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 With the growth of mobile phones, short message service (SMS) became an 

essential text communication service. However, the low cost and ease use of 

SMS led to an increase in SMS Spam. In this paper, the characteristics  

of SMS spam has studied and a set of features has introduced to get rid of 

SMS spam. In addition, the problem of SMS spam detection was addressed 

as a clustering analysis that requires a metaheuristic algorithm to find  

the clustering structures. Three differential evolution variants viz DE/rand/1, 

jDE/rand/1, jDE/best/1, are adopted for solving the SMS spam problem. 

Experimental results illustrate that the jDE/best/1 produces best results over 

other variants in terms of accuracy, false-positive rate and false-negative rate. 

Moreover, it surpasses the baseline methods. 
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1. INTRODUCTION  

The usage of short messaging service (SMS) became increasing rapidly as a result of its cheap cost 

and ease of use. This directed to an increase in the amount of spam, which is unsolicited and undesired SMS 

sent to a large number of receivers. The precise definition of spam does not exist. Essentially, spam regards 

as an undesirable email, however, it is not all undesirable e-mails are spam.   

SMS spam has a significant influence on users because users view each SMS they get, so SMS spam 

affects the users immediately [1, 2]. In addition, to disturbing, users require a degree of secrecy with  

their mobile phones and unaffected by spam and viruses intrusions [3-5]. Therefore, considerable attention  

to the SMS spam problem is provided to develop a set of approaches to bypass this problem. Among  

the approaches developed to combat the SMS spam is a classification of messages into SMS spam  

and ham. The challenge is that the messages are short and contains few words and these words may be 

abbreviated [6, 7]. 

Detecting SMS spam turns to be of significant worth due to the huge loss that could result from  

the SMS spam. Two types of methods that are collaborative based and content-based methods can be used to 

detect SMS spam. Collaborative based depends on usage and user experience. While the content-based 

method concentrates on examining the textual content of messages [8, 9]. Zainal and Jali performed  

a study of the distinguishing control of the features and examining it's informational or impact circumstance 

in SMS spam messages classification [10]. Kaya and Ertuğrul introduced a method based on local ternary 

patterns to extract two distinct features set low and up features from SMS messages and several machine 

learning methods were applied for classifying SMS spam. The evaluation results over three separate SMS 

datasets gained accuracy 93.318%, 87.15%, and 94.10% [11].  
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Sulaiman and Jali introduced a method for detection SMS spam based on well-known characters 

used at transmitting SMS, SMS length and keywords. Five different algorithms and three different datasets 

were used to verify the proposed method.  The results indicated that the proposed method could produce  

a reasonable detection rate [12]. 

Choudhary and Jain presented an approach for detecting spam messages using ten features and five 

machine learning algorithms viz naïve Bayes, logistic regression, J48, decision table and random forest. SMS 

Spam Corpus was used as an evaluation dataset and the results showed that the random forest is the best one 

with detection rate equals 96.1% [13]. 

Abdulhamid et al. presented a review of the possible ways and challenges of spam detection and 

future research direction that can help specialist researchers to know the areas that need further  

improvement [1]. Kaliyar et al. proposed a general model to distinguish SMS spam messages based on 

several machine learning algorithms. The proposed SMS spam filtering model was able to filter messages 

from several families: Singapore, American, and Indian English. The results showed the proposed model 

achieved a high precision using Indian English SMS [14]. 

Sharaff presented a comparative study of the effect of feature selection techniques on several 

classifiers. The results showed that the feature selection technique impacts the performance of the classifier 

and can assist in enhancing the performance of some classifiers [15]. Ojugo and Eboka developed SMS spam 

detection method based on Bayesian Network. A set of features is deterministically selected from SMS using 

the genetic algorithm (GA). The results showed that the feature selection technique impacts the performance 

of the classifier [16]. 

A two-fold contribution is coupled in this paper. First, we raise the following question: How to 

design an efficient feature extraction model to improve the accuracy. Second, to ensure more efficacious 

performance, we exploit multiple variants of differential evolution (DE) models that offer positive 

cooperation with a set of features for SMS spam to correctly divide the search space into two and  

non-overlapping classes SMS spam and ham. 

The rest of this paper is organized as follows. Section 2 elaborates on an approach for detecting 

SMS spam by suggesting of a feature set. In Section 3, the results and discussion of the proposed approach 

are reported. Finally, the concluding remarks and future work for other research directions are provided  

in section 4. 

