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 With the increase of global accessibility of web applications, maintaining 

a reasonable security level for both user data and server resources has 

become an extremely challenging issue. Therefore, static code analysis 

systems can help web developers to reduce time and cost. In this paper, 

a new static analysis model is proposed. This model is designed to discover 

the security problems in scripting languages. The proposed model is 

implemented in a prototype SCAT, which is a static code analysis tool.  

SCAT applies the phases of the proposed model to catch security 

vulnerabilities in PHP 5.3. Empirical results attest that the proposed 

prototype is feasible and is able to contribute to the security of real-world 

web applications. SCAT managed to detect 94% of security vulnerabilities 

found in the testing benchmarks; this clearly indicates that the proposed 

model is able to provide an effective solution to complicated web systems by 

offering benefits of securing private data for users and maintaining web 

application stability for web applications providers. 
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1. INTRODUCTION  

Web applications are famous for security vulnerabilities that can be exploited by malicious users. 

According to positive technologies (PT) [1], which is one of the top ten worldwide vendors of vulnerability 

assessment systems, a percentage that ranges from 60% to 75% (depending on the analysis method) of  

the analyzed sites contained critical vulnerabilities. A big portion of the detected vulnerabilities belongs to 

the Cross-Site Scripting weakness and SQL injection. These kinds of vulnerabilities are caused by faulty 

code. For example, cross-site script insertion is caused by the lack of sanitization for data supplied from  

the user, code injection vulnerabilities result from the mixing of code and data. Another obvious point in 

these statistics is that the largest share of web application vulnerabilities belongs to the general class of  

taint-style vulnerabilities [2]. Taint-style vulnerabilities are a class of vulnerabilities that are a direct result of 

a lack of or inadequate sanitization or validation of the integrity of data that is processed by the application. 

This paper presents a new static code analysis model that is targeted to spot security vulnerabilities 

in scripting languages. The model is also implemented in a prototype called (SCAT), which is implemented 

to scan the applications and detect: cross-site scripting [2], SQL injection [3], remote code execution, remote 

command execution, and XPath injection vulnerabilities [4]. This paper is organized as follows:  

the next section illustrates the background and related work, Section 3 represents a detailed description of 

the model implementation, and Section 4 describes the assessment methodology. Section 5 presents 

the empirical results, while Section 6 represents the conclusions. 
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2. BACKGROUND AND RELATED WORKS 

Static code analysis is a well-known approach that can be used for detecting security problems in 

any program without the need of executing it [5]. Static code analyzers are usually used early in 

development, which reduces the cost of fixing any error found in the code. However, it is known that static 

analysis tools produce too many false positives; this is when a static analysis tool inappropriately marks 

a problem-free section of code as vulnerable [6]. This means that the output from a security tool usually 

requires human review.  

There exist a considerable number of security assessment models for scripting languages; Pixy [7] is 

one good example for such models, it is an open source static code analyzer performs automatic scans of 

PHP 4 source code. Pixy takes a PHP program as input and outputs possible vulnerable points. Yu et al., [8] 

also used static analysis to detect vulnerabilities in PHP 4 scripts and create string signatures for these 

vulnerabilities. They implemented this process in Stranger, which stands for STRing AutomatoN GEneratoR. 

Stranger is a string analysis tool for PHP web applications [8]. However, the tool does not support a recent 

version of PHP. 

Saner [9] is another security analyzer that uses an approach that consists of a static analysis 

component to identify the flows of input values from sources to sensitive sinks. Nevertheless, the tool does 

not support any object-oriented features in PHP. The author of RIPS [10] used an approach to build a static 

source code analyzer written in PHP using the built-in tokenizer functions. The last version of RIPS that was 

released in 2014 is implemented to find a wide range of known vulnerabilities [10]. 

 

 

3. PROPOSED MODEL IMPLEMENTATION 

The proposed model is designed to detect the security issues in scripting languages like PHP.  

