
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 10, No. 6, December 2020, pp. 6061~6070

ISSN: 2088-8708, DOI: 10.11591/ijece.v10i6.pp6061-6070  6061

Journal homepage: http://ijece.iaescore.com/index.php/IJECE

Automated server-side model for recognition of security

vulnerabilities in scripting languages

Rabab F. Abdel-Kader1, Mona Nashaat2, Mohamed I. Habib3, Hani M. K. Mahdi4
1,2,3Department of Electrical Engineering, Faculty of Engineering, Port Said University, Egypt

4Faculty of Engineering, Ain Shams University, Egypt

Article Info ABSTRACT

Article history:

Received Dec 8, 2019

Revised May 17, 2020

Accepted May 27, 2020

 With the increase of global accessibility of web applications, maintaining

a reasonable security level for both user data and server resources has

become an extremely challenging issue. Therefore, static code analysis

systems can help web developers to reduce time and cost. In this paper,

a new static analysis model is proposed. This model is designed to discover

the security problems in scripting languages. The proposed model is

implemented in a prototype SCAT, which is a static code analysis tool.

SCAT applies the phases of the proposed model to catch security

vulnerabilities in PHP 5.3. Empirical results attest that the proposed

prototype is feasible and is able to contribute to the security of real-world

web applications. SCAT managed to detect 94% of security vulnerabilities

found in the testing benchmarks; this clearly indicates that the proposed

model is able to provide an effective solution to complicated web systems by

offering benefits of securing private data for users and maintaining web

application stability for web applications providers.

Keywords:

Data flow computing

Data security

Object-oriented programming

Software protection

Software testing

Copyright © 2020 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Rabab F. Abdel-Kader,

Department of Electrical Engineering,

Port-Said University,

Port-Said, 42523, Egypt.

Email: rababfakader@eng.psu.edu.eg

1. INTRODUCTION

Web applications are famous for security vulnerabilities that can be exploited by malicious users.

According to positive technologies (PT) [1], which is one of the top ten worldwide vendors of vulnerability

assessment systems, a percentage that ranges from 60% to 75% (depending on the analysis method) of

the analyzed sites contained critical vulnerabilities. A big portion of the detected vulnerabilities belongs to

the Cross-Site Scripting weakness and SQL injection. These kinds of vulnerabilities are caused by faulty

code. For example, cross-site script insertion is caused by the lack of sanitization for data supplied from

the user, code injection vulnerabilities result from the mixing of code and data. Another obvious point in

these statistics is that the largest share of web application vulnerabilities belongs to the general class of

taint-style vulnerabilities [2]. Taint-style vulnerabilities are a class of vulnerabilities that are a direct result of

a lack of or inadequate sanitization or validation of the integrity of data that is processed by the application.

This paper presents a new static code analysis model that is targeted to spot security vulnerabilities

in scripting languages. The model is also implemented in a prototype called (SCAT), which is implemented

to scan the applications and detect: cross-site scripting [2], SQL injection [3], remote code execution, remote

command execution, and XPath injection vulnerabilities [4]. This paper is organized as follows:

the next section illustrates the background and related work, Section 3 represents a detailed description of

the model implementation, and Section 4 describes the assessment methodology. Section 5 presents

the empirical results, while Section 6 represents the conclusions.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 : 6061 - 6070

6062

2. BACKGROUND AND RELATED WORKS

Static code analysis is a well-known approach that can be used for detecting security problems in

any program without the need of executing it [5]. Static code analyzers are usually used early in

development, which reduces the cost of fixing any error found in the code. However, it is known that static

analysis tools produce too many false positives; this is when a static analysis tool inappropriately marks

a problem-free section of code as vulnerable [6]. This means that the output from a security tool usually

requires human review.

There exist a considerable number of security assessment models for scripting languages; Pixy [7] is

one good example for such models, it is an open source static code analyzer performs automatic scans of

PHP 4 source code. Pixy takes a PHP program as input and outputs possible vulnerable points. Yu et al., [8]

also used static analysis to detect vulnerabilities in PHP 4 scripts and create string signatures for these

vulnerabilities. They implemented this process in Stranger, which stands for STRing AutomatoN GEneratoR.

Stranger is a string analysis tool for PHP web applications [8]. However, the tool does not support a recent

version of PHP.

Saner [9] is another security analyzer that uses an approach that consists of a static analysis

component to identify the flows of input values from sources to sensitive sinks. Nevertheless, the tool does

not support any object-oriented features in PHP. The author of RIPS [10] used an approach to build a static

source code analyzer written in PHP using the built-in tokenizer functions. The last version of RIPS that was

released in 2014 is implemented to find a wide range of known vulnerabilities [10].

3. PROPOSED MODEL IMPLEMENTATION

The proposed model is designed to detect the security issues in scripting languages like PHP.

