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 Scheduling concerns the allocation of limited resources overtime to perform 

tasks to fulfill certain criterion and optimize one or several objective 

functions. One of the most popular models in scheduling theory is that of the 

flow-shop scheduling. During the last 40 years, the permutation flow-shop 

sequencing problem with the objective of makespan minimization has held 

the attraction of many researchers. This problem characterized as 

Fm/prmu/Cmax in the notation of Graham, involves the determination of the 

order of processing of n jobs on m machines. In addition, there was evidence 

that m-machine permutation flow-shop scheduling problem (PFSP) is 

strongly NP-hard for m ≥3. Due to this NP-hardness, many heuristic 

approaches have been proposed, this work falls within the framework of the 

scientific research, whose purpose is to study Cuckoo search algorithm. Also, 

the objective of this study is to adapt the cuckoo algorithm to a generalized 

permutation flow-shop problem for minimizing the total completion time, so 

the problem is denoted as follow: Fm | | Cmax. Simulation results are judged by 

the total completion time and algorithm run time for each instance processed. 
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1. INTRODUCTION 

Obtaining economic and reliable schedules constitutes the core of excellence in customer service 

and of efficiency in manufacturing systems. During the last decades, manufacturing scheduling has been 

identified to be one among the foremost important decisions in planning and control of commercial plant 

operations, both in science and in practice. Moreover, scheduling is seen as a decision-making process that's 

utilized in manufacturing industries also as in service industries [1]. 

An automated or automatic system is a system performing operations for which the human 

intervenes is only in the programming of the system and in its setting. Furthermore, the goals of an automated 

system are to perform tasks that are complex or dangerous for humans, perform difficult or repetitive tasks, 

or improve efficiency and accuracy. Designed to maintain the efficiency of a "flow shop", automated 

production systems consisting of a set of numerically controlled machine tools and storage stations connected 

together by an automated handling system, all commanded and controlled by a central computer [2]. 

Following a study made by Stecke [3], the problems considered in a AIMS (automated industrial 

manufacturing systems) are classified into four hierarchical levels, namely: design, planning, scheduling and 

control problems. The work of our article is part of the resolution of scheduling problems for AIMS using a 

meta-heuristic (cuckoo search). A significant amount of research in deterministic scheduling has been 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Adaptation and parameters studies of CS algorithm for flow shop scheduling problem (Driss Belbachir) 

2267 

dedicated to finding efficient algorithms for scheduling problems during a polynomial time. However, many 

scheduling problems don't have a polynomial time algorithm; these problems are called NP-hard problems [4].  

Most scheduling problems are classified NP-hard in complexity theory [5]. In addition, the majority 

of industrial problems are so complex that the number of solutions exponentially increases with the size of 

the problem. Nevertheless, the class of NP-hard problems is one that attracts researcher’s attention in the optimization 

field to propose new approaches. But until this moment no algorithm is effective facing such problems. 

Flow shop scheduling problems were proved to be NP-hard when the number of machines m ≥3 [6]. 

Hence, exact methods cannot be utilised to find an optimal solution for the problems. Researchers have 

developed many heuristics and meta-heuristics for the flow shop scheduling problems to find near optimal 

solutions [7]. In the case where it is desired to solve the problem in an exact manner, techniques such as 

linear programming, dynamic programming or the branch and bound method are often used as shown in 

Figure 1. It should be remembered that the execution time and the memory space of these methods increase 

exponentially depending on the size of the problems to be treated. 

 

 

 
 

Figure 1. A general classification of methods for solving optimization problems 

 

 

The need to find quickly a solution of good quality favors the appearance of approximate or 

stochastic algorithms such as heuristics, see for example: Johnson [8], Palmer [9], Campbell, Dudek, and 

Smith [10]. Meta-heuristics are general heuristic procedures that can be used for many problems, in our case, 

to the PFSP. These methods normally start from a random sequence or a sequence constructed by heuristics 

and iterate until a stopping criterion is met. There is large part of research work done for the PFSP and meta-

heuristics, we will show out a few noteworthy papers mainly dealing with simulated annealing (SA) [11], 

taboo search (TS) [12], genetic algorithms (GA) [13]. 

