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1. INTRODUCTION 

Research on natural language processing is increasing because it is influenced by the availability of 

information that always increases. One example is natural language processing in the health domain whose 

source of information is not only derived from the patient's medical record, but through community writing 

participation shared using internet media [1]. Not a few practitioners, communities and even health  

service units seek medical information and utilize information on the internet for certain purposes. 

One of the characteristics of information seeking in the health domain is that the search for health 

information will end when information on cause and effect has been found that discusses the root causes of  

a medical condition. 
 

𝑓(𝑥, 𝑦)  = (𝑥) → (𝑦); or 𝑓(𝑥, 𝑦)  = 𝑖𝑓 (𝑥) 𝑡ℎ𝑒𝑛 (𝑦) (1) 
 

Meanwhile, having a large collection of medical information from various sources brings challenges 
for practitioners and the public to find the information they need in a fast time. Getting new knowledge from 

medical articles automatically becomes a separate problem because the sentence usually written on medical 

articles has the characteristics of multiple sentences [2], namely a long article that usually has several 

paragraphs, the explanation consists of background then presents the problem and provides solutions to  

the core part of the article and ends with conclusions or messages that are considered important [3, 4].  

There is a possibility that in an article, the position of the causal relationship pattern allows to be in  

a different paragraph, meaning the sentence because it can be written at the beginning of paragraphs and 

sentences due to being explained at the end of the paragraph, and vice versa. 
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𝑓(𝑥, 𝑦, 𝑧) =  𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑜𝑟 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑦,
𝑥 𝑐𝑎𝑢𝑠𝑒 𝑧, 𝑎𝑛𝑑  𝑦 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑐𝑎𝑢𝑠𝑒 𝑜𝑓 𝑧 

(2) 

 

The purpose of this research is to optimize the use of annotations to do a summary of an online 

medical article in which it is able to display the meaning of cause and meaning as a result of which the two 

meanings have a mutually explaining relationship. Overall, this study aims to contribute as follows:  

(a) proposed phrase annotations used to identify implicit meanings in a sentence; (b) proposed paragraph 

annotations are used to carry out the core classification of the discussion in each paragraph in the medical 

article; (c) proposed annotations of medical elements are used to transform natural language into medical 

annotations; (d) proposed graph-based semantic annotations are used to identify cause-effect relationships 
through a template-based. 

 

 

2. RESEARCH METHODOLOGY 

The method used as a reference is Atkinson's research [5]. The difference with the current research 

lies in the summary section of the text, the transformation of medical elements, semantic annotations and 

paragraph annotations shown in Figure 1 (blocks given dark background colors). The current research is 

using an online medical article dataset for public health surveillance. The aim is to display information on 

causes and consequences, as well as the mitigation process from the occurrence of these health cases.  

The challenge in the current research is to determine the medical elements that match the characteristics of 

the text in Indonesian medical articles. 
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Figure 1. Process approach for the identification of causal relationship in multiple sentences 

 

 

2.1.  Summary of extractive text 

The principle of using text summaries in the current research is to complete the stages of feature 

selection needed by Atkinson [5], in addition summary techniques are used to narrow the problem search 
space and the characteristic used in the text summary phase [6]. 

 

2.2.  Transforming natural languages into medical element annotations 

Annotation is a technique used to give notes to each sentence. This solution is used to find important 

sentences discussed in a medical text. The fact is that the results of annotations actually have a lot of 

connection with other annotations that form new meanings [7]. Here is an annotation comparison proposed 

by several other researchers. Atkinson [5] proposed annotation are substance, effect, symptom, disease, and 

body part. Mihǎilǎ [7] proposed annotation are drug, physical stimulation, symptom, inhibition, and 

diagnosis. Byrd [8] utilizing the information occurs on Twitter for public health surveillance with annotations 

used are sentiment analysis and geocoding. Liang Wu [9] using twitter to find out information about  

the reactions of drugs consumed with the annotations used are drug name, brand name, prescribe for, effect. 

Yanging Ji [10] utilizing health articles by using annotations drug name, ICD Code, and symptom.  
Yepes [11] used annotations for surveillance problems. The proposed annotations are disease, symptoms, 

pharmacological and location. 