Figure 1 shows the underline architecture of the proposed model which was applied in SCAT. The proposed

model first transforms the input program into a parse tree [11]. In the prototype, the lexical analyzer is

generated from the famous lexical analyzer generator for Java (JFlex) [12]. While the parser in the prototype

is built using a modified version of The Constructor of Useful Parser (CUP) v0.10 tool [13].

Some modifications had to be made in the source files of CUP, and so the production's symbol name, symbol

index and length can be accessed by the rule actions.

Finally, in data flow analysis, the constructed parse tree is transformed into a control flow graph

(CFG) for each encountered function [14]. The proposed model enforces a list of standards that must be

satisfied by the performed data flow analysis. First, the output CFG must maintain the flow of types of each

program point during execution, such requirement is necessary due to the dynamically typed nature

of PHP [15]. Second, it is required to collect information about the complete program putting all function

calls in considerations; this is the main role of the Inter-procedural data flow analysis phase [16]. Finally,

the data flow analysis collects all associated information for each node [17].

Figure 1. The proposed model system architecture

Int J Elec & Comp Eng ISSN: 2088-8708 

Automated server-side model for recognition of security vulnerabilities in ... (Rabab F. Abdel-Kader)

6063

The produced information from the data flow analysis step is now ready for the taint analysis

step [19]. Taint analysis simply determines for each program point whether it may hold a tainted value or not.

In order to improve the capability of the analysis phase, alias analysis is performed first; alias analysis is

concerned with collecting the alias relationships for all variables in the input program [18].

The parse tree is first generated into DOT language, and then the Dot file is transformed into

a visualized tree using Graphviz [19]. We use Graphviz class libraries to create a graphical representation for

parse tree and dependence graphs for program points that may receive tainted data during execution time.

Figure 2 shows a representation of the implementation of these functionalities within the proposed

model structure.

The last phase is result processing and report generating. For each sensitive sink that can receive

tainted data during execution, the model generates a vulnerability record. The record shows the file name that

contains the sensitive sink with the tainted data, the line number and the type of the detected vulnerability.

The proposed model also creates dependence graphs for the tainted variable [9].

Figure 2. Visualization features implementation

Creating a security model for scripting languages like PHP requires giving extra attention to a list of

language features such as dynamic includes, dynamic typing, and dynamic object reference.

a. Dynamic includes: PHP allows dynamic file inclusion, in which the file name and path is formed

dynamically in execution time. The proposed model performs recursive literal analysis phase in order to

resolve dynamic-included files. Figure 3 shows a simplified form of the algorithm for resolving dynamic

inclusion.

b. Dynamic Typing: the proposed model determines the flow of types for each variable in the program.

It keeps track of each point in the program that may result in changing variable type such as assignment

statements, calling to functions and Set and Unset functions [20]. In each of the aforementioned cases,

type analysis investigates the corresponding CFG and update related variables types.

c. Dynamic object reference: The problem with many existing approaches is the lack of understanding any

OOP features in scripting languages, for example, pixy marks any custom object as a tainted program

point. Similarly, it marks all user-defined method return values as tainted. The proposed model applies an

algorithm to both user-defined classes. The algorithm main function is to simulate stack and heap data

structures for custom classes, object references, user-defined methods and variables, namespaces, and

interfaces. Thus, the algorithm can maintain relations between all defined objects, their custom classes,

methods, and variables. During the analysis phase each custom object is resolved with its class definition,

this helps to detect vulnerabilities in user-defined objects and methods.

LiteralAnalysis.analyasze ()

allIncludeNodes= LiteralAnalysis.CollectIncludeNodes ()

foreach CfgIncludeNode in AllIncludeNodes

 IncLiteral=a.GetLiteral (CfgIncludeNode.GetIncludeinfo)

 Result r=TryToResolve (IncludeLiteral, CfgIncludeNode)

 If (r==Resolved)

 resolvedInclude.add (CfgIncludeNode)

 else If (r==More)

 CyclicInclude.add (CfgIncludeNode)

 else If (r==NotFound)

 NotFoundInclude.add (CfgIncludeNode)

End foreach

Figure 3. Resolving dynamic inclusions

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 : 6061 - 6070

6064

4. RESEARCH METHOD

4.1. Sub evaluation procedure

Evaluating the proposed model is mainly based on finding out how well the prototype SCAT confirms

to static code analysis tools requirements such as accuracy, robustness, usability, and responsiveness [21, 22].

For this purpose, two different sets of benchmark tests were performed. The evaluation process presented

here adapted the same structure used by Poel [23]. However, this structure is extended by computing

the evaluation metrics for each tool. Evaluation metrics computed for each tool include precision, recall,

specificity and Fmeasure [24].

