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 In this paper we introduce a cubic root unscented kalman filter (CRUKF) 

compared to the unscented kalman filter (UKF) for calculating the covariance 

cubic matrix and covariance matrix within a sensor fusion algorithm to 

estimate the measurements of an omnidirectional mobile robot trajectory. 

We study the fusion of the data obtained by the position and orientation with  

a good precision to localize the robot in an external medium; we apply  

the techniques of kalman filter (KF) to the estimation of the trajectory. 

We suppose a movement of mobile robot on a plan in two dimensions. 

The sensor approach is based on the CRUKF and too on the standard UKF 

which are modified to handle measurements from the position and orientation.  

A real-time implementation is done on a three-wheeled omnidirectional 

mobile robot, using a dynamic model with trajectories. The algorithm is 

analyzed and validated with simulations. 
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1. INTRODUCTION  

The mobile robots are equipped with sensors to measure the distance of the robot from the space of 

the objects where they move. Measurements which are always linked by noises are then fused together in  

a filter to obtain an estimate of the position and orientation of the mobile robot trajectory in the space and 

plan [1, 2]. The most important problems related to robots are situated in sensors powere by their battery 

which reduces the autonomy. Also there are situations where sensors cannot function simultaneously, when 

they use the same frequency band [3, 4]. The Kalman filter is an optimal linear estimator when the process 

noise and the measurement noise can be modeled by white Gaussian noise. Non-linear problems can be 

solved with the unscented Kalman filter (UKF) and we propose a new algorithm that is called the cubic root 

unscented Kalman filter (CRUKF) to solve also nonlinear problems. In our work, we use this technique to 

estimate the position and the angle of the robot in its displacement then a comparison between  

the performances of the two filters is presented to give an evaluation of more precised measurement and will 

appreciate better statistical properties [2, 5]. 

This paper is organized as follow; we present the modeling of the mobile robot with the equations of 

trajectory and angles of the robot. Next, we pass to the presentation of the UKF algorithm and we propose  

a CRUKF algorithm to improve the accuracy of the state estimate. Finally we present and discuss  

the simulation results and outline some possible extensions for future investigations. 

 
 

2. MODELING OF MOBILE ROBOT 

The robot takes the position trajectory T between two moments from sampling with the variation in 

the position and the direction then we supposes in our paper the omnidirectional mobile robot like shown in 
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Figure 1. Our robot have three wheels whoos effect on the robot speed because of their weight and friction on 

the ground, we suppose 𝑚1, 𝑚2 and 𝑚3 the robot mass applied on the wheels. The omnidirectional mobile 

Robot has two independently speed-controlled wheels equipped with sensors, and a castor wheel [2, 6-12]. 

For such a robot, an approximated, discrete-time model is: 

 

𝐴𝑘+1 = 𝐴𝑘 + 𝑣𝑘. 𝑚𝑘 . 𝑡. 𝑢1. 𝑐𝑜𝑠(𝜃𝑘+1) + 𝑤1
𝐵𝑘+1 = 𝐵𝑘 + 𝑣𝑘 . 𝑚𝑘 . 𝑡. 𝑢2. 𝑠𝑖𝑛(𝜃𝑘+1) + 𝑤2

𝜃𝑘+1 = 𝜃𝑘 + ∆𝜃 + 𝑤3

 (1) 

 

where (𝐴𝑘, 𝐵𝑘) is the position of the robot at time 𝑡𝑘, with 𝐴𝑘 = (

𝐴1
 𝐴2 
𝐴3

 ), 𝐴𝑘 = 𝐴1, 𝐵𝑘 = 𝐴2, 𝜃𝑘 = 𝐴3,  

𝜃𝑘 represente the angle between the robot axle and the x-axis, 𝑤𝑘 = ( 

𝑤1
𝑤2
𝑤3
) are zero-mean uncorrelated 

Gaussian noises and 𝑢𝑘 = (
𝑢1
𝑢2
) are the angular velocities of wheels, 𝑚𝑘 = 𝑅 . (𝑚1 +𝑚2 +𝑚3)/3𝐿 is  

the mass of the robot in wheels. 𝑣𝑘 = 𝑅 . (𝑢1 + 𝑢2)/2 is the linear velocity of the robot, 𝑡 = 𝑡𝑘+1 − 𝑡𝑘 is  

the sampling period and ∆𝜃 = 𝑅. (𝑢2 − 𝑢1) . 𝑡/ 2𝐿 is the rotation within [𝑡𝑘, 𝑡𝑘+1]. 𝑅 is the radius of  

the wheels and L is the length of the axes. 

