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 In this paper, we present our approach for profiling Arabic authors on 

Twitter, based on their tweets. We consider here the dialect of an Arabic 

author as an important trait to be predicted. For this purpose, many 

indicators, feature vectors and machine learning-based classifiers were 

implemented. The results of these classifiers were compared to find out the 

best dialect prediction model. The best dialect prediction model was obtained 

using random forest classifier with full forms and their stems as feature 
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1. INTRODUCTION  

Author profiling on social media is a method of analysing the author writings on social media in 

order to uncover different traits of the author (e.g. gender and age) based on stylistic or content-based 

features. This method aims at taking advantage of a huge volume of data generated by a huge number of 

authors, in order to classify them into predefined classes based on their traits. Author profiling has many 

useful applications in the domain of social media analysis, such as in marketing and advertising, as well as in 

the forensic and security areas [1]. 

With the birth and rise of social media, internet users in the Arab world were quick to embrace the 

new technology, and utilize all what social media has to offer to connect, communicate, and share 

information with others using Arabic language [2]. Arabic language that used in social media has two forms: 

the first, is the modern standard Arabic (MSA), which is widely used in formal situations like formal 

speeches, government and official contents; the second, is known as dialectal Arabic (DA) which is the 

informal private language, predominantly found as spoken vernaculars with no written standards. Dialects 

differ in morphologies, grammatical cases, vocabularies and verb conjugations [3]. These differences call for 

dialect-specific processing and modeling when building Arabic automatic analysis systems [4].  

The natural language processing (NLP) community has aggregated dialectal Arabic into four 

regional language groups: Egyptian, Maghreban, Gulf, and Levantine dialects, in addition to modern standard 

Arabic (MSA), the Arabic formal language. An objective comparison of the varieties of Arabic dialects could 

potentially lead to the conclusion that Arabic dialects are historically related, but are mutually unintelligible 

dialects [5]. Author profiling is a classification problem that could be solved using various approaches. These 
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approaches are based on the selected features extracted from the author’s writings, and the classifier used in 

the development of the prediction model. A lot of researches in the field of author profiling previewed a 

comparison study between multiple features [6] and classifiers [7] to select the best combination of them for 

predicting a specific trait.  

Features used in dialect identification problems are content-based and style-based features [8]. In 

content-based features, character n-grams and word n-grams are widely used. Kheng et al. in [9] used word 

n-grams with values between 1 and 3 for n. Markov et al. in [10] combined character n-grams and word n-

grams with values of 3-4 for typed characters, 3-7 for untyped characters and 2-3 for words, respectively. In 

untyped characters, n-gram types are ignored (e.g. ‘the’ as a whole word is no different from ‘the’ in the 

middle of a word), but in typed characters, n-grams of different types are distinguished (e.g. n-grams may be 

suffixes, punctuations, words etc.). Similarly, Ciobanu et al. in [11] combined character and word n-grams 

with values of n of 1-6 and 1-2 respectively. In [12, 13], tf-idf n-grams were combined with word embedding, 

and with 2-gram characters in the beginning and ending, respectively. 

Many features selection criteria have been used: gain ratio [14], bag-of-words [15, 16], the 100 most 

discriminant words per class from a list of 500 topic words [17], latent semantic analysis LSA [9], and 

specific lists of words for dialect [18]. In style-based features, character flooding (i.e. lengthened words) and 

emoticons or/and laugher expressions [15, 18] were commonly used. Markov et al. in [10] also combined 

domain names that are used in links, with different kinds of n-grams. Arcial et al. in [15] combined 

emotional features such as: emotions, appraisal, admiration, positive/negative emoticons, and positive/ 

negative words. Martinc et al. in [18] also used emojis and sentiment words. 

Concerning classification algorithms, most researchers used traditional machine learning algorithms 

such as logistic regression [12, 18, 19], SVMs [9-11, 16, 20-22], and distance-based methods [14, 15, 17]. 

Some researchers employed deep learning techniques for this purpose. For example, Kodiyan et al. in [23] 

applied recurrent neural networks (RNN), whereas Schaetti in [13] and Sierra et al. in [24] used 

convolutional neural networks (CNN). Finally, Salvador et al. in [25] applied deep averaging networks. 

Dialect of Arabic tweeps (Twitter users) is the trait under study of author profiling in this paper. 