The obstacle of the several annotations that have been proposed is that it has not been able to display 

a dependency relationship that explains the meaning of cause and effect, therefore in the current study  

the semantic annotation is proposed to relate the meaning of each annotation that has a connection pattern 

with other annotations according to medical information needs. Table 1 is the proposal to develop natural 

language into the LPpAJSFPePnGOD medical element by considering the needs of the dataset taken from online 

articles, namely handling in the form of statements from resource persons, facilities, and recovery that have 

been carried out as indicators of mitigation.  
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Table 1. Proposed LPpAJSFPePnGOD for medical element annotations 
Medical Entities Description 

LOKASI (L) 

In English 
LOCATION 

 

Used to extract location and place names about events or events being discussed 

The rule is Location (x, y)  probability of location. 

POPULASI 

PENYAKIT (Pp) 

In English 
DISEASE 

POPULATION 

Used to perform extraction issues and problems of the disease. Get the problem issues with the approach of 

the method of biological named entity recognition.  

The rule is Disease population (x, y)  biological probability named entity 

recognition (biological NER). 

 

AKIBAT (A) 

In English 
EFFECT 

 

Used to perform the extraction impact by the subject as specific disease populations.  

The rule is Effect (x, y)  disease_population (x), location (y). 

 

JUMLAH 

KEJADIAN (J) 

In English 
SUM OF EVENTS 

 

Used to perform the extraction of statistical count in numeral from the population of certain diseases.  

The rule is Sum_of_events (x, y)  effect (x, y). 

 

SEBAB (S) 

In English 
CAUSE 

 

Used to perform the extraction of the main causes. The method for obtaining a cause is to calculate the word 

emergence statistics on online articles and classification of certain disease populations.  

The rules are Cause_1 (x, y)  disease_population (x, y); Cause_2 (x, y)  

sum_of_events (x, y); Cause_3 (x, y)  sum_of_events(x), location(y). 

 

FASILITAS (F) 

In English 
FACILITY 

 

Used to name extraction institutions that provide treatment based on the consequences of certain disease 

populations.  

The rules are Facility_1 (x, y)  disease_population (x), sum_of_events(y); 

Facility_2 (x, y)  effect(x, y); Facility_3 (x, y)  cause_1(x, y). 

 

PEMULIHAN (Pe) 

In English 
RECOVERY 

 

Used to solution extraction prepared and carried out from facilities in certain locations.  

The rules are Restitution_1 (x, y)  facility_1 (x, y); Restitution_2 (x, y) 

 facility(x), location(y). 

 

PENANGGUNG 

JAWAB (Pn) 

In English 
RESPONSIBLE 

PERSON 

 

Used to subject extraction which is responsible for certain disease population problems and recovery carried 

out by facilities in certain locations.  

The rules are Responsible_person_1 (x,y)  facility_1 (x,y); 

Responsible_person_2 (x,y)  cause_3 (x,y); responsible_person (x,y)  

effect(x), facility(y) 

 

GEJALA (G) 

In English 

SYMPTOMS 

 

Used to extraction part of the body are diseased or in pain.  

The rules are Symptoms (x,y)  disease_population (x,y); Symptoms (x,y)  

disease_population (x,y) 

 

OBAT (O) 

In English 
DRUGS 

 

Used to information extraction drug or vaccine, as one method of recovery.  

The rule is Drugs (x,y)  cause_1(x), recovery(y) 

 

DIAGNOSA (D) 

In English 
DIAGNOSE 

 

Used to extraction of information related to medical statement about the disease.  

The rule is diagnosis (x,y)  disease_population (x), symptoms(y) 

 

 

2.3.  Paragraph annotation 
Paragraph annotations are needed because the important messages conveyed in online medical 

articles are in unpredictable paragraphs or each paragraph discusses the different core stories. Therefore  

the main task of paragraph annotations is to produce the essence of word categories on medical content 

consisting of core paragraphs, supporting paragraphs and conclusion paragraphs. List the paragraph position 

annotations as found in Table 2. If the core story of each paragraph has been obtained, then the pattern of  

the graph pair from the paragraph classification can be determined based on the rules of pattern in Figure 2. 