In this article, we are interested in a meta-heuristic that is inspired by the natural behavior of a bird 

species called Cuckoo. This choice was motivated by several reasons; firstly, it’s a new algorithm (meta-

heuristic) developed very recently by Yang and Deb [14]. Secondly, there is not a very detailed study on the 

parameters of this meta-heuristic. Three, it has been successfully applied in several types of problems. So we 

propose an adaptation of CS algorithm for flow shop scheduling problem and a sensitivity analysis according 

to the parameters of the algorithm to minimize the total completion time Cmax. 

After section 1 which was devoted to an introduction to automated industrial manufacturing 

systems, classification of our problem and methods of resolution. The rest of this paper is organized as 

follows: Section 2 presents a brief literature review that brings together the most important works of cuckoo 

research that was done in different fields. A description of the algorithm to study and its adaptation is 

summarized in section 3. The last section is devoted to the results found and their interpretations. 

 

 

2. LITTERATURE REVIEW 

As we mentioned previously, Cuckoo search is a recently developed meta-heuristic algorithm based 

on the parasitic breeding behavior of certain species of cuckoo and the presence of Lévy flights in such 

reproduction strategy [15]. Nowadays cuckoo search has been used in almost every area of: scheduling [16], 

function optimization [17], engineering optimization [17], and planning [17]. The recent applications of CS for 

optimization problems have shown its promising effectiveness [18]. For example, the work of Wang et al. [16] 
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where a new cuckoo search algorithm with local search (NCS) is proposed for solving the permutation flow 

shop scheduling problem.Hence, for population initialization; they used the NEH heuristic (Nwaz et al.) to 

generate high quality initial solutions. A novel variant of the CS algorithm referred as the Inter-Species 

Cuckoo Search. We can also mention the work done by Tsipianitis et al. [19] where this work was done for 

testing the dynamic tuning of certain important parameters of the CS algorithm, namely the probability of 

fraction (pa) (an alien egg to be found by the host bird) and the step size of Lèvy flights, in combination with 

the implementation of three functions: one static and two dynamic approaches. Finally, a hybrid optimization 

algorithm is developed by combining the most efficient features of CS with those of another swarm-based 

optimizer, namely bird swarm algorithm (BSA) to accelerate the convergence towards global optimum. 

ISCS [15] is developed to minimize the makespan and mean flow time in both hybrid flow-shop 

scheduling (HFS) and permutation flow-shop sequencing problems (PFSP). Furthermore, a hybrid meta-

heuristic based on cuckoo search algorithm and differential evolution for numerical optimization is proposed 

by Xi et al. [20], the algorithm has been tested and compared with other meta-heuristics, Computational 

experiments depth on a wide range of sets of problems show that the proposed algorithm outperforms many 

other meta-heuristics. Zhang et al. [21], made a study referenced state of the art swarm intelligence based 

intelligent algorithms, especially ant colonies and the cuckoo search algorithm, with the modification of each 

algorithm and hybridization strategy of the mentioned algorithms. They presented the modified ACO (ant 

colony optimization), modified CS, and HACCS (hybrid ant colony and cuckoo search) algorithms to solve 

the heating route problem. The proposed algorithms were applied to the ZF (zhuozhou-fangshan) heating 

engineering project. The results show that modified ACO can find the route (solution) with the smallest 

objective function value, while the modified CS can find the route overlapped to the manual selected route 

better. Furthermore, the modified CS ran more quickly but stuck into the premature convergence. Following 

the convergence study mentioned above, the best route chosen by the hybrid algorithm HACCS was the same 

as the modified ACO algorithm, but with greater efficiency and better stability. 

 

 

3. RESEARCH METHOD  

In the past several years, different kinds of nature-inspired optimization algorithms have been 

created, and they become very popular. We can montion, particles swarm optimization PSO [22] was 

inspired by fish and bird swarm intelligence, ant colony optimization (ACO) [21] and The API algorithm 

were inspired from the foraging behaviour of a population of ants [23]. Cuckoo search is a recent meta-

heuristic. It has enriched the number of population-based meta-heuristics solutions, which is inspired by the 

paradigm of birds grouping. 