- Precision: is the ratio of the number of true positives (TP) over the number of reported errors,

which include the reported true positives and false positives (TP+FP).

Pr / ()ecision TP TP FP  (1)

- Recall: is the ratio of the number of true positives (TP) over the number of actual errors, which is the sum

of reported true positives, and false negatives that were not detected (TP+FN).

Re / ()call TP TP FN  (2)

- Specificity: is the ratio of the number of true negatives (TN) over the sum of true negatives and false

positives (TN+FP).

/ ()Specificity TN TN FP  (3)

- Fmeasure: provides an aggregate measure for precision and recall.

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

Two others commonly used Fmeasures are the F2-measure, which weights recall higher than precision and

the F0.5-measure, which puts more emphasis on precision than recall [23]. The formula for Fβ-measure is:

𝐹𝛽−𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
(1+𝛽2)(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙)

𝛽2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (5)

Fmeasures ranges between 0 and 1 for a given tool, the three measures can be used to introduce a ranking of

the performance of several tools.

The methodology of the evaluation process is introduced in Figure 4, the process starts with

choosing a group of related static analysis tools, and then each tool within the group is used to analyze both

sets of benchmarks: Intra-Benchmark tests and Inter-Benchmark tests, finally the results obtained by each

tool are manually analyzed in order to compute the evaluation metrics. Implementation codes are available

through the link https://sourceforge.net/p/scat-static-analysis/code/ci/master/tree/. Before the empirical

results reviewed, both benchmarks tests and the group of related tools involved in the evaluation process are

further explained in the next three subsections.

Figure 4. Evaluation process methodology

https://sourceforge.net/p/scat-static-analysis/code/ci/master/tree/

Int J Elec & Comp Eng ISSN: 2088-8708 

Automated server-side model for recognition of security vulnerabilities in ... (Rabab F. Abdel-Kader)

6065

4.2. Benchmarks tests

4.2.1. Intra-benchmarks tests

The Intra-benchmark tests consist of real-world web applications written in PHP. These applications

are chosen with variety in its size, PHP supported version, coding style, and code complexity. The complete

list of these applications is shown in Table 1. For each application, the table shows its name, the application

version that was used in the experiments, the application type and code size of each application measured by

the number of code lines (LOC), the code size was calculated using PHPLoc Pear package.

Some of the tested applications are deliberately vulnerable web-applications that are provided as

a target for web-security scanners. These applications are Exploit.co.il, Mutillidae and Damn Vulnerable

Web App (DVWA). The rest of the tested applications are real-world applications written in PHP like PBL

Guestbook 1.32, MyBloggie 2.1.6, WordPress 1.5.1.3, and MyEasyMarket 4.1.

Intra-benchmark tests boil down to running a static code analysis on each one of these applications,

then the results obtained by each tool are manually analyzed to gather basic information about each tool such

as the total analysis time, the total number of spotted vulnerabilities (TP) and the number of false positives

(FP) [6]. The experiments focus on a set of taint-style vulnerabilities, which are XSS, SQL Injections,

Command Injection, and Code Injection, as these are the most frequently detected vulnerabilities by

the selected set of static code analysis tools [25-27].

Table 1. List of Intra-benchmark applications
Application Name Version Application Type LOC

Mutillidae 2.3.7 Vulnerable Web Application 103114

DVWA 1.0.7 Vulnerable Web Application 32315
Exploit.co.il 1.0.0 Vulnerable Web Application 5109

PBLGuestbook 1.32 Guest Book Application 1566

WordPress 1.5.1.3 Content Management System 31010
MyEasyMarket 4.1 Shopping Cart Application 2569

MyBloggie 2.1.6 Weblog System 9461

4.2.2. Intre-benchmarks tests

The inter-benchmark consists of 110 small php test cases stating 55 test cases, these cases are

divided into three categories, which are language support, vulnerability detection, and sanitization routine

support. Nico L. De Poel [24] used these test cases to evaluate a collection of commercial and open source

static code analyzers. Each test case consists of a vulnerable program that includes a security problem,

and a resolved program that resolves the vulnerability problem. The evaluation process focuses on both true

positive and false positive situations, so for each test case, a given tool is said to pass the test if it succeeded

to detect the vulnerability in the vulnerable file and did not fire alarm within the resolved file.

4.3. Selected tools

A wide range of related tools was investigated in order to choose the tools which are eligible to

engage in the evaluation process. These tools must allow comparing their performance, usability and

the range of covered vulnerabilities. This was the main reason for choosing open source tools, as they offer

full access to the source code, which helps in understanding the evaluation results. However, some tools were

discarded such as Ardilla [28] and IPAAS [29] since they do not provide source code yet and TAP [30]

which is a recent tool to detect vulnerability using deep learning.