 

 

Conclusion 

Paragraph
Core ParagraphClarified

Explanatory 

Paragraph
Completed Core Paragraph

Conclusion 

Paragraph
Impact that occured

 
 

Figure 2. Connection of meaning based on annotations of paragraph positions 
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Table 2. Proposed paragraph annotation 
Paragraph Annotation Characteristics 

Core Paragraph Sentences that have frequency of occurrence more than the other sentences and describe  

the event being discussed; The core sentence in it has a meaningful effect; The sentence describes  

the fact of an event discussed. Elements related to the core paragraph as follows: Amount in numbers: 

the number of events, evidence of the incident; effects; pharmacy; diagnosis; Signs in the body related 

to the symptoms. Techniques for use calculating the frequency of the number of words and do a ranking 

based on a threshold value of the article. 

 
Loop article, sum of[] 

{element_paragraf_core, 

positions_paragraph_core = n 

n = n+1} 

End loop 

 

Explanatory Paragraph 

 

Sentences that are identical to information on the cause of an event; Sentence describing  

the subject discussed in the article; Sentence that defines the name of the disease that are discussed in 

this article; Sentence that describes the description of the place. The related of elements to explanatory 

paragraphs are: Location: country, city, district, address; Disease; cause; subject: person, object; 

Comparison sentence. The technique for using is calculate the occurrences frequency of words number 

and rank based on the threshold value of the article: 

 
Loop article, sum of[] 

{element_paragraph_core, 

position_paragraph_core = n 

n = n+1} 

End loop 

 

Conclusion Paragraph 

 

Sentence that describes the mitigation of the ongoing activity; The sentence that defines  

the facilities discussed in the article. The related of Elements to the conclusion paragraph are: 

Mitigation; Facilities provided. The technique for using is calculate the occurrences frequency of words 

number and rank based on the threshold value of the article: 

 
Loop article, sum of[] 

{element_paragraph_core, 

position_paragraph_core = n 

n = n+1} 

End loop 

 

 

2.4.  Feature selection 
Selection of features tailored to the characteristics of the text in complex medical articles and  

the meaning of medical sentences. Analysis of the pre-processing features used in medical articles as in  

the current research is better not to use this pre-processing stage, compared to using it because the results are 

ambiguous [12]. Figure 3 is the pre-processing stage in question. 
 

 

TokenizationSentence splitting
Morphological 

analyzer
Word normalizationStop word

 
 

Figure 3. Stages of pre-processing 

 

 

The first stage is sentence splitting, which is to separate sentences until the delimiter ‘.’ But not all 

delimiter signs are the final marker of a sentence. For example, like ‘dr.’ The word is not the end of 

a sentence, but a profession title. The second stage is tokenization, which is to separate each word from 

a sentence. Examples of problems such as the sentence <rumah sakit in English is hospital>.  

The sentence is one term not <home> and <sick> or <care>, as well as <Ministry of Health>. The sentence 

is one term not <ministry> and <health>.  

The last step is the morphological analyzer, which converts a word into a basic word. An example is 

<immunized>. The word has a suffix in bahasa language (di-), (sasi-) and the basic word is <immune>. 

Immunized has the meaning of being given a vaccine for the immune system, while the immune system is  

the immune system. The analysis of the other feature selection is n-gram as seen in the following equation: 

 

P (k1, k2, … , kn ) = P(k1)P(k2|k1) … P(kn | k1 … kn−1) (3) 
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The use of n-gram in this research uses trigram, and the equation is as follows: 

 

P (kn|k1, … , kn−1 ) = P(kn | kn−2 … kn−1) (4) 

 

The previous equation can be written as follows: 

 

P (k1, k2, … , kn ) = P(k1)P(k2|k1) ∏ P(ki | ki−2 … ki−1)

n

i=3

 (5) 

 