Figure 1 shows the underline architecture of the proposed model which was applied in SCAT. The proposed 

model first transforms the input program into a parse tree [11]. In the prototype, the lexical analyzer is 

generated from the famous lexical analyzer generator for Java (JFlex) [12]. While the parser in the prototype 

is built using a modified version of The Constructor of Useful Parser (CUP) v0.10 tool [13]. 

Some modifications had to be made in the source files of CUP, and so the production's symbol name, symbol 

index and length can be accessed by the rule actions. 

Finally, in data flow analysis, the constructed parse tree is transformed into a control flow graph 

(CFG) for each encountered function [14]. The proposed model enforces a list of standards that must be 

satisfied by the performed data flow analysis.  First, the output CFG must maintain the flow of types of each 

program point during execution, such requirement is necessary due to the dynamically typed nature 

of PHP [15]. Second, it is required to collect information about the complete program putting all function 

calls in considerations; this is the main role of the Inter-procedural data flow analysis phase [16]. Finally, 

the data flow analysis collects all associated information for each node [17]. 

 

 

 
 

Figure 1. The proposed model system architecture 
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The produced information from the data flow analysis step is now ready for the taint analysis 

step [19]. Taint analysis simply determines for each program point whether it may hold a tainted value or not.  

In order to improve the capability of the analysis phase, alias analysis is performed first; alias analysis is 

concerned with collecting the alias relationships for all variables in the input program [18]. 

The parse tree is first generated into DOT language, and then the Dot file is transformed into 

a visualized tree using Graphviz [19]. We use Graphviz class libraries to create a graphical representation for 

parse tree and dependence graphs for program points that may receive tainted data during execution time. 

Figure 2 shows a representation of the implementation of these functionalities within the proposed 

model structure. 

The last phase is result processing and report generating. For each sensitive sink that can receive 

tainted data during execution, the model generates a vulnerability record. The record shows the file name that 

contains the sensitive sink with the tainted data, the line number and the type of the detected vulnerability. 

The proposed model also creates dependence graphs for the tainted variable [9]. 
 

 

 
 

Figure 2. Visualization features implementation 
 

 

Creating a security model for scripting languages like PHP requires giving extra attention to a list of 

language features such as dynamic includes, dynamic typing, and dynamic object reference.  

a. Dynamic includes: PHP allows dynamic file inclusion, in which the file name and path is formed 

dynamically in execution time. The proposed model performs recursive literal analysis phase in order to 

resolve dynamic-included files. Figure 3 shows a simplified form of the algorithm for resolving dynamic 

inclusion. 

b. Dynamic Typing: the proposed model determines the flow of types for each variable in the program. 

It keeps track of each point in the program that may result in changing variable type such as assignment 

statements, calling to functions and Set and Unset functions [20]. In each of the aforementioned cases, 

type analysis investigates the corresponding CFG and update related variables types. 

c. Dynamic object reference: The problem with many existing approaches is the lack of understanding any 

OOP features in scripting languages, for example, pixy marks any custom object as a tainted program 

point. Similarly, it marks all user-defined method return values as tainted. The proposed model applies an 

algorithm to both user-defined classes. The algorithm main function is to simulate stack and heap data 

structures for custom classes, object references, user-defined methods and variables, namespaces, and 

interfaces. Thus, the algorithm can maintain relations between all defined objects, their custom classes, 

methods, and variables. During the analysis phase each custom object is resolved with its class definition, 

this helps to detect vulnerabilities in user-defined objects and methods. 
 

 
LiteralAnalysis.analyasze ( ) 

allIncludeNodes= LiteralAnalysis.CollectIncludeNodes ( ) 

foreach CfgIncludeNode in AllIncludeNodes 

 IncLiteral=a.GetLiteral (CfgIncludeNode.GetIncludeinfo) 

 Result r=TryToResolve (IncludeLiteral, CfgIncludeNode) 

 If (r==Resolved) 

  resolvedInclude.add (CfgIncludeNode) 

 else If (r==More) 

  CyclicInclude.add (CfgIncludeNode) 

 else If (r==NotFound) 

  NotFoundInclude.add (CfgIncludeNode) 

End foreach 
 

Figure 3. Resolving dynamic inclusions 
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4. RESEARCH METHOD 

4.1.   Sub evaluation procedure 

Evaluating the proposed model is mainly based on finding out how well the prototype SCAT confirms 

to static code analysis tools requirements such as accuracy, robustness, usability, and responsiveness [21, 22]. 