The omnidirectional mobile robot is equipped with sensors to measure its position and its  

orientation like shown in Figure 2. The figure also defines the environment of the robot, assumed perfectly 

known [7, 10, 13]. In our work we propose the trajectory T on which we apply the technical of Kalman filters 

CRUKF and UKF to estimate this trajectory. 

 

 

 
 

Figure 1. Omnidirectional mobile robot 

 
 

Figure 2. Omnidirectional mobile robot trajectory T 

 

 

2.1. The equations of trajectory T 

The trajectory of the robot is defined by the equation 𝐵𝑘+1 = 𝑓(𝐴𝑘+1) where 𝐴𝑘 = 𝐴1 = 1; 

𝐵𝑘 = 𝐴2 = 1; 𝜃𝑘 = 𝐴3 = 1; 𝑡 = 1𝑠; 𝑣1 = 𝑣2 = 0,02 m/s; 𝑢1 = 0,2; 𝑢2 = 0,1; ∆𝜃 = 𝜋/2; 𝑚1 = 0,3 g; 

𝑚2 = 0,3 g; 𝑚3 = 0,3 g; 𝑅 = 0,5.10−2 m 𝐿 = 0,18 m and 𝑚𝑘 = 𝑅 . (𝑚1 +𝑚2 +𝑚3)/3 L; then 

𝑚𝑘 = 0,0083 g. 

 We have our model: 

 

{

Ak+1 = Ak + v1mkt u1 cos(θk+1) + w1         

Bk+1 = Bk + v2mkt u2 sin(θk+1) + w2          
θk+1 = θk + ∆θ + w3                                    

  

 

then 

 

 {
Ak+1 − Ak −w1 = v1mkt u1 cos(θk+1)

Bk+1 − Bk − w2 = v2mkt u2 sin(θk+1)
 

 

then 

 
(𝐴𝑘+1 − 𝐴𝑘 − 𝑤1)

𝑣1𝑚𝑘𝑡 𝑢1
= 𝑐𝑜𝑠(𝜃𝑘+1)  (2) 

X 

Y 

T 
Robot 
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(𝐵𝑘+1 − 𝐵𝑘 −𝑤2)

𝑣2𝑚𝑘𝑡 𝑢2
= 𝑠𝑖𝑛(𝜃𝑘+1) (3) 

 

and we make square:  

 

(𝐴𝑘+1 − 𝐴𝑘 − 𝑤1)
2

(𝑣1𝑚𝑘𝑡 𝑢1)
2

= 𝑐𝑜𝑠
2(𝜃𝑘+1) (4) 

 

(𝐵𝑘+1 − 𝐵𝑘 −𝑤2)
2

(𝑣2𝑚𝑘𝑡 𝑢2)
2

= 𝑠𝑖𝑛2(𝜃𝑘+1) (5) 

 

(4) + (5) ⟹
(Ak+1 − Ak −w1)

2

(v1mkt u1)
2

+
(Bk+1 − Bk − w2)

2

(v2 mkt u2)
2

= cos2(θk+1) + sin
2(θk+1) 

 

then 

 

(Ak+1 − Ak − w1)
2

(v1mkt u1)
2

+
(Bk+1 − Bk − w2)

2

(v2mkt u2)
2

= 1 

 

⟹
(Bk+1 − Bk − w2)

2

(v2mkt u2)
2

= 1 −
(Ak+1 − Ak − w1)

2

(v1mkt u1)
2

 

 

⟹ (Bk+1 − Bk − w2)
2 = (v2mkt u2)