The set of selected tools includes Pixy, RIPS and Yet another Source Code Analyzer (YASCA).

Pixy is the first and popular open source static code analysis tool targeted for PHP [7]. The second tool in

the set is RIPS, which is a static code analyzer that was developed by Johannes Dahse. It is written in

PHP and developed to detect a wide range of taint style vulnerabilities. The third tool in the set is YASCA

which was initially created by Michael V. Scovetta [31]. It can scan source code written in PHP and

other languages.

5. EMPIRICAL RESULTS

5.1. Analysis Time-Based Comparison

The analysis time is computed for each intra-benchmark test, while the analysis time in

inter-benchmark tests was ignored, as it was significantly small. Table 2 shows the analysis time for

intra-benchmark tests. SCAT took a noticeably long time in some applications; a significant part of this time

returns to file inclusion resolution phase; however, this delay should be acceptable comparing the eminent

number of the vulnerabilities detected by SCAT in these applications.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 : 6061 - 6070

6066

Table 2. Analysis time-based comparisons
Application SCAT Pixy RIPS YASCA

WordPress 20.403 Parse Error 7.223 14.09

Exploit 5.971 Parse Error 1.157 17.61
Mutillidae 27.563 Parse Error 46.479 60.14

MyBloggie 31.531 38.040 8.921 27.05

PBLGuestbook 16.981 7.260 0.211 45.12
MyEasyMarket 16.560 22.420 0.943 14.56

DVWA 3.879 Parse Error 7.220 21.98

5.2. Vulnerability detection-based comparison

5.2.1. Vulnerability detection in intra-benchmark tests

Table 3 shows the number of vulnerabilities detected by each tool in intra-benchmark tests.

The results show that for most applications, SCAT managed to achieve better results than other tools.

For example, in XSS detection, SCAT succeeded to detect XSS vulnerabilities that other tools failed to

detect. Also, in WordPress application, SCAT managed to detect XSS vulnerability in "searchform.php" file

in which WordPress allows remote attackers to inject arbitrary web script or HTML via the PHP_SELF

portion of a Uniform Resource Identifier (URI) to "index.php". On the other hand, RIPS kept firing false

alarms in files such as "archive.php" and "index.php" in which "searchform.php" file is included. While Pixy

failed to parse WordPress among other applications that use some advanced PHP 5 features.

Table 3. Vulnerability detection in intra-benchmark tests

In order to standardize the results, Precision value for the detected vulnerabilities is calculated for

each tool. Table 4 shows these calculated values, the results are categories by vulnerability type, the value

calculated for each tool shows the average of the precision values achieved by each tool in the tested

applications. The table clearly indicates that SCAT achieved the highest precision for XSS vulnerabilities.

The precision values for SQL Injection vulnerabilities (Precision) for each tool are shown in

the second row of the table; the results attest that SCAT also achieved the highest percentage among

comparing tools. The precision values for command execution and code injection vulnerabilities for each

application are illustrated in the third and fourth rows, Although SCAT achieved the highest value, there was

a considerable drop in the overall percentage values, this due to the absence of these types of vulnerabilities

in most of the chosen benchmarks.

Vul. Type Benchmark SCAT Pixy RIPS YASCA
TP FP FP% TP FP FP% TP FP FP% TP FP FP%

Cross-Site

Scripting

WordPress 221 15 6.36 Null 93 9 8.82 5 0 0

Exploit 0 1 100 Null 0 2 100 0 1 100

Mutillidae 54 2 3.57 Null 64 123 65.78 8 1 11.11

MyBloggie 35 4 10.26 37 4 9.76 20 27 57.45 2 3 60

PBLGuestbook 1 0 0 0 1 100 0 0 - 1 1 50
MyEasyMarket 16 0 0 7 0 0 0 0 - 0 0 -

DVWA 5 1 16.67 Null 2 14 87.50 1 3 75

SQL
Injection

WordPress 0 0 - Null 0 0 - 0 0 -
Exploit 35 0 0 Null 35 0 0 1 4 80

Mutillidae 1 0 0 Null 0 0 - 0 0 -

MyBloggie 1 0 0 1 4 80 0 1 100 3 0 0
PBLGuestbook 7 0 0 7 1 12.5 1 7 87.5 0 4 100