For this purpose, two different sets of benchmark tests were performed. The evaluation process presented 

here adapted the same structure used by Poel [23]. However, this structure is extended by computing 

the evaluation metrics for each tool. Evaluation metrics computed for each tool include precision, recall, 

specificity and Fmeasure [24].  

- Precision: is the ratio of the number of true positives (TP) over the number of reported errors,  

which include the reported true positives and false positives (TP+FP). 

 

Pr / ( )ecision TP TP FP   (1) 

 

- Recall: is the ratio of the number of true positives (TP) over the number of actual errors, which is the sum 

of reported true positives, and false negatives that were not detected (TP+FN). 

 

Re / ( )call TP TP FN   (2) 

 

- Specificity: is the ratio of the number of true negatives (TN) over the sum of true negatives and false 

positives (TN+FP). 

 

/ ( )Specificity TN TN FP   (3) 

 

- Fmeasure: provides an aggregate measure for precision and recall. 

 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

Two others commonly used Fmeasures are the F2-measure, which weights recall higher than precision and 

the F0.5-measure, which puts more emphasis on precision than recall [23]. The formula for Fβ-measure is: 

 

𝐹𝛽−𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
(1+𝛽2)(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙)

𝛽2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

 

Fmeasures ranges between 0 and 1 for a given tool, the three measures can be used to introduce a ranking of  

the performance of several tools. 

The methodology of the evaluation process is introduced in Figure 4, the process starts with 

choosing a group of related static analysis tools, and then each tool within the group is used to analyze both 

sets of benchmarks: Intra-Benchmark tests and Inter-Benchmark tests, finally the results obtained by each 

tool are manually analyzed in order to compute the evaluation metrics. Implementation codes are available 

through the link https://sourceforge.net/p/scat-static-analysis/code/ci/master/tree/. Before the empirical 

results reviewed, both benchmarks tests and the group of related tools involved in the evaluation process are 

further explained in the next three subsections. 

 

 

 
 

Figure 4. Evaluation process methodology 

https://sourceforge.net/p/scat-static-analysis/code/ci/master/tree/
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4.2.   Benchmarks tests 

4.2.1. Intra-benchmarks tests 

The Intra-benchmark tests consist of real-world web applications written in PHP. These applications 

are chosen with variety in its size, PHP supported version, coding style, and code complexity. The complete 

list of these applications is shown in Table 1. For each application, the table shows its name, the application 

version that was used in the experiments, the application type and code size of each application measured by 

the number of code lines (LOC), the code size was calculated using PHPLoc Pear package. 

Some of the tested applications are deliberately vulnerable web-applications that are provided as 

a target for web-security scanners. These applications are Exploit.co.il, Mutillidae and Damn Vulnerable 

Web App (DVWA). The rest of the tested applications are real-world applications written in PHP like PBL 

Guestbook 1.32, MyBloggie 2.1.6, WordPress 1.5.1.3, and MyEasyMarket 4.1.  

Intra-benchmark tests boil down to running a static code analysis on each one of these applications, 

then the results obtained by each tool are manually analyzed to gather basic information about each tool such 

as the total analysis time, the total number of spotted vulnerabilities (TP) and the number of false positives 

(FP) [6]. The experiments focus on a set of taint-style vulnerabilities, which are XSS, SQL Injections, 

Command Injection, and Code Injection, as these are the most frequently detected vulnerabilities by 

the selected set of static code analysis tools [25-27]. 