In Yang and Deb invented a new algorithm meta-heuristic inspired by nature. Specifically, the 

algorithm was inspired by the obligate brood parasitic behavior of some cuckoo species from which comes 

the name: cuckoo search (CS) in combination with Levy's flight behavior of some birds and fruit flies in 

nature [14]. A second version was created by Yang and Deb in 2010 named cuckoo optimization algorithm 

(COA) [17]. In addition to the CS, the COA algorithm, is an algorithm with similar inspiration in nature, has 

recently attracted much attentions in solving optimization problems. 

The pioneers of the CS algorithm were inspired by the parasitic reproduction behavior of some 

species of cuckoo that lay their eggs within the nests of other species by entrusting the responsibility of 

incubating, feeding and rearing their chicks to the host birds. These can detect cuckoo’s eggs in their nests; 

during this case the host bird will either eject the cuckoo’s eggs out of its nest or abandon its own nest and 

build another one in another location. 

The CS proposed by Yang and Deb in 2009 is based on the following three basic rules: 

 Each cuckoo lays one egg at a time. He drops it in a nest that he chooses randomly. 

 A nest of good quality will be carried over to the next generation. 

 The number of host nests is fixed, and an egg laid by a cuckoo can be discovered by the host bird 

according to a probability Pa ∈ [0, 1]. In this case, the host bird can either throw the egg away or 

abandon the nest, and build a completely new nest in a new location randomly chosen. 

Based on these three rules, the basic steps of the cuckoo search (CS) can be summarized as the pseudo code 

shown in Figure 2 [14]. 

A cuckoo i generates a new solution 𝑥𝑖(𝑡 + 1) via Lévy flights, according to (1); 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) +  𝛼 ⊕ 𝐿é𝑣𝑦(𝑠, 𝜆) (1) 

 

where α >0 is the maximal length of the step which should be bound on the scale of the space of search for 

the problem to be handled. In most cases, 𝛼 = 1 is used [14]. 
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Figure 2. The pseudo code of the cuckoo search 
 

 

Equation (1) is stochastic (a random walk). Generaly, a random walk is a Markovian chain wiche the 

next step depends on the current step, whose is the first part of the equation, followed by the transition 

probability which is the second part. The product represents entrywise multiplications. This entrywise 

product is similar to those used in PSO, but here the random walk via the Lévy flight is more effective in the 

exploration of the search space because its step size is much longer in long-term [18]. The Lévy flight 

represents essentially a random walk whereas the random step size (α) is defined from a Lévy distribution. 

 

𝐿é𝑣𝑦 ∼ 𝑢 = 𝑡,−𝜆 (1 < 𝜆 ≤ 3) (2) 

 

It should be noted that the Lévy has an infinite variance with an infinite mean [14]. 

The main characteristic of the algorithm CS is its simplicity. In fact, by comparing with other 

population or agent-based meta- heuristics algorithms, there is a similarity with PSO and GA, but CS it uses 

some sort of elitism and/or selection similar to that emplyed in harmony search. Furthermore, the 

randomization is more efficient as the step length is heavy-tailed, and any large step is possible. 

 

3.1.  Adaptation algorithm  

CS is a population-based algorithm there with few parameters to be defined, and thus it is potentially 

more generic to adapt to a wider class of optimization problems. The original version of the CS algorithm 

was proposed to solve continuous problems of optimization [24]. However, the problems of optimization are 

not all continuous type; they can also be discrete [21] or binary type [18]. Generally, the modification can be 

categorized into two classes. First class is the adjustment of the parameters, and the second is hybridization 

with other intelligence algorithms [25]. The work in this section will focus on the adaptation of the CS to 

flow shop scheduling problem, it is the most well-known combinatorial optimization problem in the real 

world. The CS algorithm is adapted and applied on the FSSP with its own procedure without using other 

improvements to show its performance to this type of problem and to have results to be studied. The result of 

adaptation is a new basic version of CS named "basic discrete cuckoo search (BDCS)". The procedure of 

adaptation requires a definition of the following elements:  

 

3.1.1. Nest 

In the case of our combinatorial optimization problem (PFSP), a nest is considered as an individual 

of the population with its own solution. Moreover, a nest has the following properties: 

 The number of nests is equal to the size of the population. 

 The total number of nests is fixed from the begining. 

 An abandoned or destroyed nest involves replacing an individual of the population with a new one. 

 An egg in a nest represents a solution, in our case represents a sequence of jobs. 