MyEasyMarket 29 0 0 15 0 0 0 3 100 3 1 25

DVWA 8 1 11 Null 3 3 50 0 1 100
Command

Injection

WordPress 0 0 - Null 0 1 100 0 0 -

Exploit 1 0 0 Null 0 0 - 0 0 -

Mutillidae 1 0 0 Null 1 4 80 1 0 0
MyBloggie 0 0 - 0 0 - 0 0 - 0 0 -

PBLGuestbook 0 0 - 0 0 - 0 0 - 0 0 -

MyEasyMarket 0 0 - 0 0 - 0 0 - 0 0 -
DVWA 4 0 0 Null 4 2 33.3 1 5 83.3

Code

Execution

WordPress 1 0 0 Null 1 6 85.7 0 0 -

Exploit 0 0 - Null 0 0 - 0 0 -
Mutillidae 0 0 - Null 3 27 90 0 0 -

MyBloggie 16 5 23.8 0 0 - 0 3 100 12 0 0

PBLGuestbook 0 0 - 0 0 - 0 0 - 0 0 -
MyEasyMarket 0 0 - 0 0 - 0 0 - 0 0 -

DVWA 0 0 - Null 0 2 100 0 0 -

Int J Elec & Comp Eng ISSN: 2088-8708 

Automated server-side model for recognition of security vulnerabilities in ... (Rabab F. Abdel-Kader)

6067

Table 4. Precision values for detected vulnerabilities in intra-benchmark tests
Vul. Type SCAT Pixy RIPS YASCA

XSS 0.804 0.272 0.2578 0.4341

SQL Injection 0.84 0.4107 0.4643 0.1934

Command Injection 0.4286 0.00 0.1238 0.1667
Code Injection 0.2541 0.00 0.0633 0.00

5.2.2. Vulnerability detection in inter-benchmark tests

The results for inter-benchmark tests are grouped in Table 5. The table is divided into three grouped

sets or rows; the first column of the table shows the category name, the second column shows the subject

name, each subject includes a set of test cases. The number of test cases in each subject is showed in the third

column, the rest of columns display the results of true positives (TP tests), false positives (FP tests) and

the success percentage of the tool in each subject [30]. The total percentage is calculated by dividing the total

number of passed tests by the total number of tests in a given category. The equation of success percentage is

shown in (6).

_ _
% %

_ _

TP Passed FP Passed
success

TP Tests FP Tests





 (6)

Table 5. Vulnerability detection in inter-benchmark tests
Category Subject No.

of
Tests

SCAT Pixy RIPS YASCA

TP FP S% TP FP S% TP FP S% TP FP S%

Vulnerability

Detection

All 18 17 15 89 7 17 67 12 17 81 4 14 50

Argument

injection

1 0 1 50 0 1 50 0 1 50 0 1 50

Command

Injection

2 2 2 100 0 2 50 2 2 100 2 0 50

Code injection 2 2 2 100 0 2 50 2 2 100 0 2 50

SQL injection 6 6 4 83 2 6 67 5 6 92 0 6 50

Server-side
Include

2 2 2 100 2 1 75 2 1 75 0 2 50

XPath injection 2 2 1 75 0 2 50 1 2 75 2 0 50

Cross-site
Scripting

3 3 3 100 3 3 100 0 3 50 3 3 50

Language

Support

All 30 25 16 68 19 17 60 1 29 50 0 30 50

Aliasing 4 4 4 100 4 0 50 0 4 50 0 4 50
Arrays 2 2 0 50 2 0 50 0 2 50 0 2 50

Constants 2 1 1 50 2 1 75 0 2 50 0 2 50

Functions 5 5 1 60 5 4 90 1 4 50 0 5 50
Dynamic

Inclusion

3 1 1 33 1 1 33 0 3 50 0 3 50

Object model 8 7 5 75 0 7 44 0 8 50 0 8 50
Strings 3 3 3 100 3 3 100 0 3 50 0 3 50

Variable

Variables

3 2 1 50 2 1 50 0 3 50 0 3 50

Sanitization

Support

All 7 6 3 64 6 3 64 1 7 57 0 7 50

Regular

expressions

2 2 0 50 2 0 50 0 2 50 0 2 50

SQL injection 1 0 1 50 0 1 50 1 1 100 0 1 50

Strings 2 2 0 50 2 0 50 0 2 50 0 2 50

Cross-site
Scripting

2 2 2 100 2 2 100 0 2 50 0 2 50

In Vulnerability Detection category, the results show that SCAT detected all vulnerabilities types;

except for Argument injection which is not supported by the prototype. On the other hand, RIPS failed to

spot XSS and argument injection vulnerabilities, it also failed in one SQL injection test and one XPath test,

and YASCA only detected command execution and XPath injection vulnerabilities.

In the results of the Language Support category, SCAT managed to detect the vulnerabilities in

object model files, it passes 7 tests out of 8 tests in this subject. This result indicates that the effort spent in

order to support object-oriented features in the prototype model was paid off. In Sanitization Support group,

the results show that for 86% of TP tests, SCAT was able to detect good sanitization routines when it

encounters it. While YASCA failed to pass any of the test cases. The only test in which SCAT failed is SQL

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 : 6061 - 6070

6068

injection sanitization test, in this test an (htmlspecialchars) sanitization routine is used which SCAT considers

as a strong sanitization method, so SCAT skips the vulnerability.