The next step is to adopt the use of semantic analysis as done by Byrd [8] into phrase annotations to 

identify positive or negative meanings. Opinion analysis uses analysis of positive sentences (+) to 

represent the meaning of causes, and analysis of negative sentences (-) to represent the meaning of 

consequences. So, the syntactic results obtained are as follows: 

 
In Bahasa 

<Demam Berdarah Dengeu (DBD)> / NN 

kembali / SC 

<memakan korban jiwa> / VB + (NEG) 

di / IN 

Kota Pekanbaru. / NNP 

Seorang bocah perempuan / NNP 

berusia / CD 

tujuh tahun / CD 

bernama / DT 

Nursabrina / NNP 

<meninggal dunia> / VB + (NEG) 

akibat / SC 

<gigitan nyamuk Aides Aigepty>. / VB + (NEG) 

In English 

<Dengue Hemorrhagic Fever (DHF)> / NN 

return / SC 

<casualties> / VB + (NEG) 

in / IN 

Pekanbaru City. / NNP 

A girl / NNP 

old / CD 

seven years / CD 

named / DT 

Nursabrina / NNP 

<dies> / VB + (NEG) 

effect / SC 

<Aides Aigepty's mosquito bites>. / VB + (NEG) 

 

The results of the exploration of the sentence above show the sentence <taking casualties> / VB 

+ (NEG) and <death> / VB + (NEG) having negative meanings. 

 

2.5.  Semantic annotation 

Semantic annotation technique is a technique that expresses the connectedness of each word in an 

article so as to produce new information that can be understood by its meaning. This step is to adopt the use 

of semantic annotation analysis as done by several researchers [13-16]. The current research uses a hybrid 

method, namely a combination of pattern-based and machine-based learning to build semantic relationships 

and get interpretations that are appropriate to medical needs. Each node is defined as having an association 

with the other annotation node. Although the image looks separate, but each annotation node will look for 
other annotation nodes that have the same information. 

 

2.6.  Analysis of usage annotation 

The analyses needed to design the tests that will be carried out research currently carried out 

implemented in the health surveillance system are: 

- Understand the use of online medical articles to support public health surveillance. 

- Determine feature selection that is most suitable for use in the characteristics of complex texts from 

online medical articles. 

- Transform natural language into annotations of medical elements. 

- Propose the transformation of medical texts into paragraph annotations: core paragraphs, supporting 

paragraphs and conclusion paragraphs; 

- Testing for the dependency sentences  medical element annotations (LPpAJSFPePnGOD) and  
graph-based of semantic annotation; 

- Testing system performance evaluation that will be compared with other studies. 

 

3. TESTING 

The tests are divided into three discussions, namely tagging (verb (VB) + noun (NN)) – phrase 

annotation, multi feature selection and dependency relation.  

 

3.1.  Parsing (VB + NN) + phrase annotation + opinion analysis 

The discussion of the test begins with the analysis of opinions using positive (+) sentences to 

represent the meaning <cause>, and negative (-) sentences to represent the meaning <effect>. Giving 
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a positive class label if in the sentence <verb> and <noun> have a positive meaning, while labeling a negative 

class if in that sentence <verb> and <noun> have negative meanings. The experiment conducted a comparison 

of several classification techniques [17], namely (a) testing using lexical; (b) using the naïve bayes method; 

and (c) using the SVM method. Table 3 is the result of a comparison of explicit and implicit data modeling 

analysis to identify patterns of causal relationships with other researchers, as follows:  
 

 

Table 3. Comparison of testing identification of cause relations 
Researcher Feature proposed Accuracy 

Ittoo [18] <verb> Wikipedia + Lexical. 0.650 

Rink [19] Word+POS+Parse graphs + word+POS+Parse+Stem 0.381 

Riaz [3] Tagging Verb + Noun 0.807 

The proposed 

model (current 

study) 

Tagging Verb + Noun + Tagging phrase + LB 0.650 

Tagging Verb + Noun + Tagging phrase + NB  0.660 

Tagging Verb + Noun + Tagging phrase + SVM 0.890 

 

 

