating the rule of Silverman has good outcomes on our clustering results. A comparison 

between the results using our clustering algorithm based on KEPCA data transformation and other algorithms 

of clustering is given. The artificial, the real well-known (Iris, Seeds, Flame and Heart) datasets were used [28] 

as well as a vehicle trajectory dataset. Our analysis study is demonstrated on MATLAB environment. 

 

3.1.  Simulated study 
We consider as a first application, a simulated data that consists of three random clusters laid in 600 

by 2 matrix. All clusters were generated by a normal distribution but with different random covariate 

matrices and centers. Cluster contains 200 data points for each. Figure 1, reveals the plot of the initial data of 

the two variables of the input space before considering our clustering algorithm. 

As it is shown in Figure 2(a), we can observe that after executing the KEPCA data transformation 

result has given three dimensions as the reduced dimension after data mapping. Thus, for synthetic data, three-

dimensional array are enough to represent input data in feature space. The Figure 2(b) discloses that the 

centers are identified as three. They are located at the upper-right corner of the density-distance plot, 

discriminated in red color, and circled shape. Besides, on the Figure 2(c) it can be easily understood that the 

sorted quantity (product of density and distance) has high value for the first three data points. This magnitude 

is by its own definition large, starts increasing abnormally between cluster centers and getting very narrow 

between other samples. Consequently, both techniques show the same number of centers, which eventually 

confirms the existence of three clusters. The obtained results can be explained thanks to the fact that each 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 11, No. 3, June 2021 :  2109 - 2119 

2114 

center is recognized by higher local density and relatively large distance away from the other data points with 

higher density. Hence, our algorithm is capable of differentiating amongst centers and other data points. Next, 

to examine the validity of our clustering result, we investigate both 𝑉𝑀𝐸𝑃 criterion and the Elbow method [29]. 

The given results are displayed on the same Figure 2. On the Figure 2(d), we can observe the progress of the 

𝑉𝑀𝐸𝑃 index through which the optimal number of clusters is identified to be three clusters applying the 

maximum entropy principle. Likewise, same result was given on Figure 2(e) by investigating the Elbow 

method, which relies on the minimization of the sum of the squared errors within each cluster. Three clusters 

were picked. On the last Figure 2(f) we can see the samples assignation to their convenient clusters 

considering the center selection outcome. Every single point is assigned to the nearest center based on the 

Euclidean distance calculation. Eventually, the result of the clustering of the proposed algorithm is given on 

three-dimensional feature space plot for the synthetic dataset since the dimension was reduced into three 

features after performing KEPCA Figure 2(a). The three clusters were properly distinguished one from another 

by different shapes and colors as the best grouping for samples, which demonstrates our clustering algorithm 

assumptions. 

 

 

 
 

Figure 1. Two-dimensional plot of the initial artificial dataset 

 

 

 
 

Figure 1. Results obtained on artificial dataset (a) Result of the optimal components number using the 

KEPCA, (b) decision graph for centers selection of the density distance plot, (c) the product of the density 

and distance plotted in decreasing order, (d) number of clusters validation given by 𝑉𝑀𝐸𝑃 index, (e) the Elbow 

method for artificial dataset, (f) the assignment of samples to clusters  
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The classification rate of our proposed algorithm with KEPCA data transformation and the VKE is 

about 97.17% for the simulated dataset, whereas the K-means algorithm achieved 96.83%. Then, using our 

algorithm of clustering with the VKE and EPCA has given 82.33%. Therefore, the present algorithm with the 

kernel data transformation has given relatively higher classification rate than the other clustering algorithms. 

 

3.2.  The Iris dataset 

 The Iris benchmark is one of the machine-learning datasets; Fisher first used it in [30]. It consists of 

150 measurements of three distinct types of the Iris plant (Iris setosa, Iris virginica and Iris versicolor) of the 

four variables: width and length for sepal and petal. It is worth mentioning that, one of the classes is linearly 

separable, whereas the two others are not [30]. Considering the combination of kernel data transformation 

(mapping) and the EPCA as a preprocessing for input data, the figure presents results obtained on Iris dataset, 

Figure 3(a) illustrates the reduced features in the high-dimensional space (150 features). We restrict our plot to 

only 25 features on the Figure 3 for the sake of clearness as the entropy evolves in decreasing order. Therefore, 

the seventeen maintained nonlinear features interpret the more relevant ones for our clustering algorithm in 

term of information content. On the Figures 3(b) and 3(c) both graphs are given relying on the measurement of 

the pair density and distance. Considering the first plot on the Figure 3(b), it presents a density-distance plot, 

whereas the Figure 3(c) it presents the sorted quantity of the density and distance product. Thus, identical 

result was given by both techniques, three centroids have been determined from data. The obtained results are 

interpreted thanks to the coming assumption: Every center is distinguished from the other data points by its 

higher local density and relatively large distance. Hence, our algorithm is capable of differentiating among 

centers and the other data points. To demonstrate our clustering algorithm performance, we incorporate the 

cluster validity index founded the maximum entropy principle in Figure 3(d) and the Elbow method in  

Figure 3(e). Both criteria perform same result, which consequently confirms the existence of three clusters. 