 

 

Table 1. List of Intra-benchmark applications 
Application Name Version Application Type LOC 

Mutillidae 2.3.7 Vulnerable Web Application 103114 

DVWA 1.0.7 Vulnerable Web Application 32315 
Exploit.co.il 1.0.0 Vulnerable Web Application 5109 

PBLGuestbook 1.32 Guest Book Application 1566 

WordPress 1.5.1.3 Content Management System 31010 
MyEasyMarket 4.1 Shopping Cart Application 2569 

MyBloggie 2.1.6 Weblog System 9461 

 

 

4.2.2. Intre-benchmarks tests 

The inter-benchmark consists of 110 small php test cases stating 55 test cases, these cases are 

divided into three categories, which are language support, vulnerability detection, and sanitization routine 

support. Nico L. De Poel [24] used these test cases to evaluate a collection of commercial and open source 

static code analyzers.  Each test case consists of a vulnerable program that includes a security problem, 

and a resolved program that resolves the vulnerability problem. The evaluation process focuses on both true 

positive and false positive situations, so for each test case, a given tool is said to pass the test if it succeeded 

to detect the vulnerability in the vulnerable file and did not fire alarm within the resolved file. 

 

4.3.   Selected tools 

A wide range of related tools was investigated in order to choose the tools which are eligible to 

engage in the evaluation process. These tools must allow comparing their performance, usability and  

the range of covered vulnerabilities. This was the main reason for choosing open source tools, as they offer 

full access to the source code, which helps in understanding the evaluation results. However, some tools were 

discarded such as Ardilla [28] and IPAAS [29] since they do not provide source code yet and TAP [30] 

which is a recent tool to detect vulnerability using deep learning.  

The set of selected tools includes Pixy, RIPS and Yet another Source Code Analyzer (YASCA). 

Pixy is the first and popular open source static code analysis tool targeted for PHP [7]. The second tool in 

the set is RIPS, which is a static code analyzer that was developed by Johannes Dahse. It is written in 

PHP and developed to detect a wide range of taint style vulnerabilities. The third tool in the set is YASCA 

which was initially created by Michael V. Scovetta [31]. It can scan source code written in PHP and 

other languages.  

 

 

5. EMPIRICAL RESULTS 

5.1.   Analysis Time-Based Comparison 

The analysis time is computed for each intra-benchmark test, while the analysis time in  

inter-benchmark tests was ignored, as it was significantly small. Table 2 shows the analysis time for  

intra-benchmark tests. SCAT took a noticeably long time in some applications; a significant part of this time 

returns to file inclusion resolution phase; however, this delay should be acceptable comparing the eminent 

number of the vulnerabilities detected by SCAT in these applications. 
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Table 2.  Analysis time-based comparisons 
Application SCAT Pixy RIPS YASCA 

WordPress 20.403 Parse Error 7.223 14.09 

Exploit 5.971 Parse Error 1.157 17.61 
Mutillidae 27.563 Parse Error 46.479 60.14 

MyBloggie 31.531 38.040 8.921 27.05 

PBLGuestbook 16.981 7.260 0.211 45.12 
MyEasyMarket 16.560 22.420 0.943 14.56 

DVWA 3.879 Parse Error 7.220 21.98 

 

 

5.2.   Vulnerability detection-based comparison 

5.2.1. Vulnerability detection in intra-benchmark tests 

Table 3 shows the number of vulnerabilities detected by each tool in intra-benchmark tests.  

The results show that for most applications, SCAT managed to achieve better results than other tools. 

For example, in XSS detection, SCAT succeeded to detect XSS vulnerabilities that other tools failed to 

detect. Also, in WordPress application, SCAT managed to detect XSS vulnerability in "searchform.php" file 

in which WordPress allows remote attackers to inject arbitrary web script or HTML via the PHP_SELF 

portion of a Uniform Resource Identifier (URI) to "index.php". On the other hand, RIPS kept firing false 

alarms in files such as "archive.php" and "index.php" in which "searchform.php" file is included. While Pixy 

failed to parse WordPress among other applications that use some advanced PHP 5 features. 

 

 

Table 3. Vulnerability detection in intra-benchmark tests 

 

 

In order to standardize the results, Precision value for the detected vulnerabilities is calculated for 

each tool. Table 4 shows these calculated values, the results are categories by vulnerability type, the value 

calculated for each tool shows the average of the precision values achieved by each tool in the tested 

applications. The table clearly indicates that SCAT achieved the highest precision for XSS vulnerabilities. 