Accordingly, the required task is to develop a model that can predict the dialect of a tweep based on his/her 

Arabic tweets. In the rest of this paper, we present our methodology that includes: the characteristics of 

training and testing data, the features used for the developed model, and a step-by-step approach to build the 

prediction model in section 2. In section 3, a brief discussion of the results is addressed. At the end, insights 

for the future and a short summary are presented. 

 

 

2. RESEARCH METHOD  

In this section, we describe the dataset used in this work, and the features developed for the 

prediction model. The proposed model is explained in detail hereafter, including: data pre-processing, 

features extraction, features filtering and the algorithms with their evaluation criteria. 

 

2.1.  Dataset 

In our research, we used training dataset from PAN conference 2017 [8]. One of PAN 2017 tasks 

was about Arabic tweeps profiling according to their dialects. This data consists of 240,000 Arabic tweets 

written by 2,400 authors (100 tweets for each author). Authors were tagged with their dialects. Dialects were 

divided into four classes: Levantine, Gulf, Egyptian and Maghreban. Authors were categorized into 4 classes 

of 600 authors each. As a testing dataset, PAN 2017 prepared also a dataset consists of 160,000 Arabic 

tweets written by 1600 authors (100 tweets for each author), divided equally into the four classes described in 

the training data. 

 

2.2.  Studied features 

We implemented several experiments using different feature vectors. We categorized these features 

into: 

a. Content-based features: 

− Uni-gram, bi-gram and tri-gram of words  

− Stems of words 

− Lemmas of words 

− Words part of speech tags (POS), i.e. NOUN_MS_PRON and V_PRON 

− Character n-gram, where n ranges from 2 to 7. 

b. Style-based features: 

− Links to websites (“http”) 
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− Hashtags to active public trends (“#”) 

− Mentions to other authors (“@”) 

− Lengthened words, i.e. the intentional repetition of a character in a word to emphasize and to 

exaggerate in describing something like laughing “ ههههههههه”, magnification “واااااااااااااااااو”, indignation 

 .etc ,”لاااااااااا“

− Average tweets length, i.e. the average number of words in an author tweets 

− Tweets punctuation marks, i.e. the summation of punctuation marks used in an author tweets. 

 

2.3.  Our model 

In our attempt to find out the best prediction model, we prepared the dataset and extracted the 

features. These features have been filtered to reduce the size of feature vectors. Depending on reduced feature 

vectors, we implemented several experiments that differed from each other in feature vector and the 

algorithm used for training. The resulting models were compared using specific evaluation criteria to select 

the best one. 

 

2.3.1. Data pre-processing 

Before starting feature extraction stage, we concatenated all the 100 tweets for each author into one 

long text. This long text was tokenized using Farasa tokenizer [26]. All extracted tokens have been grouped 

and weighted with their frequency in the dataset (all the tokens from all authors). 

 

2.3.2. Features extraction 

After the tokenization step, lemmas and stems were extracted from the calculated tokens using 

Farasa toolbox. Tokens were used also to extract character 2-7 grams. In all content-based features, the 

calculated value for each feature was the frequency of use in the dataset. This step produced a huge size of 

feature vector that should be reduced. 

Style-based features were also calculated and extracted for each author. We considered a word is 

lengthened if it included a character repeated three times at least. In case of average tweets length and tweets 

punctuation marks, the value of these features was the calculated count itself. In case of hashtags, mentions, 

links and lengthened words, the value of these features were the normalized usage ratio. These features were 

counted then normalized into the interval [0,100]. 

 

2.3.3. Features filtering 

The number of elements of each content-based feature vector was very huge, which made the 

training process very hard and time-consuming. We applied the following steps to reduce the feature vector 

size: 

− Eliminating features with a value less than five (we have four classes). The probability that these items 

contribute in the classification is low 

− Discarding all elements with Information Gain IG equals to zero. 

 

2.3.4. Model training 

In our experiments, we trained different models using Weka toolbox. The features mentioned in 3.2. 

have been used separately or jointly to create various feature vectors to be tested in our experiments. 

According to the classifiers, we used initially support vector machine (SVM) in order to find out the best 

feature vector through several experiments. Using the resulting best feature vector, we trained other 

classifiers, such as: sequential minimal optimization (SMO), random forest (RF) and naïve bayes (NB) as 

training algorithms to be compared with SVM results. 

 

2.3.5. Evaluation of models 

For the evaluation, we used both training and testing dataset to find out the best model. In the 

training phase, we used F-measure (F1) over 10-folds cross-validation (F1Train), and in the testing phase, we 

calculated F1 over the testing dataset (F1Test). 