2(1 −
(Bk+1 − Bk − w1)

2

(v1mkt u1)
2

) 

 

⟹ Bk+1 − Bk − w2 = √(v2mkt u2)
2(1 −

(Ak+1 − Ak − w1)
2

(v1mkt u1)
2

)  

 

then 

 

Bk+1 = Bk +w2 + v2mkt u2√(1 −
(Ak+1 − Ak − w1)

2

(v1mk t u1)
2

)  

 

For the trajectory T we take: 𝑤1 = 0, 𝑤2 = 0 and 𝑤3 = 0 

 

Bk+1 = 1 + 0 + 0,02.1.0,0083.0,1. √(1 −
(Ak+1 − 1 − 0)

2

(0,02.10,0083. .0,2)2
)   

 

Then the final equation of T is: 

 

Bk+1 = 1 + 0,016. 10
−3√(1 −

(Ak+1−1)
2

0,256.10−6
 )

 
  

 

2.2. The angle of robot 𝛉𝐤+𝟏  

We have  

 

{
 
 

 
 
(Ak+1 − Ak − w1)

v1mkt u1
= cos(θk+1)

 
(Bk+1 − Bk −w2)

v2mkt u2
= sin(θk+1)

 

 

(2) ⟹ 𝜃𝑘+1 = 𝑎𝑐𝑜𝑠(
𝐴𝑘+1−𝐴𝑘−𝑤1

𝑣1𝑚𝑘𝑡 𝑢1
) is the angle of robot with axis, or can we find this angle by (3): 
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(3) ⟹
(Bk+1 − Bk − w2)

v2mkt u2
= sin(θk+1) ⟹ θk+1 = asin(

Bk+1 − Bk − w2

v2mkt u2
) 

 

𝜃𝑘 = 𝑎𝑡𝑎𝑛 (
𝑖𝑚𝑎𝑔 (𝜃𝑘+1)

𝑟𝑒𝑎𝑙 (𝜃𝑘+1)
 ) is the angle of robot with wheels axis  

 

 

3. UNSCENTED KALMAN FILTER AND HER ALGORITHM 

The UKF has been developed in recent years to overcome two main problems of the EKF (extended 

Kalman filter), the poor approximation properties of the first order approximation and the requirement for  

the noises to be Gaussian. The basic idea behind the UKF is that of finding a transformation that allows 

approximating the mean and the covariance of a random vector of length 𝑛 when it is transformed by  

a nonlinear map. This is done by computing a set of 2𝑛 + 1 points, called sigma points, on the basis of  

the mean and variance of the original vector, transforming these points by the nonlinear map and then 

approximating the mean and variance of the transformed vector from the transformed sigma points. We refer 

to [2-5, 14-17] for the theoretical aspects. 

As for approximating properties of the filter, it has been shown that, while the EKF estimate of  

the state is accurate to the first order, the UKF estimate is accurate to the third order in the case of Gaussian 

noises. The covariance estimate also is accurate to the first order for the EKF, and to the second order for  

the UKF and her algorithm is: 

 
UKF Algorithm 

• Initialization: 

      �̂�0  =  𝐸[𝐴0],   𝑃𝐴0  =  𝐸[(𝐴0  −  �̂�0)(𝐴0  − �̂�0)
𝑇]  

      �̂�0
𝑎 = 𝐸[�̂�0

𝑎] = [�̂�0
𝑇       �̅�0

𝑇     �̅�0  
𝑇 ]𝑇    

     𝑃0
𝑎 = 𝐸[(𝐴0

𝑎 − �̂�0
𝑎)(𝐴0

𝑎 − �̂�0
𝑎)]𝑇 = [

𝑃𝐴0 0 0

0 𝑅𝑣 0
0 0 𝑅𝑛

] 

For k𝑢  =  1, . . . , ∞ : 

1. Set  𝑡𝑢  =  𝑘𝑢  −  1     (for unscented Kalman filter) 
 

2. Calculate sigma-points: 

      𝐴𝑡𝑢
𝑎𝑣 = [�̂�𝑡𝑢

𝑎         �̂�𝑡𝑢
𝑎 +𝑀√𝑃𝑡𝑢

𝑎         �̂�𝑡𝑢
𝑎 −𝑀√𝑃𝑡𝑢

𝑎  ]  