 

3.1.2. Egg  

As we have said before, a cuckoo can lay a single egg in a single nest, which gives the eggs the 

following characteristics: 

 An “egg in a nest” is an adopted solution by the individual of the population. 

 An egg detected and rejected by a cuckoo implies a bad solution. 

 A cuckoo egg is a new candidate solution for a place in the population. 
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3.1.3. Objective function 

The objective function (of test, fitness) is a function which, with each solution in the space of search 

associates a numerical value to represent its quality or fitness. So the quality or fitness of a solution is 

proportional to the value of the objective function. In our problem, a nest (sequence) of better quality gives us 

an optimal Cmax or a solution close to optimal Cmax.  

 

3.1.4. Search space 

The search space in a very combinatorial optimization cases will be seen as a "graph" where vertices 

represent solutions and edges connect neighboring pairs of solutions [26]. 

a. Movement  

In the combinatorial problem, the coordinates of a solution in space research are modified through 

the properties of the problem being addressed. Generally, the change of position within the combinatorial 

space is done by a change within the order of the elements of the solution, by a combination, a permutation, 

or a set of operators named perturbation or movement. 

b. Neighborhood  

The concept of neighborhood requires that the new solution of a given solution be generated by the 

smallest possible perturbance. This disruption should make the minimum changes to the present solution. 

c. Lévy flights 

Lévy Flights has as objective, an intensive research around a solution, followed by long-term steps. 

According to Yang and Deb, looking for a new better solution is more efficient via Levy flights. So, to 

enhance the quality of the search we'll associate the length of the step with the value generated by Lévy flights. 

d. Step 

The step is that the distance between two solutions. It’s based on the topology of space and therefore 

the concept of neighborhood. During this work we have classified the steps consistent with their length, the 

character and also the number of successive perturbations. 

In BDCS, Levy flights have control over all displacements in space of solutions to local and global 

scale. However, we will show how to present a solution in space and how to move from the present solution 

to another using some operators, such as swap, insert, and inverse [16]. In this paper, the swapping strategy 

search is used to generate a neighbor of the current solution. The first operator is ‘swap’; two jobs at different 

positions in the current solution are selected and switched. By performing the operation, a new solution is 

getting. Figure 3 describes the operation of the exchange operator. 

 

 

 

 

            Current solution (x): 

job 1 job 3 job 6 job 4 job 5 job 2 

 

 New solution (x’): 

job 1 job 5 job 6 job 4 job 3 job 2 

 

Figure 3. The swap operator 

 

 

The second operator is ‘insert’; the chosen job is moved from its current position in solution (x) and 

inserted to another position. After this operation, we can get a new solution (x’). Figure 4 shows the insert 

operator. The last operator is ‘inverse’; the tasks between two different positions chosen in solution (x) are 

reversed. After this process, we can obtain a new solution (x’). Figure 5 illustrates the inverse operator. 

 

 

  Current solution (x): 

job 1 job 3 job 6 job 4 job 5 job 2 

 

  New solution (x’): 

job 1 job 6 job 4 job 5 job 3 job 2 

 

Figure 4. The insert operator 

  Exchange 
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Current solution (x): 

job 1 job 3 job 6  job 4 job 5 job 2 

 

New solution (x’): 

job 1 job 5 job 4  job 6 job 3 job 2 

 

Figure 5. The inverse operator 
 

 

4. RESULTS AND ANALYSIS 

The main objective of scheduling is to find a job order or sequence of jobs that can be realized in a 

reasonable amount of time that optimizes the proposed objective function. Besides, this type of problem is 

usually frequented in a variety of manufacturing or service industries, it is one of the most well known 

scheduling problems is the permutation flow-shop scheduling problem. When solving the PFSP, BDCS adopt 

its own procedure without using other improvements in order to study the parameters that influence on its 

speed of convergence to a good solution. 