 

 

 
 

Figure 2. Results obtained on Iris dataset (a) result of the optimal components number using the KEPCA, (b) 

decision graph for centers selection of the density distance plot, (c) the  product of the density and distance 

plotted in decreasing order, (d) number of clusters validation given by 𝑉𝑀𝐸𝑃 index and (e) the Elbow method 

for Iris dataset 

 

 

Therefore, our clustering algorithm is able to identify automatically the center of each cluster. The 

classification rate for Iris data using our algorithm of clustering considering the KEPCA data transformation as 

a preprocessing step is 89.33% incorporating variable kernel estimator while it is equals to 88% incorporating 

Parzen estimator, for the EPCA data transformation integrating VKE, it is unable to detect all three clusters 

and considers only 2 clusters, likewise for K-medoids. Then, the K-means has reached only 82%. Therefore, 

our automatic algorithm integrating KEPCA data transformation and the variable kernel estimator is capable 

of classifying patterns with a higher classification rate compared to the other algorithms.  
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3.3. Seeds database 

The Seeds dataset composed of 210 samples referring to three wheat varieties, 70 elements for each, 

described by 7 geometric features [29]. Considering the combination of  the kernel data transformation 

(mapping) and the EPCA as an efficient preprocessing for input data, the Figure 4(a) illustrates the reduced 

number of features in the high-dimensional space (210 features). For the sake of clearness, we limit our plot 

to 25 features because of the decreasing evolution of the entropy. Therefore, the seven maintained nonlinear 

features interpret the more relevant ones in term of information content for our clustering algorithm. In the 

Figure 4(b) and 4(c) the displayed results are given based on the same magnitudes (the density and the 

distance). For the plot in Figure 4(b) it is a density-distance plot whereas the plot in Figure 4(c), it reveals the 

sorted product of density and distance. This quantity is by its definition large and begins to grow between 

cluster centroids progressively afterwards it becomes tight between the rest of points. Thus, the same result is 

given by both techniques, it is clearly seen that three centroids were determined from data, which declares in 

advance the existence of three clusters. The obtained results are confirmed thanks to the assumption that each 

center is distinguished by its high local density and relatively large distance away from the other data points 

with higher density. Hence, our algorithm is apt to extract centers from data points as a first step. To prove its 

efficiency, we opt to investigate the cluster validity index in Figure 4(d) and the Elbow method in  

Figure 4(e). 

 

 

 

 
 

Figure 3. Results obtained on Seeds dataset (a) result of the optimal components number using the KEPCA, 

(b) decision graph for centers selection of the density distance plot, (c) the  product of the density and 

distance plotted in decreasing order, (d) number of clusters validation given by 𝑉𝑀𝐸𝑃 index and (e) the Elbow 

method for Seeds dataset 

 

 

The classification rate given by our clustering algorithm considering the KEPCA data 

transformation is equal to 87.62% using VKE, whereas by using the Parzen estimator we got 89.52%, and 

considering  EPCA data reduction with VKE we obtain 87.62% and the k-medoids and the k-means, results 

are equal to 84%.  As a comparison, we conclude that our algorithm has better result than its counterpart 

algorithms of clustering. 

 

3.4. Trajectories database  

The LCPC (Laboratoire Central des Ponts et Chanssées) makes it possible to provide a database of 

experimental trajectories by measuring the parameters of trajectory in the bend during the vehicle passage at a 

discrete intervals of time. To achieve the purpose, they utilize a data acquisition system incorporated to a test 

vehicle that can restore the positions, speeds and accelerations. The survey was conducted with volunteer 

drivers, where each driver has to go through different trajectories. Hence, the database of physical trajectories 

was founded [31]. Therefore, in the present study, we are motivated to investigate the trajectories database, 
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which consists of 232 trajectories with 6 variables (longitudinal position, lateral position, longitudinal speed, 

lateral speed, longitudinal acceleration and lateral acceleration). Thus, we consider our approach for data 

transformation combining the kernel function the EPCA. The Figure 5 presents results obtained on trajectories 

dataset, Figure 5(a) demonstrates the reduced features in the high-dimensional space (232 features). We limit 

our plot to only 25 features on the Figure 5(a) for the sake of clearness since the entropy evolves in decreasing 

order. Hence, the three maintained nonlinear features are selected to have the highest value of entropy, which 

means they interpret the more relevant ones for our clustering algorithm in term of information content. 