3. Time-update equations: 

     𝐴𝑘𝑢|𝑡𝑢
𝑥 = 𝑓(𝐴𝑡𝑢

𝑥 , 𝐴𝑡𝑢
𝑣 , 𝑢𝑡𝑢)  

     �̂�𝑘𝑢
𝑠 = ∑ 𝑤𝑖

𝑚  2𝐿
𝑖=0 𝐴𝑖,𝑘𝑢|𝑡𝑢

𝑥
  

     𝑃𝑥𝑘𝑢
𝑠 = ∑ 𝑤𝑖

𝑐(𝐴𝑖,𝑘𝑢|𝑡𝑢
𝑥 − �̂�𝑘𝑢

𝑠 )2𝐿
𝑖=0 (𝐴𝑖,𝑘𝑢|𝑡𝑢

𝑥 − �̂�𝑘𝑢
𝑠 )𝑇   

4. Measurement-update equations:  
𝐵𝑘𝑢|𝑡𝑢 = ℎ(𝐴𝑘𝑢|𝑡𝑢

𝑥 , 𝐴𝑡𝑢
𝑛 )   

�̂�𝑘𝑢
𝑠 = ∑ 𝑤𝑖

𝑚 2𝐿
𝑖=0 𝐵𝑖,𝑘𝑢|𝑡𝑢  

𝑃�̅�𝑘𝑢 =
∑ 𝑤𝑖

𝑐(𝐵𝑖,𝑘𝑢|𝑡𝑢 − �̂�𝑘𝑢
𝑠 )2𝐿

𝑖=0 (𝐵𝑖,𝑘𝑢|𝑡𝑢 − �̂�𝑘𝑢
𝑠 )𝑇  

𝑃𝑥𝑘𝑢𝐵𝑘𝑢 =
∑ 𝑤𝑖

𝑐(𝐴𝑖,𝑘𝑢|𝑡𝑢
𝑥 − �̂�𝑘𝑢

𝑠 )2𝐿
𝑖=0 (𝐴𝑖,𝑘𝑢|𝑡𝑢

𝑥 − �̂�𝑘𝑢
𝑠 )𝑇   

𝐺𝑘𝑢 = 𝑃𝑥𝑘𝑢𝐵𝑘𝑢𝑃𝐵𝑘𝑢
−1

  

�̂�𝑘𝑢 = �̂�𝑘𝑢
𝑠 + 𝐺𝑘𝑢(𝐵𝑘𝑢 − �̂�𝑘𝑢

𝑠 )  

𝑃𝑥𝑘𝑢 = 𝑃𝑥𝑘𝑢
𝑠 − 𝐺𝑘𝑢𝑃𝐵𝑘𝑢

𝐺 𝑘𝑢
𝑇

  

 
 

4. THE CUBIC ROOT UKF (CRUKF) PROPOSITION 

In our paper we propose the cubic root CRUKF algorithm which is based on square root UKF 

algorithm [18, 19]. So we use in our algorithm a proposition of new function 𝑞𝑞(𝑥) and UKF algorithm [4]. 

We study the coefficients of covariance matrix to introduce the cubic root. In this technique, we based on  

the same principals of the UKF algorithm. 
 

4.1. The function qq(x) proposition 

The new function 𝑞𝑞(𝑥) is the quadrature quadrature or orthogonal orthogonal function for find  

and calculates two matrixes quadrature or orthogonal and its equation is: 
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𝑞𝑞 = 𝐼1 −
2𝑉1𝑉1

𝑇

‖𝑉1‖
 . 𝐼2 −

2𝑉2𝑉2
𝑇

‖𝑉2‖
 

 

𝐼1 and 𝐼2 are identity matrix 

𝑉1 and 𝑉2 are vectors ; 𝑉1
𝑇 and 𝑉2

𝑇 are vectors transposes  

‖𝑉1‖ and ‖𝑉2‖ vectors modules  

  