To certify the performance of the proposed BDCS for the flow shop scheduling problem, 

computational simulations are carried out with some well-studied problems taken from the OR-Library. In 

this paper, six problems from three classes of PFSP test problems designed by Taillard are selected for our 

studies [27]. The first two problems are small instances (Taillard 1-Taillard 2) inserted in Tables 1-2. The 

second problems are medium instances (Taillard 3-Taillard 4) employed in Tables 3-4 and the last two 

problems selacted are a large instances (Taillard 5-Taillard 6) found in Tables 5-6. These problems have been 

widely utilised as benchmarks for testing the performance of algorithms by many researchers such as Wang 

H. et al. for FSSP [16], Van Hoorn et el. for job shop [28], and Benziani et al. for open shop [29]. 

The tables summarize the experimental results, the first column shows the problem size and we give 

in the column ‘lower/upper bound’ the best lower bound (obtained by branch and link methods) and the 

upper bound (the solutions most known in the literature) for each instance. The 'nest/itt' column shows the 

number of the nest and the number of iterations. The 'pa' column indicates the percentage of destruction of 

bad nests, and pa varies from 0.3 to 0.9 with a step of 0.2. 

We collected the results then included them in six tables which we divided on the basis of the 

problem size. The problem with five (5) machines is a small problem in Tables 1-2, the problem with ten (10) 

machines is a medium problem in Tables 3-4, and the problem with twenty (20) machines is a large problem 

in Tables 5-6. Anyway, we will discuss the results for each problem (small, medium, and large problem). The 

experiments vary according to three (3) parameters which are: the probability of fraction or destruction (Pa), 

the number of nests (Nest) and the number of iterations (itt). The algorithm was encoded in MATLAB 12.0 

and run on an Intel Core i7-2700k CPU 3.50 GHz with 8.0 GB Memory in the Windows 7 professional 64. 

The value of Cmax and the simulation time 'Time' given in the table are the average of ten simulations for 

each instance. In each table we put the variables so that we can read the table from left to right or from top to 

bottom and in the end we presented the final results as follows. 

Initially,we start with small problem in Tables 1-2, we chose to read the table according to the 

variable Pa by fixing the number of nests and the number of iterations, we can notice a convergence towards 

the uppersolution each time we increase the percentage of Pa. For example in Table 2 the instance 5m/100j; 

nest=100; itt=100; Pa=0.3 we have Cmax= 5624, and for Pa=0.9 we have Cmax= 5590. But for the same 

instance and the same parameters, we have an increase in the simulation time; for Pa=0.3 we needed 51.22 

seconds; and for Pa=0.9 the Time increase to 66.93 seconds. By fixing the numbe rof nests and by varying 

the number of iterations and the Pa, we can see that the Cmax improves each time when the value of 

destroying the bad nests (Pa) increases as shown in Tables 1 and 2, which gives us a good population for the 

next generation. 

If we want to study the changes of Cmax according to the number of iterations, the number of nests 

is determined at 100 nests and the percentage of change of the bad nests is fixed at 0.5, and the problem size 

is 10 m/20j as shown in Table 3. We can clearly notice that the Cmax for 100/400 Cmax=1726 is better than 

Cmax for 100/100 Cmax=1759. On the other hand, we note that the simulation time increases five times, for 

100/400 Time=281.08 s, than the time needed to find a solution for 100/100 is 52.73 s. Moreover, keeping 

the same parameters for the Medium problem 2 at Table 4 and increasing the percentage of Pa to 0.9 we have 

an improvement in Cmax, for 100/400 Cmax=11547 is better than Cmax for 100/100 Cmax= 11632. 

 
 

   Inverse 
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Table 1. Small problem 1 
Problem 

size 

Lower/upper 

bound 

Pa 0.3  0.5  0.7  0.9  

nest/itt Cmax Time Cmax Time Cmax Time Cmax Time 

5m/20j 1082/1108 

100/100 1199 102.16 1199 94.6 1194 96.71 1193 100.3 
100/200 1199 101.94 1200 94.26 1198 96.76 1191 99.8 

100/400 1196 208.86 1188 209.45 1185 200.78 1183 200.92 

200/100 1205 186.02 1202 85.48 1202 89.58 1198 93.56 
200/200 1198 209.28 1199 200.07 1193 209.82 1189 211.67 

200/400 1190 344.22 1188 421.74 1185 391.09 1190 386.54 

400/100 1203 199.2 1196 198.51 1191 201.31 1189 201.11 
400/200 1195 387.66 1191 385.71 1186 388.78 1181 408.8 

400/400 1187 825.22 1185 828.95 1183 837.17 1180 857.93 

 

 