The precision values for SQL Injection vulnerabilities (Precision) for each tool are shown in  

the second row of the table; the results attest that SCAT also achieved the highest percentage among 

comparing tools. The precision values for command execution and code injection vulnerabilities for each 

application are illustrated in the third and fourth rows, Although SCAT achieved the highest value, there was 

a considerable drop in the overall percentage values, this due to the absence of these types of vulnerabilities 

in most of the chosen benchmarks. 

Vul. Type Benchmark SCAT Pixy RIPS YASCA 
TP FP FP% TP FP FP% TP FP FP% TP FP FP% 

Cross-Site 

Scripting 

WordPress 221 15 6.36 Null 93 9 8.82 5 0 0 

Exploit 0 1 100 Null 0 2 100 0 1 100 

Mutillidae 54 2 3.57 Null 64 123 65.78 8 1 11.11 

MyBloggie 35 4 10.26 37 4 9.76 20 27 57.45 2 3 60 

PBLGuestbook 1 0 0 0 1 100 0 0 - 1 1 50 
MyEasyMarket 16 0 0 7 0 0 0 0 - 0 0 - 

DVWA 5 1 16.67 Null 2 14 87.50 1 3 75 

SQL 
Injection 

WordPress 0 0 - Null 0 0 - 0 0 - 
Exploit 35 0 0 Null 35 0 0 1 4 80 

Mutillidae 1 0 0 Null 0 0 - 0 0 - 

MyBloggie 1 0 0 1 4 80 0 1 100 3 0 0 
PBLGuestbook 7 0 0 7 1 12.5 1 7 87.5 0 4 100 

MyEasyMarket 29 0 0 15 0 0 0 3 100 3 1 25 

DVWA 8 1 11 Null 3 3 50 0 1 100 
Command 

Injection 

WordPress 0 0 - Null 0 1 100 0 0 - 

Exploit 1 0 0 Null 0 0 - 0 0 - 

Mutillidae 1 0 0 Null 1 4 80 1 0 0 
MyBloggie 0 0 - 0 0 - 0 0 - 0 0 - 

PBLGuestbook 0 0 - 0 0 - 0 0 - 0 0 - 

MyEasyMarket 0 0 - 0 0 - 0 0 - 0 0 - 
DVWA 4 0 0 Null 4 2 33.3 1 5 83.3 

Code 

Execution 

WordPress 1 0 0 Null 1 6 85.7 0 0 - 

Exploit 0 0 - Null 0 0 - 0 0 - 
Mutillidae 0 0 - Null 3 27 90 0 0 - 

MyBloggie 16 5 23.8 0 0 - 0 3 100 12 0 0 

PBLGuestbook 0 0 - 0 0 - 0 0 - 0 0 - 
MyEasyMarket 0 0 - 0 0 - 0 0 - 0 0 - 

DVWA 0 0 - Null 0 2 100 0 0 - 
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Table 4. Precision values for detected vulnerabilities in intra-benchmark tests 
Vul. Type SCAT Pixy RIPS YASCA 

XSS 0.804 0.272 0.2578 0.4341 

SQL Injection 0.84 0.4107 0.4643 0.1934 

Command Injection 0.4286 0.00 0.1238 0.1667 
Code Injection 0.2541 0.00 0.0633 0.00 

 

 

5.2.2. Vulnerability detection in inter-benchmark tests 

The results for inter-benchmark tests are grouped in Table 5. The table is divided into three grouped 

sets or rows; the first column of the table shows the category name, the second column shows the subject 

name, each subject includes a set of test cases. The number of test cases in each subject is showed in the third 

column, the rest of columns display the results of true positives (TP tests), false positives (FP tests) and  

the success percentage of the tool in each subject [30]. The total percentage is calculated by dividing the total 

number of passed tests by the total number of tests in a given category. The equation of success percentage is 

shown in (6). 