4.2.  The CRUKF algorithm 
CRUKF Algorithm 

• Initialization:  

�̂�0  =  𝐸[𝐴0],     𝑆𝐴0  =  √𝐸[(𝐴0  −  �̂�0)(𝐴0  − �̂�0)
𝑇]

3
, 𝑆𝑣 = √𝑅𝑣

3
  𝑎𝑛𝑑  𝑆𝑛 = √𝑅𝑛

3  

�̂�0
𝑎 = 𝐸[𝐴𝑎] = [�̂�0   𝑣    𝑛 ]

𝑇
   

𝑆0
𝑎  =  √𝐸[(𝐴0

𝑎  −  �̂�0
𝑎)(𝐴0

𝑎  −  �̂�0
𝑎)𝑇]

3
, 𝑡ℎ𝑒𝑛    𝑆0

𝑎  = [

𝑆𝐴0 0 0

0 𝑆𝑣 0
0 0 𝑆𝑛

] 

For  𝑘𝑐  =  1, . . . , ∞ : 

1. Set  𝑡𝑐  =  𝑘𝑐  − 1  ; (for the cubic root unscented Kalman filter) 
 

2. Calculate sigma-points for time-update: 

𝐴𝑡𝑐
𝑎 = [�̂�𝑡𝑐

𝑎             �̂�𝑡𝑐
𝑎 + 𝑁𝑆𝑨𝑡𝑐

𝒂             �̂�𝑡𝑐
𝑎 − 𝑁𝑆𝑨𝑡𝑐

𝒂 ]  
3. Time-update equations: 

𝐴𝑘𝑐|𝑡𝑐
𝑥 = 𝑓(𝐴𝑡𝑐

𝑎 , 𝐴𝑡𝑐
𝑣 , 𝑢𝑡𝑐)  

�̂�𝑘𝑐
𝑠 = ∑ 𝑤𝑖

𝑚 2𝐿
𝑖=0 𝐴𝑖,𝑘𝑐|𝑡𝑐

𝑥
  

𝑆𝑥𝑘𝑐
𝑠 = 𝑞𝑞{[√𝑤1

𝑐3 (𝐴1:2𝐿,𝑘𝑐|𝑡𝑐
𝑥 − �̂�𝑘𝑐

𝑠 )]}  ;  (quadrature quadrature function) 

𝑆𝑥𝑘𝑐
𝑠 = 𝑢𝑝𝑑𝑎𝑡𝑒{𝑆𝑥𝑘𝑐

𝑠 ,  𝐴0,𝑘𝑐|𝑡𝑐
𝑥 − �̂�𝑘𝑐

𝑠 , 𝑤0
(𝑐)
} ; time update 

𝐵𝑘𝑐|𝑡𝑐 = ℎ(𝐴𝑖,𝑘𝑐|𝑡𝑐
𝑥 , 𝐴𝑡𝑐

𝑛 )  

�̂�𝑘𝑐
𝑠 = ∑ 𝑤𝑖

𝑚  2𝐿
𝑖=0 𝐵𝑖,𝑘𝑐|𝑡𝑐  

4. Measurement-update equations:  

𝑆𝐵𝑘𝑐
𝑠 = 𝑞𝑞{[√𝑤1

𝑐3 (𝐵1:2𝐿,𝑘𝑐|𝑡𝑐 − �̂�𝑘𝑐
𝑠 )]}  

𝑆𝐵𝑘𝑐
𝑠 = 𝑢𝑝𝑑𝑎𝑡𝑒{𝑆𝐵𝑘𝑐

𝑠 , 𝐵0,𝑘𝑐|𝑡𝑐 − �̂�𝑘𝑐
𝑠 , 𝑤0

(𝑐)
}    

𝑃𝑥𝑘𝑐𝐵𝑘𝑐 =
∑ 𝑤𝑖

𝑐(𝐴𝑖,𝑘𝑐|𝑡𝑐
𝑥 − �̂�𝑘𝑐

𝑠 )(𝐵𝑖,𝑘𝑐|𝑡𝑐 − �̂�𝑘𝑐
𝑠  )𝑇2𝐿

𝑖=0   

𝐺𝑘𝑐 = (𝑃𝑥𝑘𝑐𝐵𝑘𝑐/𝑆𝐵𝑘𝑐
𝑇 )/𝑆𝐵𝑘𝑐

𝑠
  

�̂�𝑘𝑐  = �̂�𝑘𝑐
𝑠 + 𝐺𝑘𝑐(𝐵𝑘𝑐 − �̂�𝑘𝑐

𝑠 )  