3.2.  Multi-feature selection  

This test uses a summary technique to narrow down the problem search space, then combines with 
the semantic pattern modeling method and the proposed annotation to find important sentences that have 

a meaningful cause-effect relationship. The following is the pseudo code for the feature selection, weighting 

and n-gram used in the summary system. The next test is to combine summary + annotation of medical 

elements + phrase tagging + opinion analysis. The aim is to get a summary that is more in line with 

the information search needs of the medical domain and has a pattern of causal relationships. Because this 

research is a subjective classifier, the learning model must be adjusted based on the individual preferences of 

the labeler or an expert and the label results may vary. Therefore, research activities explore features by 

means of classification. The following is one example of a medical article taken from online media and used 

as an experimental dataset in the current research. In this study using a dataset of 500 medical articles online 

and when extracted it had sentences of 10,176 sentences. The method used as a comparison for 

the classification of summaries + annotations of medical elements + phrase tagging + analysis of 

opinion is naïve Bayes.  
The current research is able to answer from previous studies when the output of more than one 

entity then the meaning becomes ambiguous as mentioned in Khoo's research [20–22] and Park [23].  

This study even though the results of medical elements obtained more than one entity, then the technique is 

by doing a ranking to get the medical element into one entity using the calculation of the frequency of 

occurrence of words. The results obtained using a summary approach + annotation of medical elements 

+ phrase tagging + opinion analysis to find important information in medical text articles that have 

causal meanings as found in Table 4. 

 

Pseudo code combination of feature selection, n-Best and weighting 
1 input   : document as d, feature selection as  fs weighting  as w 

2 output   : summary 

3 

Query    : {Title, noun, statistics on the number of occurrences of words, length of 

words, statistics on the number of occurrences of words and nouns, number of 

occurrences of words and titles} 

4 Weighting (w)      : {tf; tf-idf; tf-idf-df} 
5 Parameter values: (0.4;0.6;0.7;0.8) 

6     di  get document i 

7     fs  choosing query 

8     w  weighting fittest  

9 Query combination  get output values fs and w 

10 for each (document fittest != null) 

11     Sentence to i (si) = the sentence originating from the document i  

12 end for each 

13 if(query combination fittest != null ) 

14 si = each (sentence i) compared to query 

15 word = word detection from si compared to query 

16 statistic = get a statistic from (sentence i) 

17      w=tf (si to sn)  x idf (si to sn) 

18  mmr (si)=π x Sim_1 (si,d)- (1-π)x Sim_2   (si) 

19 end if 

20 
summary  if the sentence i is the value is greater than the threshold, then  

the sentence i is the summary result 

 

𝑡𝑓 (𝑡, 𝑑) =  
𝑁(𝑡)

∑ 𝑁(𝑖)𝑇
𝑖=1

 
(6) 
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Table 4. Comparison for testing the identification of cause-effect relations 
Researcher Features Recall Precision f1 

Riaz [24] Tagging Verb + Noun 0.807 - - 

Mihǎilǎ [7] 
BioCause: drug, physical stimulation, symptom, 

inhibition, dan diagnosis. 
- - 0.873 

Yepes [11] 

Proposed annotations are disease symptoms, 

pharmacological and location. disease, symptoms, 

pharmacological dan location. 

0.214 0.938 - 

The proposed 

model (current 

study) 

Summary + annotations medical elements + phrase 

tagging + opinion analysis 
0.924 0.905 0.910 

 

 

3.3.  Dependency relation 
At this stage the discussion adds a paragraph annotation and semantic annotation approach to 

display new knowledge, so that readers can easily understand the summary results in a medical text article 

that displays important information and has a meaningful cause-effect relationship [25]. The technique for 

dependency relations is a combination of rule-based and statistical based. Rule-based techniques are used 

when the annotation resulting from the classification of paragraph sentences in medical articles must be 

paired with the classification of other paragraph sentences as shown in Figure 2. Interrelation of meaning 

based on paragraph position annotations and Figure 4. The following is a rule-based pseudo code. 
 