In false positive tests of Vulnerability Detected category, Pixy and RIPS remain silent for all

the tests. However, false positive tests cannot be considered alone, as an evaluation of tool performance,

for example, Pixy passes all tests because it is incapable to detect these vulnerabilities. This the main flaw in

false positive tests; they cannot differentiate between a tool that can scan and actually take the decision to

skip the resolved vulnerability and another tool that does not detect the vulnerability in the first place. SCAT

came in the second place with 83% passing percentage. Table 6 shows the calculated evaluation metrics for

each tool in the three categories of inter-benchmark tests In Vulnerability Detection category, Pixy managed

to achieve better values in the metrics that weights false positives higher than the true positives, this is

because Pixy does not cover these types of vulnerabilities. However, SCAT managed to score the highest

value in Fmeasure (4).

Table 6. Metrics evaluation for inter-benchmark tests
Category Tool Precision Recall Specificity F Measure

Vulnerability
Detection

SCAT 0.85 0.94 0.83 0.89
Pixy 0.88 0.39 0.94 0.54

RIPS 0.92 0.67 0.94 0.78

YASCA 0.50 0.22 0.78 0.31
Language Support

Detection

SCAT 0.64 0.83 0.53 0.72

Pixy 0.59 0.63 0.57 0.61

RIPS 0.50 0.03 0.97 0.06
YASCA 0.00 0.00 1.00 0.00

Sanitization
Support Detection

SCAT 0.60 0.86 0.43 0.71

Pixy 0.60 0.86 0.43 0.71
RIPS 1.00 0.14 1.00 0.25

YASCA 0.00 0.00 1.00 0.00

In the Language Support category, SCAT managed to score the highest value in Precision (1),

Recall (2) and Fmeasure metrics (4). In specificity (3) values, RIPS and Pixy managed to achieve better

performance because they managed to pass more false positive tests, however, Fmeasure values indicate that

SCAT has a better performance. Precision (1), Recall (2) and Specificity (3) evaluation metrics in

Sanitization Support category show that SCAT has the highest Fmeasure value, although RIPS achieved higher

value in Precision and Specificity metrics.

The results of inter-benchmark tests clearly show that SCAT scores the highest percentage in

the true positives tests (recall) of the three categories with 88% detection rate. It also managed to score 94%

detection rate in vulnerability detection category in particular which was the highest rate overall comparing

tools. Pixy passes these three categories with 63% detection rate, while RIPS only scores 28%, YASCA came

in last with 7% detection rate.

Table 7 shows the summary of results for the execution of the four tools against the inter-benchmark

tests. The table presents the calculated Recall (1), Precision (2), Specificity (3) and Fmeasure evaluation

metrics (4, 5). The results obtained for both types of Fmeasure metric show that SCAT achieved the best values.

Table 7. Evaluation metrics results
Tool Precision Recall Specificity F Measure F0.5 Measure F2 Measure

SCAT 0.69 0.88 0.59 0.77 0.721 0.834

Pixy 0.69 0.63 0.64 0.62 0.677 0.641

RIPS 0.81 0.28 0.97 0.42 0.587 0.322
YASCA 0.16 0.07 0.93 0.10 0.127 0.079

6. CONCLUSION

Web applications present a major role in almost all the principal services in the daily life. However,

vulnerabilities that threaten the personal data of users are discovered frequently. Therefore, this paper

proposed an automated server-side model for the dynamic recognition and justification of a wide range of

taint-style attacks. The proposed model is able to overcome most of the challenges in securing scripting

languages like PHP. The model was implemented in a prototype called (SCAT), which performs several

types of analysis to detect security vulnerabilities in the input program.

Int J Elec & Comp Eng ISSN: 2088-8708 

Automated server-side model for recognition of security vulnerabilities in ... (Rabab F. Abdel-Kader)

6069

The proposed model performs a flow-sensitive, inter-procedural and context-sensitive data flow

analysis in order to collect information about the program execution. Then, the model uses the information

collected in the data flow analysis phase to detect security vulnerabilities such as XSS and SQL injection.

Finally, it generates a detailed report which contains a detailed explanation of each sensitive sink that

represents security vulnerability in the program.

To evaluate the proposed system, an empirical evaluation procedure is conducted in which

the proposed prototype SCAT analyzes several real-world applications and categorizes sets of testing

benchmarks. The results demonstrate that the proposed system managed to detect 94% (recall value) of

security vulnerabilities found in the testing benchmarks which is the highest detection rate compared to other

systems. This clearly indicates the accuracy and robustness of SCAT. The evaluation process assesses

the compatibility of SCAT with PHP features, the prototype managed to achieve the highest score by 83%,

which is higher than Pixy that came in second place with only 64%. As a result, SCAT provides an effective

solution to complicated web systems by offering the benefits of securing private data for users and

maintaining web application stability for web applications providers.