Table 2. Small problem 2 
Problem 

size 
Lower/upper 

bound 
Pa 0.3 0.5 0.7 0.9 

nest/itt Cmax Time Cmax Time Cmax Time Cmax Time 

5m/100j 5272/5328 

100/100 5624 51.22 5600 57.09 5592 63.26 5590 66.93 

100/200 5584 94.81 5578 110.79 5571 124.43 5567 144.36 
100/400 5563 447.31 5557 267.34 5556 283.52 5552 290.78 

200/100 5606 124.82 5589 135.16 5583 409.60 5573 151.73 

200/200 5581 238.54 5563 266.17 5565 284.97 5555 302.90 
200/400 5556 496.78 5555 539.91 5550 598.65 5533 612.99 

400/100 5607 273.33 5570 456.81 5568 347.39 5555 314.78 

400/200 5580 465.21 5563 548.81 5552 599.95 5550 708.80 
400/400 5548 1139.8 5540 1938.9 5537 1149.1 5521 1221.7 

 

 

Table 3. Medium problem 1  
Problem 

size 

Lower/upper 

bound 

Pa 0.3  0.5  0.7  0.9  

nest/itt Cmax Time Cmax Time Cmax Time Cmax Time 

10m/20j 1356/1591 

100/100 1760 55.73 1759 52.73 1753 59.63 1723 34.94 

100/200 1758 111.91 1745 120.16 1740 120.39 1739 118.28 

100/400 1728 267.13 1726 281.08 1724 286.01 1724 280.51 

200/100 1752 104.85 1751 106.68 1745 129.22 1743 141.07 
200/200 1745 224.22 1739 223.72 1735 221.97 1732 222.31 

200/400 1739 413.00 1736 432.67 1731 429.11 1723 438.55 

400/100 1748 192.18 1742 198.61 1737 197.99 1734 193.81 
400/200 1741 396.41 1735 402.77 1732 393.67 1722 397.27 

400/400 1730 1002.55 1724 901.96 1721 987.37 1717 1117.71 

 

 

Table 4. Medium problem 2 
Problem size Lower/upper bound Pa 0.3 0.5 0.7 0.9 

nest/itt Cmax Time Cmax Time Cmax Time Cmax Time 

10m/200j 10616/10676 

100/100 11652 126.84 11647 127.05 11637 147.88 11632 165.08 

100/200 11589 288.59 1185 325.45 11580 375.01 11577 424.42 
100/400 11573 694.99 1155 591.00 11554 723.58 11547 743.61 

200/100 11640 308.68 11638 313.77 11615 383.42 11589 416.37 

200/200 11601 490.31 11584 533.98 11590 602.47 11574 622.58 
200/400 11583 932.72 11562 1015.76 11549 1091.37 11535 1217.48 

400/100 11615 500.89 11590 552.91 11588 598.93 11582 611.85 

400/200 11581 894.65 11566 1035.02 11563 1071.58 11552 1209.98 
400/400 11544 1834.50 11553 2067.02 11529 2114.70 11528 2421.35 

 

 

When we go to big problems, the problem size influences on the simulation time, If we take for 

example: 200/200; Pa=0.9 for the problem 20 m/20j as shown in Table 5, the Time=314.61 s and for  

20 m/500j as shown in Table 6 the Time jumps to 1 308.61 s. It can be clearly seen that there is an 

exponential increase in the simulation time. Furthermore, there is another very important parameter in the 

study which influence on the simulation time and the improvement of Cmax, it is the number of the nest. To 

study the influences of this parameter (nest) on the obtained results, we chose the problem 20m/500j as 

shown in Table 6 with the parameters Pa=0.9, the number of nests is varied between 100, 200, 400, and the 

number of iterations is set to 400. We note that the Cmax=29119 for 200/400 with a Time=2625.14 s is better 

than Cmax=29159 for 100/400 with a Time=1,354.97 s, and the Cmax=29111 for 400/400 is better than the 

first two with an explosion in simulation time, Time=4477.28 s. 
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Table 5. Large problem 1 
Problem 
size 