 

 

2. RESEARCH METHOD  

This section clarifies the methodology used for SMS spam detection which consists of two stages. 

The first stage attempts to extract from SMS specific features that may be used to characterize SMS spam. 

Based on the extracted features, three differential evolution alogirthms are used in the second stage to detect 

SMS spam. Consider an SMS collection 𝕊 of 𝑁 text messages, i.e. 𝕊 = {𝑠1, … , 𝑠𝑁}. Each message, 𝑠𝑖, 1 ≤
𝑖 ≤ 𝑁 consists of words, numbers, etc. and its size is limited to 160 characters. Figure 1 demonstrates some 

samples of SMS spam and ham in [17].  

 

 

 
 

Figure 1. Sample of SMS spam and ham from SMS spam collection 
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The idea proposed here for dealing with the SMS spam problem is based on variant DE algorithms. 

Up to the best of our knowledge, this is the first time to use DE algorithms as clustering for SMS spam.  

The SMS spam detection task is to identify whether 𝑠𝑖 is SMS spam or ham using clustering is  

ℂ ∶  𝑠𝑖 →  {𝑆𝑀𝑆 𝑠𝑝𝑎𝑚, ℎ𝑎𝑚}. Detecting distinctive features that have high discriminatory power to 

distinguish between SMS spam and ham to be crucial in SMS spam detection. To support the clustering a set 

of 𝑛 features 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑛} should be extracted from 𝕊.  

This research investigates the challenge of SMS spam detection that is how the distinctive features 𝐹 

are identified to classify the spam SMS messages. In this, the features of the ham and SMS spam messages 

are extracted to form features set representing a sign for the corresponding message. These features are used 

to train DE for identifying the centroids of the SMS spam and ham. Then, the trained centroids are given to 

the testing stage to detect SMS spam or ham.  

The first stage of the proposed SMS spam detection model is preproccessing. After retrieving  

the SMS message from a data source, text preprocessing that is very important is applied to make  

the messages to be analyzed. Several steps are involved in preprocessing in order to prepare the message to 

an SMS spam detection. Firstly, the message is converted to lowercase to evade differentiation between  

the same words that are different in case. Secondly, the punctuation is removed. After that, the messages are 

tokenized based on delimited whites-pace to identify the tokens. Then, stop words are excluded from the set 

of tokens recognized in the former step to obtain a message as a list of keywords. Finally, the tokens are 

stemmed to recognize their roots. 

Once applying preprocessing to the collection of messages, the message representation stage should 

be performed to represent the message by distinct terms. Each term then is involved a weight calculated using 

term-frequency inverse-sentence-frequency. Afterword, each message is represented as a vector of weights of 

terms. In addition, some features are extracted from the raw data to further improve the message 

representation as explained in what follows: 

- The length of the message is considered one feature to be added to represent the message since SMS 

spams length tends to be longer than ham.  

- The presence of a number is considered as one feature to be added to represent the message since  

the spammer prefers using the phone number to claim a lottery or prize. 

The extracted feature set can be used by the DE to define the centroid of each cluster. The proposed 

DE SMS spam detection consists of two stages: training and testing stages. The goal of the training stage is to 

tune the value of two centroid vectors according to a set 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑛} of training messages.  

While the goal of the testing stage is to classify the incoming message into SMS spam or ham based on  

the two centroid vectors produced from the training stage. The following subsections illustrate how DE is 

utilized for the clustering purpose based on the extracted features.  

 

2.1.  DE based clustering for SMS spam detection 

After extracting the message features set, an optimization model based on DE that uses these 

features to identify the centroids for clustering of SMS spam and ham is proposed. Three differential 

evolution variants namely DE/rand/1, jDE/rand/1, jDE/best/1 are utilized. The detailed explanation of  

the main characteristic components of the proposed models is provided in what follows.  

 

2.2.1. Individual representation and population initialization  

In the proposed models, cluster centroids are encoded in the individual. Each individual 𝐼 is 

represented as a vector of 𝑛 genes that corresponds to the 2 cluster centroids. The mathematical formulation 

of the individual is as follows: 

 

𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑛}, 
 

∀𝑗 ∈ {1, … , 𝑛}, 𝑖𝑗  ∈  [𝑚𝑖𝑛𝑗 , 𝑚𝑎𝑥𝑗] 

 

𝑚𝑖𝑛𝑗  : is the minimum value feature 𝑗 can get, and  

𝑚𝑎𝑥𝑗: is the maximum value feature 𝑗 can get. 