REFERENCES
[1] A. Breeva and E. Potseluevskaya, “Most Vulnerable Web Application in 2013: XSS, PHP and Media Sites,”

Positive Technology, 2014.

[2] S. Gupta and B. B. Gupta, “Cross-Site Scripting (XSS) attacks and defense mechanisms: classification and

state-of-the-art,” International Journal of System Assurance Engineering and Management, vol. 8, pp. 512-530,

2017.

[3] M. K. Gupta, et al., “Static analysis approaches to detect SQL injection and cross site scripting vulnerabilities in

web applications: A survey,” International Conference on Recent Advances and Innovations in Engineering

(ICRAIE), pp. 1-5, 2014.

[4] M. I. P. Salas, et al., “Security Testing Methodology for Evaluation of Web Services Robustness-Case: XML

Injection,” 2015 IEEE World Congress on Services, pp. 303-310, 2015.

[5] K. G. Popstojanova and A. Perhinschi, “On the capability of static code analysis to detect security vulnerabilities,”

Information and Software Technology, pp. 18-33, 2015.

[6] M. Cova, et al., “Vulnerability analysis of web-based applications,” Test and Analysis of Web Services,

pp. 363-394, 2007.

[7] N. Jovanovic, et al., “Pixy: A static analysis tool for detecting web application vulnerabilities,” 2006 IEEE

Symposium on Security and Privacy, pp. 6-263, 2006.

[8] F. Yu, et al., “Stranger: An automata-based string analysis tool for PHP,”, “Tools and Algorithms for the

Construction and Analysis of Systems,” Lecture Notes in Computer Science, vol. 6015, pp. 154-157, 2010.

[9] D. Balzarotti, et al., “Saner: Composing static and dynamic analysis to validate sanitization in web applications,”

2008. IEEE Symposium on Security and Privacy, pp. 387-401, 2008.

[10] J. Dahse and T. Holz, “Simulation of Built-in PHP Features for Precise Static Code Analysis,” Symposium on

Network and Distributed System Security (NDSS), 2014.

[11] R. F. A. Kader, et al., “A Static Code Analysis Tool for Security Vulnerabilities in PHP 5 Scripts,” The 2012 World

Conference on Computer Science and Information Technology, 2012.

[12] G. Klein, et al., Jflex-the fast scanner generator for java, JFlex User’s Manual, July 2005, [Online]. Available:

http://www.jflex.de. [Accessed on: July 2015].

[13] S. E. Hudson, et al., “Cup parser generator for java,” Princeton University, 1999.

[14] E. Goktas, et al., “Out of control: Overcoming control-flow integrity,” IEEE Symposium on Security and Privacy,

pp. 575-589, 2014.

[15] Y. Xie and A. Aiken, “Static detection of security vulnerabilities in scripting languages,” Proceedings of the 15th

conference on USENIX Security Symposium, vol. 6, pp. 179-192, 2006.

[16] A. Rimsa, et al., “Efficient static checker for tainted variable attacks,” Science of Computer Programming,

vol. 80, pp. 91-105, 2014.

[17] L. K. Shar and H. B. K. Tan, “Auditing the defense against cross site scripting in web applications,” Proceedings of

the 2010 International Conference on Security and Cryptography (SECRYPT), pp. 1-7, 2010.

[18] A. Rimsa, et al., “Tainted flow analysis on e-SSA-form programs,” International Conference on Compiler

Construction, pp. 124-143, 2011.

[19] J. Ellson, et al., “Graphviz and dynagraph-static and dynamic graph drawing tools,” Graph Drawing Software,

pp. 127-148, 2004.

[20] “PHP Official Documentation,” The PHP Group, [Online]. Available: https://www.php.net/manual/en/.

[21] B. Mburano and W. Si, “Evaluation of Web Vulnerability Scanners Based on OWASP Benchmark,” 26th

International Conference on Systems Engineering, pp. 1-6, 2018.

[22] R. M. Parizi, et al., “Benchmark Requirements for Assessing Software Security Vulnerability Testing Tools,” IEEE

42nd Annual Computer Software and Applications Conference, pp. 825-826, 2018.

[23] N. L. de Peol, “Automated security review of PHP web applications with static code analysis,” Master's thesis,

2010.

https://www.php.net/manual/en/

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 : 6061 - 6070

6070

[24] G. Chatzieleftheriou and P. Katsaros, “Test-driving static analysis tools in search of C code vulnerabilities,” 2011

IEEE 35th Annual Computer Software and Applications Conference Workshops (COMPSACW), pp. 96-103, 2011.