 

 

3. RESULTS AND DISCUSSIONS  

In this section, we present our experiments for dialect prediction. Initially, we used SVM with 

polynomial classifier to uncover the best feature vector, then we tried other classifiers to find out the best 

prediction model. The used features abbreviated here as: CNGram for character n-gram; UniGram, BiGram 

and TriGram for word uni-gram, bi-gram and tri-gram respectively, Stem for stems, Lemma for lemmas, 
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POS for part of speech tags, LEN for lengthened words ratio, ATL for average tweets length, TPM for tweets 

punctuation marks and LHM for links, hashtags and mentions usability ratios. 

 

3.1.  Features vector comparison using SVM 

As we mentioned above, several feature vectors have been used to train a number of models in 

multiple experiments. We used here SVM classifier with polynomial kernel as a training algorithm, and 

calculated the evaluation criteria for comparison. Figure 1 shows the results. 

 

 

 
 

Figure 1. Comparison between feature vectors using polynomial-SVM 

 

 

At the first step, we trained our model using the UniGram alone (F1Train = 60.2%), then when we 

added some features, we noticed that adding POS was the most effective (71.7%). Then, we tried the 

concatenation of UniGram, BiGram and TriGram of words, the result was relatively poor (45.8%). Using 

Stem instead of the UniGram increased the accuracy (74.8%). Moreover, using Stem concatenated with the 

UniGram, LEN and LHM ratios produced better accuracy (77%, 75% and 75.1% respectively). Using 

CNGram as main feature vector led to good accuracy (75.9%). Using Lemma with other features let to good 

accuracy, especially with ATL and TPM (74.4%). At the end, we noticed that using Stem with UniGram 

produced the best F1Train (77%), and F1Test (74.6%). 

From the results above, we can notice that content-based features played an effective role in the 

dialect prediction model because different Arabic dialects use different words to reflect the same meaning, 

for example, the concept of “much” is represented using “كتير” in Levantine, “ أوي” in Egyptian, “بزاف” in 

Maghreban and “وايد” in Gulf dialects. We can notice also that best results were obtained using Stem as a 
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content-based feature (compared to Fullform and Lemma). This can be explained by the fact that several 

words related to the same origin are represented by one stem, for example, the words “جامعاتهم“ ,”الجامعات” and 

 Consequently, by using stems, we make a trade-off between the number .”جامع“ have the same stem ”الجامعة“

of features and the origins of the words. 

Regarding style-based features, we can notice that ATL has a good effect on the results. It seems 

that some dialects allow expressing the idea using reduced number of words. Lengthening words is a 

commonly used practice in social media. It seems that the use of lengthened words differs from one dialect to 

another, thus, LEN enhanced the prediction model. Using character n-gram combines the best features of uni-

gram of words and uni-gram of stems with all related prefixes and suffixes in one feature vector. Therefore, 

using CNGram enables taking advantage of both words and stems used at the same time without duplication. 

 

3.2.  Classifiers comparison 

Here, we used the best features vector discovered in section 4.1 to train new models using different 

classifiers. We compared SVM, NB, RF and SMO classifiers. The results are presented in Figure 2. The best 

classifier was random forest (RF). It produced the best F1Train (80.6%) and F1Test (78.2%). It is worth 

mentioning that the appropriate choice of the classifier is considered a major step of any machine learning 

problem. The configuration of the classifier itself plays a crucial role also. In our research, when we used 

SVM, we noticed that the kernel of SVM is a very important parameter which should be selected accurately. 

We tried the linear, polynomial and exponential kernel. The polynomial kernel gave the best result (F1Train 

was 69.7% for linear, 77% for polynomial, 70.6% for exponential). 

 

 

 
 

Figure 2. Classifiers comparison 

 

 

4. CONCLUSION  

In this research, we presented our work in author profiling of Arabic tweeps concerning dialect trait. 

We trained several models using various features and classifiers to find out the best model for predicting 

author dialect. We found that using RF classifier with full forms and their stems as a feature vector led to the 

best model with F1Train (80.6%) and F1Test (78.2%). It will be worth investigating using lemmatizer for 

Arabic vernaculars instead of the currently used lemmatizer which is made for modern standard Arabic 

(MSA). Moreover, we intend to study the effect of using deep learning algorithms for Arabic dialects 

classification in case of availability a huge dataset collected from Arabic writers. 
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