Afterwards, on the Figures 5(b) and 5(c) both charts are given based on the pair density-distance measurement. 

The first plot on the Figure 5(b) presents a density-distance plot, whereas the Figure 5(c) illustrates the sorted 

quantity of the density-distance product. Hence, identical result was given by both techniques, four centroids 

have been determined. The obtained results are justified thanks to the assumption that defines every center to 

be distinguished from the other data points by its higher local density and relatively large distance. Thus, our 

algorithm is capable of differentiating between centers and the other points. To demonstrate our clustering 

algorithm performance, we investigate the cluster validity index in Figure 5(d) and the Elbow method in 

Figure 5(e). Both criteria perform same result, which confirms the existence of four clusters for the behavior of 

drivers. On Figure 5(f), we displayed the samples (trajectories) assignation to their appropriate clusters based 

on the centroids selection result where the remaining points are assigned to the closest centroid based on the 

measurement of the Euclidean distance. The given result is displayed on three-dimensional plot since the 

reduced dimension after performing KEPCA was deduced to be a three-feature Figure 5(a). The four clusters 

are discovered and clearly distinguished from one to another and represented by different colors and shapes. 

Each cluster represents a driver’s behavior. The first class C1, corresponds to the family of the slowest 

trajectories of calmed driving. The second class C2, corresponds to the family of the slowest trajectories of 

sporting driving. The third class C3, represents the family of the fastest trajectories of calmed driving. The 

fourth class C4, correlates with the family of the fastest trajectories of sporting driving. 

 

  

 

 
 

Figure 4. Results obtained on trajectories dataset (a) result of the optimal components number using the 

KEPCA, (b) decision graph for centers selection of the density distance plot, (c) the  product of the density 

and distance plotted in decreasing order, (d) number of clusters validation given by 𝑉𝑀𝐸𝑃 index and (e) the 

Elbow method, (f) Three-dimensional plot performed on mapped trajectories data in the reduced space of 

three features, samples are colored according to the cluster to which they are assigned with different color 

and shape 

 

 

As a comparison to other works related to same trajectories dataset as in [31], same number of 

clusters and of driver’s behavior were detected using our unsupervised algorithm based on kernel data 

transformation and variable kernel estimator for density estimation that is critical for clustering. The KEPCA 

has shown its potential over different dataset from artificial and real world database. Among all of them, the 

proposed KEPCA present an advantage of extracting only valuable information and mapping input data into 

high space, where the non-linearity can be omitted easily. The reduced number of features in the high space 
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improves the results. Firstly, in the PDF estimation using the reduced dimension where most of the entropy 

information is compacted and the selection of the kernel parameter become more robust. Secondly, in the 

clustering task as it is shown on the Table 1, the experiment results reveal the improvement of the 

performance of the algorithm using KEPCA over its counterpart EPCA. Furthermore, the use of VKE, often 

makes KEPCA more efficient than the use of Parzen estimator, which can be explained with the fact that the 

variable kernel estimator adapts the amount of smoothing to the local density data due to the adaptive scale 

that can vary from one data point to another. 

 

 

Table 1. Comparison of the different clustering algorithms over artificial and real world data. 
Dataset Without data transformation EPCA-VKE KEPCA-Parzen KEPCA-VKE k-means 

Artificial 96.83 82.33 96.67 97.17 96.83 
Iris - - 88 89.33 89.33 

Flame 84.17 80 85 85 85 

heart 62.59 65.19 79.26 82.59 59.26 
Trajectory - - - 4 clusters 4 clusters 

Seed 91.43 89.52 89.52 87.62 89.52 

 

 

4. CONCLUSION 

 In the present paper, we propose an efficient data transformation for the existed EPCA method to 

extract the optimal features. Whereas the EPCA gives the optimal entropic component through maximizing the 

average of the information (the inertia) provided by the elements, the KEPCA indeed makes a mapping for 

data before considering EPCA. Therefore, the core element of the kernel used in KEPCA is to map implicitly 

the input data into a high-dimensional feature space, where the nonlinear patterns become linear and the 

separation of the elements becomes easier. We have revealed the ability of KEPCA to retain more information 

in the high space in both PDF estimation and clustering over synthetic and real world dataset examples. 

Results show the performance query of the KEPCA over its counterpart EPCA data transformation. Besides, 

the use of VKE estimator has proven its efficiency in density estimation, which has critical effect on the 

clustering algorithm. 
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