[25] G. Díaz and J. R. Bermejo, “Static analysis of source code security: assessment of tools against SAMATE tests,”

Information and Software Technology, vol. 55, no. 8, pp. 1462-1476, 2013.

[26] U. Sarmah, et al., “A survey of detection methods for XSS attacks,” Journal of Network and Computer

Applications, vol. 118, pp. 113-143, Sep. 2018.

[27] M. A. Kausar, et al., “SQL injection Detection and Prevention Techniques in ASP.NET Web Applications,”

International Journal of Recent Technology and Engineering (IJRTE), vol. 8, no. 3, pp. 7759-7766, Sep. 2019.

[28] A. Kieyzun, et al., “Automatic creation of SQL injection and cross-site scripting attacks,” IEEE 31st International

Conference on Software Engineering (ICSE 2009), pp. 199-209, 2009.

[29] T. Scholte, et al., “Preventing Input Validation Vulnerabilities in Web Applications through Automated Type

Analysis,” 2012 IEEE 36th Annual Computer Software and Applications Conference (COMPSAC), pp. 233-243,

2012.

[30] Y. Fang, et al., “TAP: A static analysis model for PHP vulnerabilities based on token and deep learning

technology,” PLoS ONE, vol. 14, no. 11, pp. e0225196, 2019.

[31] A. A. Neto and M. Vieira, “Trustworthiness Benchmarking of Web Applications Using Static Code Analysis,”

2011 Sixth International Conference on Availability, Reliability and Security (ARES), pp. 224-229, 2011.

BIOGRAPHIES OF AUTHORS

Rabab Farouk Abdel-Kader she received her B.S. from the Electrical Engineering Department

Suez Canal University in 1998. She received her Ph.D. degree from the department of Computer

Science and Software Engineering at Auburn University, Auburn, AL in 2007 and the MS degree in

Electrical Engineering from Tuskegee University with high honors in 2002. Since 2008 she is

working as an Assistant Professor in the Electrical Engineering department, Faculty of Engineering,

Port-Said University, Egypt. Her main research interests include image processing, parallel

computing, and software Engineering.

Mona Nashaat, she received her B.S. degree in Electrical Engineering, Computer and Control division

from Faculty of Engineering Suez Canal University, Port-Said, Egypt in 2008 and her M.S. degree from

Electrical Engineering, Computer and Control division, Faculty of Engineering Port-Said University,

Port-Said, Egypt in 2013. Currently she is a demonstrator at the Electrical Engineering Department,

Computer and Control division, Port-Said University, Egypt. Since 2016 she is perusing her PhD

degree from the University of Alberta, Canada. Her Main research line concerns include application

line security, Programming Language Theory, and Software Engineering.

Mohamed Ibrahim Habib received the B.S. degree in Electrical Engineering Computer and

Control from Suez Canal University, Port Said, Egypt, in 2000, and M.S. and Ph.D. degrees in

Computer Engineering from Suez Canal University, in 2004 and 2009, respectively. Since 2009

he has been assistant professor in the Department of Computer Engineering, Suez Canal University.

From 2014, he is a visiting assistant professor in Saudi Electronic University. His major research

interests are Data Mining, Machine Learning, Deep Learning, and Artificial Intelligence.

Hani Mohamed Kamal Mahdi is an IEEE Life Senior Member. He was awarded in 2015

the Distinguished University Award of Ain Shams University, Cairo, Egypt. Hani Mahdi is a Computer

Systems Professor, Computer and Systems Engineering Department, Faculty of Engineering,

Ain Shams University, Cairo, Egypt. From this university he is graduated in 1971 and got his M.Sc. in

Electrical Engineering in 1976. He got his Doctor from Technische Universitaet, Braunschweig, West

Germany, in 1984. He was a Post-Doctoral Research Fellow at the Electrical and Computer

Engineering Department, The Pennsylvania State University, Pennsylvania (1988-1989), and at

the Computer Vision and Image Processing (CVIP) Lab, Electrical Engineering Department, University

of Louisville, Kentucky (2001-2002). He was on a leave of absence to work with Al-Isra University

(Amman, Jordan), El-Emarat University (El Ain, United Arab Emirates), and Technology Collage

(Hufuf, Saudi Arabia).Prof. Mahdi was the Head of the Computer and Systems Engineering

Department (2008-2009), the Director of Information Network (2006-2008) in the Faculty of

Engineering, Ain Shams University. He was the Director of Ain Shams University - Information

Network (2007-2008). His main research line concerns the Computational Intelligence (Artificial

Intelligence) and its applications to pattern recognition, software engineering, data mining, and

computer communication. He supervised many software projects in Egypt as a consultant for

governmental establishments and private companies. Prof. Mahdi is the Head of conference committees

of the International Conference on Electrical, Electronic and Computer Engineering ICEEC’09.