𝑈 = 𝐺𝑘𝑆𝐵𝑘𝑐
𝑠

  

𝑆𝑥𝑘𝑐 = 𝑢𝑝𝑑𝑎𝑡𝑒{𝑆𝑥𝑘𝑐
𝑠 , 𝑈, −1}  

 

We have two filters UKF and CRUKF where: 𝑀 = √𝐿 + 𝜆, 𝑁 = √𝐿 + 𝜆
3

, 𝑤0
𝑚 = 𝜆

(𝐿 + 𝜆)⁄ , 

𝑤0
𝑐 = 𝑤0

𝑚 + (1 + 𝛼2 + 𝛽), 𝑤𝑖
𝑐 = 𝑤𝑖

𝑚 = 1 2(𝐿 + 𝜆)⁄ , for 𝑖 = 1 . . . 2𝐿, and 𝜆 = 𝛼2(𝐿 + 𝑘) is a compound 

scaling parameter. 𝐿 is the dimension of the augmented state-vector 0 < 𝛼 < 1 is the primary scaling  

factor determining the extent of the spread of the sigma-points around the prior mean. Typical range for  

𝛼 is 1𝑒 − 3 < 𝛼 < 1. 𝛽 is a secondary scaling factor used to emphasize the weighting on the zeros  

sigma-point for the posterior covariance calculation. 𝛽 can be used to minimize certain higher-order error 

terms based on known moments of the prior 𝑅𝑣. For Gaussian priors, 𝛽 = 2 is optimal. 𝑘 is a tertiary scaling 

factor and is usually set equal to 0. In general, the optimal values of these scaling parameters will be  

a specific problem [2, 18, 19, 20-25]. 

- General notes: 

The augmented state vector and sigma-point vector is given by: xa = [xT   vT   nT ]T,  

𝐴𝑎 = [(𝐴𝑥)𝑇   (𝐴𝑣)𝑇    (𝐴𝑛)𝑇 ]𝑇 where 𝑅𝑣 and 𝑅𝑛 are the process-noise and observation-noise covariance 

matrices. 

- Linear-algebra operators: 

√.
3

 : matrix cubic-root using lower triangular. 

 𝑞𝑞(𝑋): lower-orthogonal part of 𝑋 matrix resulting from function 𝑜𝑟𝑡ℎ𝑜(𝑋) decomposition of data-matrix 

𝑋. 𝑢𝑝𝑑𝑎𝑡𝑒 {𝑅, 𝑈, 𝑣−
+  }: 𝑁 consecutive rank-1 updates of the lower-orthogonal factor 𝑞 by the 𝑁 columns of 
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√𝑣𝑈:. / : Efficient least-squares pseudo inverse implemented using orthogonal 𝑄𝑄 decomposition with 

pivoting finally this parameters for two filters CRUKF and UKF.  
 

 

5. SIMULATION RESULTS 

We compare the performance of CRUKF and UKF in our paper, we starte from the point of 

trajectory T : (𝐴0, 𝐵0) = (1, 1) with 𝜃0 = 0. In the chosen sample time 𝑡 = 1s and each trajectory has been 

completed in 𝑘𝑓 = 400 𝑠, imposing a profile to the angular velocities of the wheels. The parameters and 

weights used in the CRUKF and UKF are:  =  10−4 ; 𝛽 =  5 ; 𝜅 = (8 –  𝑛)/2 ; 𝜆 =  𝛼2(𝑛 +  𝜅) –  𝑛. 

𝛽 =  3 minimizes the error of the a posteriori covariance when the random vector is Gaussian. 