DE is a population-based optimization algorithm and starts with a population ℙ of 𝑁 solutions.  

Formally speaking, ℙ can be formulated as follows: 

 

ℙ = {𝐼1, 𝐼2, … , 𝐼𝑁} 

 

where 𝑁 is the population size. 
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2.2.2. Mutation and crossover operations  

This operation is considered as the main operation that is responsible for maintaining the population 

diversity in evolution. The mutation equations for DE/rand/1, jDE/rand/1 and jDE/best/1 are in (1), (2),  

and (3) respectively [18-20]. 
 

DE/rand/1     𝑉𝑖 = 𝐼𝑟1 + 𝐹(𝐼𝑟2 − 𝐼𝑟3) (1) 
 

jDE/rand/1    𝑉𝑖 = 𝐼𝑟1 + 𝐹𝑖(𝐼𝑟2 − 𝐼𝑟3) (2) 
 

jDE/best/1     𝑉𝑖 = 𝐼𝑏𝑒𝑠𝑡 + 𝐹𝑖(𝐼𝑟1 − 𝐼𝑟2) (3) 
 

where 𝑟1, 𝑟2 and 𝑟3 are random numbers in [1,N] and they are mutually different, 𝑏𝑒𝑠𝑡 is the individual in  

the current population. 𝐹 is a random number in (0,1) and  

 

𝐹𝑖 = 𝐹𝑙 + 𝐹𝑢 × 𝑟𝑎𝑛𝑑        𝑖𝑓 𝑟 < 𝑇1  

 

𝐹𝑙 is lower bound of mutation. 

𝐹𝑢 is upper bound of mutation. 

𝑇1 is the probability to alter 𝐹 factor.   

The crossover operation aim is to combine the target 𝐼 vector with the donor vector 𝑉 to produce  

the trial vector 𝑈. Equation (4) [21] illustrates the crossover operation for DE/rand/1 and (5) [22] 

demonstrates the crossover operation for jDE/rand/1 and jDE/best/1.  

 

𝑈𝑖,𝑗 = {
𝑉𝑖,𝑗  𝑖𝑓 𝑟1 ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝐼𝑖,𝑟2

𝐼𝑖,𝑗  𝑖𝑓 𝑟1 > 𝐶𝑅 𝑎𝑛𝑑 𝑗 ≠ 𝐼𝑖,𝑟2

 (4) 

 

𝑈𝑖,𝑗 = {
𝑉𝑖,𝑗  𝑖𝑓 𝑟1 ≤ 𝐶𝑅𝑖 𝑜𝑟 𝑗 = 𝐼𝑖,𝑟2

𝐼𝑖,𝑗  𝑖𝑓 𝑟1 > 𝐶𝑅𝑖 𝑎𝑛𝑑 𝑗 ≠ 𝐼𝑖,𝑟2

 (5) 

 

where  

𝐶𝑅 is a random number in (0,1] that determines the value of the trial vector 𝑈 which is inherited from  

the donor 𝑉. 

𝑟1 is a random numbers in (0,1] 

𝑟2 is a random numbers in [1,n] 

and 
 

𝐶𝑅𝑖 = 𝑟𝑎𝑛𝑑              𝑖𝑓 𝑟 < 𝑇2  

 

𝑇2 is the probability to alter CR factor.   

 

2.2.3. Evaluation DE selection operation  
According to the SMS spam problem, the formulation of the objective function requires maximizing 

the accuracy that means the number of messages that are correctly detected as SMS spam (𝑇𝑃) and  

the number of messages are correctly classified as ham(𝑇𝑁) should be maximized. In other words  

the number of messages that are misclassified as SMS spam (𝐹𝑃) and the number of messages are 

misclassified as ham (𝐹𝑁) should be minimized. Each individual is evaluated using the objective function as 

in (6). The computation of the objective function for each individual is as follows. First, the centroids, 
ℂ = {𝑆𝑀𝑆 𝑠𝑝𝑎𝑚, ℎ𝑎𝑚} encoded in the individual are extracted and the clusters are formed. Then, the cluster 

is attained by assigning the messages 𝑠𝑖 to a cluster corresponding to the closest centroid. Euclidean squared 

distance metric is adopted for the computation of the distance between a message and the centroid. 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑂𝑏𝑗𝐹𝑢𝑛(𝐼) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
 (6) 

 

After evaluation the individuals, DE selection operation is applied as shown in (7), the resultant 

vector from this operation is the vector with the higher objective function that will be passed to the next 

generation. 
 