 

_ _
% %

_ _

TP Passed FP Passed
success

TP Tests FP Tests





 (6) 

 

 

Table 5. Vulnerability detection in inter-benchmark tests 
Category Subject No. 

of 
Tests 

SCAT Pixy RIPS YASCA 

TP FP S% TP FP S% TP FP S% TP FP S% 

Vulnerability 

Detection 

All 18 17 15 89 7 17 67 12 17 81 4 14 50 

Argument 

injection 

1 0 1 50 0 1 50 0 1 50 0 1 50 

Command 

Injection 

2 2 2 100 0 2 50 2 2 100 2 0 50 

Code injection 2 2 2 100 0 2 50 2 2 100 0 2 50 

SQL injection 6 6 4 83 2 6 67 5 6 92 0 6 50 

Server-side 
Include 

2 2 2 100 2 1 75 2 1 75 0 2 50 

XPath injection 2 2 1 75 0 2 50 1 2 75 2 0 50 

Cross-site 
Scripting 

3 3 3 100 3 3 100 0 3 50 3 3 50 

Language 

Support 

All 30 25 16 68 19 17 60 1 29 50 0 30 50 

Aliasing 4 4 4 100 4 0 50 0 4 50 0 4 50 
Arrays 2 2 0 50 2 0 50 0 2 50 0 2 50 

Constants 2 1 1 50 2 1 75 0 2 50 0 2 50 

Functions 5 5 1 60 5 4 90 1 4 50 0 5 50 
Dynamic 

Inclusion 

3 1 1 33 1 1 33 0 3 50 0 3 50 

Object model 8 7 5 75 0 7 44 0 8 50 0 8 50 
Strings 3 3 3 100 3 3 100 0 3 50 0 3 50 

Variable 

Variables 

3 2 1 50 2 1 50 0 3 50 0 3 50 

Sanitization 

Support 

All 7 6 3 64 6 3 64 1 7 57 0 7 50 

Regular 

expressions 

2 2 0 50 2 0 50 0 2 50 0 2 50 

SQL injection 1 0 1 50 0 1 50 1 1 100 0 1 50 

Strings 2 2 0 50 2 0 50 0 2 50 0 2 50 

Cross-site 
Scripting 

2 2 2 100 2 2 100 0 2 50 0 2 50 

 

 

In Vulnerability Detection category, the results show that SCAT detected all vulnerabilities types; 

except for Argument injection which is not supported by the prototype. On the other hand, RIPS failed to 

spot XSS and argument injection vulnerabilities, it also failed in one SQL injection test and one XPath test, 

and YASCA only detected command execution and XPath injection vulnerabilities.  

In the results of the Language Support category, SCAT managed to detect the vulnerabilities in 

object model files, it passes 7 tests out of 8 tests in this subject. This result indicates that the effort spent in 

order to support object-oriented features in the prototype model was paid off. In Sanitization Support group, 

the results show that for 86% of TP tests, SCAT was able to detect good sanitization routines when it 

encounters it. While YASCA failed to pass any of the test cases. The only test in which SCAT failed is SQL 
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injection sanitization test, in this test an (htmlspecialchars) sanitization routine is used which SCAT considers 

as a strong sanitization method, so SCAT skips the vulnerability. 

In false positive tests of Vulnerability Detected category, Pixy and RIPS remain silent for all  

the tests. However, false positive tests cannot be considered alone, as an evaluation of tool performance,  

for example, Pixy passes all tests because it is incapable to detect these vulnerabilities. This the main flaw in 

false positive tests; they cannot differentiate between a tool that can scan and actually take the decision to 

skip the resolved vulnerability and another tool that does not detect the vulnerability in the first place. SCAT 

came in the second place with 83% passing percentage. Table 6 shows the calculated evaluation metrics for 

each tool in the three categories of inter-benchmark tests In Vulnerability Detection category, Pixy managed 

to achieve better values in the metrics that weights false positives higher than the true positives, this is 

because Pixy does not cover these types of vulnerabilities. However, SCAT managed to score the highest 

value in Fmeasure (4). 