- 𝑊 = 𝑑𝑖𝑎𝑔{0.123 0.124 0.121 }, which corresponds to a standard deviation less than one centimeter 

on 𝐴𝑘 and 𝐵𝑘 and less than one degree on 𝜃𝑘; 

-  𝑉 = 𝑑𝑖𝑎𝑔{0.110 0.100 0.111 }, a standard deviation less that 0.1 centimeter for each sensor;  

- �̂�0/0 = [1.5000    1.9821    2.4123]′, the initial estimate state of robot 

- 𝐴0 = [1    1    0]′, the initial state of robot 

- 𝑃0/0 = [0.5010    0.5021    0.5023]′, a standard deviation of width and length on the position and 

standard orientation. 

We compare the performance of the two filters we have computed 

- The average error position index: 𝜀𝑥 =
1

𝑘𝑓+1
∑ ‖[𝐴𝑘 − �̂�𝑘/𝑘 , 𝐵𝑘 − �̂�𝑘/𝑘]

′‖
 𝑘𝑓

𝑘=0  

- The average orientation position index: 𝜀𝜃 =
1

𝑘𝑓+1
∑ |𝜃𝑘+1 − �̂�𝑘+1/𝑘|
𝐾𝑓
𝑘=0   

- The estimation error covariance averaged along the whole trajectory has been computed: 

𝜋 =
1

𝑘𝑓+1
∑ 𝑡𝑟(∑𝑃𝑘/𝑘) 
𝑘𝑓
𝑘=0   

The comparison between CRUKF and UKF at our case as follows: we start with time, we take three values 

for k to each algorithm. Table 1 show the comparison and the simulation results show in different figures: 

Figures 3-6. 

 

5.1. Estimation of position by CRUKF and UKF 

Figures 3 and 4 show the simulation results using the UKF and CRUKF applied to the trajectory 

estimation and errors. Figure 3 shows the robot trajectory with its estimate using UKF (red) compared to  

the CRUKF (bleu), the poursuit was well done. Figure 4 presents the estimation error between the original 

trajectory and both of the two filters also the MSE (mean square error) of the algorithems, it can be seen  

the CRUKF was better then the UKF. 
 

 

Table 1. Comparison between CRUKF and UKF 
Algorithm 𝜀x(m) 𝜀θ(rad) 𝜋 

CRUKF 0.0156 0.0258 0.0077 0.3550 0.4405 0.1815 0.0263 0.0116 0.0104 

UKF 0.0082 0.0050 0.0074 0.1563 0.0716 0.0493 0.0015 0.0010 0.0003 

 

 

 
 

Figure 3. Estimate reference trajectory T  

by CRUKF and UKF 

 
 

Figure 4. Estimate error er1, er2 and her estimation  

by CRUKF and UKF and MSE 
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5.2. Estimation of angle by CRUKF and UKF 

Figure 5 shows the angle estimate of the robot using the two filters. Figure 6 exhibits estimation 

errors of these filters where the UKF was here better than the CRUKF. 

 

 

 
 

Figure 5. The estimate angle of trajectory T with axis 

by CRUKF and UKF 

 
 

Figure 6. Estimate error er1,er2 of angle and her 

estimation by CRUKF and UKF and MSE 

 

 

6. CONCLUSION  

The analysis of the results in Table 1 is that the two filters perform comparably the position and 

orientation of the robot, we see that the estimation error of UKF is weak than those the estimation error of 

CRUKF in angle estimation contrary in the position where the CRUKF was better because the approximating 

properties of each filter. These two filters, always giving a value of the error covariance π of index which is 

better than those given by any sensor, and completely close to that obtained when all the sensors are used. 

Results shows the estimate reference trajectory T and estimate error by CRUKF and UKF too MSE of this 

case and the estimate of the robot angle and its estimate error by CRUKF and UKF too MSE of this case, 

we see that the estimations were optimal. In the near future this technique of work can be done and develop 

on other types of robots and other applications with less sensor but with a great measuring accuracy in real-

time but its better to make one filter complete the other. 
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