Lower/upper 
bound 

Pa 0.3 0.5 0.7 0.9 
nest/itt Cmax Time Cmax Time Cmax Time Cmax Time 

20m/20j 1900/2178 

100/100 2424 18.71 2420 34.10 2415 36.22 2414 58.64 

100/200 2405 143.04 2405 144.54 2400 143.99 2398 138.07 
100/400 2392 259.71 2380 240.07 2380 291.49 2379 296.45 

200/100 2418 134.46 2411 144.40 2401 150.11 2401 138.11 

200/200 2400 283.28 2396 276.98 2386 251.88 2382 314.61 
200/400 2391 571.30 2375 550.15 2370 705.96 2367 636.08 

400/100 2397 257.50 2394 250.81 2390 769.73 2376 362.73 

400/200 2396 563.07 2382 560.20 2380 663.61 2375 720.24 
400/400 2376 812.48 2370 839.69 2363 965.35 2356 1173.13 

 

 

Table 6. Large problem 2 
Problem 

size 

Lower/upper 

bound 

Pa 0.3 0.5 0.7 0.9 

nest/itt Cmax Time Cmax Time Cmax Time Cmax Time 

20m/500j 25922/26189 

100/100 29341 278.81 29321 311.00 29298 338.67 29259 354.30 

100/200 29309 492.90 29278 559.37 29220 559.75 29208 643.78 

100/400 29213 952.81 29202 1082.46 29169 1150.32 29159 1354.97 
200/100 29337 491.72 29333 560.84 29272 629.82 29223 708.53 

200/200 29271 865.20 29266 999.54 29256 1094.72 29160 1308.61 

200/400 29197 1592.44 29197 2010.00 29152 2322.36 29119 2625.14 
400/100 29279 830.72 29269 975.65 29240 1031.80 29215 1250.50 

400/200 29242 1720.54 29180 2098.38 29186 2259.06 29170 2517.44 

400/400 29175 3598.88 29169 3674.28 29138 4406.18 29111 4477.28 

 

 

5. CONCLUSION 

In this study, we were interested in adapting a meta-heuristic to solve the flow shop type scheduling 

problem in an automated industrial system in deferred time, without taking into account any constraints. The 

adapted meta-heuristic is a meta-heuristic with a population of solutions. It is inspired by the natural behavior 

of a bird species and formulated by the cuckoo search algorithm: the CS algorithm. Only ten (10) years ago 

the cuckoo algorithm was created, but it can prove its effectiveness on many difficult optimization problems, 

such as flow shop scheduling problems with a number of machines greater than or equal to three machines.  

We tested several parameters that make up the algorithm, we started with the fraction parameter 

(pa), we notice that, by increasing the percentage of destruction, the objective function (In our case, it is the 

Cmax) will be improved. After that, we took the number of iterations to study, its influence on the 

convergence of the algorithm; we found that, if we increase the number of iterations there is an improvement 

of the objective function; on the other hand, we had an explosion in the simulation time.  

The last parameter is the number of the nest, which has an undeniable effect on the quality of the 

final solution and on the speed of convergence of the algorithm. Besides that, we have treated large problems. 

These latter have a direct correlation relation with the simulation time, that is to say, if the problem size has 

become large, the simulation time increases and vice versa. To conclude, there is a direct correlation between 

the variables pa, itt, nest and the time needed to find the solution. In addition, there is an inverse relationship 

between the previously mentioned variables and the objective function. 

To validate our results, we used one of the most known references in the literature (Taillard 

instances), the results are close to the best solutions found (upper bound) but we still have improvements to 

make. Finally, it can be said that BDCS is suitable to be adapted to solve the FSSP and provide good results. 

This can be explained mainly by a good balance between exploration of space to different research areas and 

exploitation of promising spaces, that because lévy flight was employed.  

There are several improvements that we can focus on in the future; For example, improving the 

initial population by integration of a heuristic. It is possible to exploit new regions, that by increasing the 

number of nests and the number of iterations to see the changes to the objective function and the simulation 

time. We can also hybridize with meta-heuristics known in the literature such as taboo research, ant colonies 

or simulated annealing, to improve the objective function.  

This work can be considered as a reference for researchers who want to use the cuckoo algorithm in 

their works; they can take the appropriate parameters to their needs. For example, if they want a good 

solution, they must take a high value of pa and a large number of nests, on the other hand if they want to 

optimize the simulation time, a small value of iterations and the number of nests, it must be taken. 
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