𝐼𝑖 = {
𝑈𝑖  𝑖𝑓 𝑂𝑏𝑗𝐹𝑢𝑛(𝑈𝑖) >  𝑂𝑏𝑗𝐹𝑢𝑛(𝐼𝑖)

𝐼𝑖                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7) 
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3. EXPERIMENTAL RESULTS AND DISCUSSION 

SMS Spam Collection [17c] is a public dataset collected for SMS spam research that contains 5,574 

English, real and non-encoded messages. Each message is labeled to indicate whether a given message is  

a legitimate (ham) or SMS spam. It contains about 86.67% of ham and 13.33% of SMS spam. Evaluation 

metrics represented by accuracy(𝐴𝑐𝑐) [23], false negative rate (𝐹𝑁𝑅) [24] and false positive rate (𝐹𝑃𝑅) [25] 

are used for assessing the proposed SMS spam. Evaluation of the proposed SMS spam detection model is 

performed by applying the k-fold cross-validation approach. In this paper, 3- fold cross-validation approach 

and 2-fold cross-validation are adopted to show the impact of training and testing dataset on  

the performance of the proposed model. The evaluation is presented in terms of average accuracy(𝐴𝑐𝑐),  

false negative rate (𝐹𝑁𝑅) and false positive rate (𝐹𝑃𝑅) over k-fold. Table 1 reports the setting parameters of 

DE models. Tables 2 and 3 present the results of the proposed approach under 3-fold and 2-fold for various 

classification. From those two tables, which present the average performance of the three variant DE 

algorithms DE/rand/1, jDE/rand/1, jDE/best/1 against k-means baseline method in terms of 𝐴𝑐𝑐, 𝐹𝑁𝑅 and 

𝐹𝑁𝑅 over ten different runs, it is clear that the three variant DE models have successfully clustered  

the messages into SMS spam and ham for the different k-fold approaches against k-means through reducing 

𝐹𝑁𝑅 and 𝐹𝑃𝑅 and increasing the accuracy. Also, it can be observed that the jDE/best/1 produces the best 

result over other variant DE models. 

 

 

Table 1. DE parameters setting 
Parameter Value 

Population size, 𝑁 100 

Maximum number of generations 100 

Crossover probability, 𝐶𝑅 0.9 

Mutation probability, 𝐹 0.5 

Lower bound of mutation, 𝐹 0.1 

Upper bound of mutation, 𝐹 0.9 

probability to alter 𝐹, 𝑇1 0.1 

probability to alter 𝐶𝑅, 𝑇2 0.1 

 

 

Table 2. Comparative results obtained over  

10 independent runs fort he proposed model against  

K-means regarding 3-fold 
Model 𝐴𝑐𝑐 𝐹𝑁𝑅 𝐹𝑃𝑅 

DE/rand/1 0.9641 0.0116 0.1925 

jDE/rand/1 0.9660 0.0122 0.1742 

jDE/best/1 0.9667 0.0116 0.1738 

k-means 0.8600 0.0682 0.6024 
 

Table 3. Comparative results obtained over  

10 independent runs for the proposed model against 

K-means regarding 2-fold 
Model 𝐴𝑐𝑐 𝐹𝑁𝑅 𝐹𝑃𝑅 

DE/rand/1 0.9648 0.0128 0.1801 

jDE/rand/1 0.9652 0.0120 0.1814 

jDE/best/1 0.9671 0.0107 0.1756 

k-means 0.8290 0.0991 0.6350 
 

 

 

4. CONCLUSION  

In this paper, the problem of SMS spam detection was addressed as a clustering analysis. Finding 

the clustering structures that provide high discrimination between SMS spam and ham has been considered as 

NP-hard which needs a metaheuristic algorithm. Three DE variants were utilized to distinguish incoming 

messages into SMS spam and ham. Experimental results reveal that the DE/best/1 surpasses other variants 

and k-means in terms of accuracy, false-negative rate, and false-positive rate. Future work should include an 

investigation to consider multi-objective evolutionary algorithms that may produce better results. 
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