 

 

Table 6. Metrics evaluation for inter-benchmark tests 
Category Tool Precision Recall Specificity F Measure 

Vulnerability 
Detection 

SCAT 0.85 0.94 0.83 0.89 
Pixy 0.88 0.39 0.94 0.54 

RIPS 0.92 0.67 0.94 0.78 

YASCA 0.50 0.22 0.78 0.31 
Language Support 

Detection 

SCAT 0.64 0.83 0.53 0.72 

Pixy 0.59 0.63 0.57 0.61 

RIPS 0.50 0.03 0.97 0.06 
YASCA 0.00 0.00 1.00 0.00 

 

Sanitization 
Support Detection 

SCAT 0.60 0.86 0.43 0.71 

Pixy 0.60 0.86 0.43 0.71 
RIPS 1.00 0.14 1.00 0.25 

YASCA 0.00 0.00 1.00 0.00 

 

 

In the Language Support category, SCAT managed to score the highest value in Precision (1), 

Recall (2) and Fmeasure metrics (4). In specificity (3) values, RIPS and Pixy managed to achieve better 

performance because they managed to pass more false positive tests, however, Fmeasure values indicate that 

SCAT has a better performance. Precision (1), Recall (2) and Specificity (3) evaluation metrics in 

Sanitization Support category show that SCAT has the highest Fmeasure value, although RIPS achieved higher 

value in Precision and Specificity metrics. 

The results of inter-benchmark tests clearly show that SCAT scores the highest percentage in  

the true positives tests (recall) of the three categories with 88% detection rate. It also managed to score 94% 

detection rate in vulnerability detection category in particular which was the highest rate overall comparing 

tools. Pixy passes these three categories with 63% detection rate, while RIPS only scores 28%, YASCA came 

in last with 7% detection rate. 

Table 7 shows the summary of results for the execution of the four tools against the inter-benchmark 

tests. The table presents the calculated Recall (1), Precision (2), Specificity (3) and Fmeasure evaluation 

metrics (4, 5). The results obtained for both types of Fmeasure metric show that SCAT achieved the best values. 

 

 

Table 7. Evaluation metrics results 
Tool Precision Recall Specificity F Measure F0.5 Measure F2 Measure 

SCAT 0.69 0.88 0.59 0.77 0.721 0.834 

Pixy 0.69 0.63 0.64 0.62 0.677 0.641 

RIPS 0.81 0.28 0.97 0.42 0.587 0.322 
YASCA 0.16 0.07 0.93 0.10 0.127 0.079 

 

 

6. CONCLUSION  

Web applications present a major role in almost all the principal services in the daily life. However, 

vulnerabilities that threaten the personal data of users are discovered frequently. Therefore, this paper 

proposed an automated server-side model for the dynamic recognition and justification of a wide range of 

taint-style attacks. The proposed model is able to overcome most of the challenges in securing scripting 

languages like PHP. The model was implemented in a prototype called (SCAT), which performs several 

types of analysis to detect security vulnerabilities in the input program.  
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The proposed model performs a flow-sensitive, inter-procedural and context-sensitive data flow 

analysis in order to collect information about the program execution. Then, the model uses the information 

collected in the data flow analysis phase to detect security vulnerabilities such as XSS and SQL injection. 

Finally, it generates a detailed report which contains a detailed explanation of each sensitive sink that 

represents security vulnerability in the program.  

To evaluate the proposed system, an empirical evaluation procedure is conducted in which  

the proposed prototype SCAT analyzes several real-world applications and categorizes sets of testing 

benchmarks. The results demonstrate that the proposed system managed to detect 94% (recall value) of 

security vulnerabilities found in the testing benchmarks which is the highest detection rate compared to other 

systems. This clearly indicates the accuracy and robustness of SCAT. The evaluation process assesses  

the compatibility of SCAT with PHP features, the prototype managed to achieve the highest score by 83%, 

which is higher than Pixy that came in second place with only 64%. As a result, SCAT provides an effective 

solution to complicated web systems by offering the benefits of securing private data for users and 

maintaining web application stability for web applications providers. 
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