 

L Pp

L PpA

J A

Pp

J

LS

FPp JPeF L

PnF

J L

A

G Pp

OS Pe

DPp G

 
 

Figure 4. Graph-based of semantic annotation 
 
 

Pseudo code-based word linkage 
Cause pattern identification: 

Cause entity == [Disease population] 

The word position is in the explanatory paragraph and core paragraph  

Cause is words that have confidence (association) = 0.2 from the ratio of all words (in the 

form of [noun] + [noun]). 

Words positions there is in the explanatory paragraph and core paragraph. 

 

Effect pattern identification 

effect entity = [words has a negative meaning]  

effect entity = words has a negative meaning + nominal + medical element [sum of events] 

effect entity = words has a negative meaning + medical meaning [facilities] 

effect entity = words has a negative meaning and confidence value (association) = 0.2 

Words positions there is in the explanatory paragraph and core paragraph. 

 

Machine learning-based are used when conducting annotation classification of medical elements and 

paragraph annotations. The following is a statistical pseudo code: 

 
Pseudo code word-based statistical connectivity 
Training data 

Insert two sentences that have a relationship and each other’s has a class 

classification results 

1. sentences A = [cause] 

2. sentences B = [facility] 

3. sentences C = [effect] 

4. sentences D = [sum of event] 

5. sentences E = [responsible person] 

6. sentences F = [population disease] 

7. sentences G = [effect] 

8. sentences A and sentences G = [causal] 
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Pseudo code word-based statistical connectivity 
 

Getting words connectivity by several techniques 

Technique A 

Using paragraph classes  

Explanatory paragraph – core paragraph  

Explanatory paragraph – supporting paragraph 

Core paragraph – explanatory paragraph  

Finding a derivative word or meaning of the same words that often appear 

The word is repeated at the end of the sentence  

Technique B 

Medical element of entity = words has confidence value (association) = 0.2 

 
The technique used in the current research is to build new knowledge by combining rule-based and 

statistical-based dependency relations to display summaries of important information aided by the formation 

of new knowledge patterns as shown in Table 5.  
 
 

Table 5. Knowledge discovery 
Rule Pattern 
R1 Di [LOKASI] bagian dari [LOKASI] 

Knowledge pattern in English: 

At [LOCATION] part of [LOCATION] 

R2 Terdapat kejadian sejumlah [JUMLAH KEJADIAN] dari [POPULASI PENYAKIT] 

Knowledge pattern in English: 

Sum of events [SUM OF EVENTS] from [DISEASE POPULATION] 

R3 Mengakibatkan [AKIBAT] 

Knowledge pattern in English: 

Result in [EFFECT] 

R4 [AKIBAT] tersebut dikarenakan [SEBAB] dan terjangkit [POPULASI PENYAKIT] 

Knowledge pattern in English: 

[EFFECT] because of [CAUSE] and infected [DISEASE POPULATION] 

R5 Menurut [PENANGGUNG JAWAB] dari [LOKASI], penanganannya dengan cara [PEMULIHAN] 

yang diberikan oleh [FASILITAS] 

Knowledge pattern in English: 

By [RESPONSIBLE PERSON] from [LOCATION], handling by means [RECOVERY] given by 

[FACILITIES] 

R6 Di [LOKASI] bagian dari [LOKASI] 

Knowledge pattern in English: 

At [LOCATION] part of [LOCATION] 

R7 Terdapat kejadian sejumlah [JUMLAH KEJADIAN] dari [POPULASI PENYAKIT] 

Knowledge pattern in English: 

Sum of events [ SUM OF EVENTS] from [DISEASE POPULATION] 

R8 Mengakibatkan [AKIBAT] di bagian [GEJALA] yang merupakan bagian dari [GEJALA] 

Knowledge pattern in English: 

Result in [EFFECT] in the [SYMPTOM] which is part of [SYMPTOM] 

R9 [AKIBAT] tersebut dikarenakan [SEBAB] dan terjangkit [POPULASI PENYAKIT] 

Knowledge pattern in English: 

[EFFECT] because of [CAUSE] and infected [DISEASE POPULATION] 

R10 Menurut [PENANGGUNG JAWAB] dari [LOKASI], penanganannya dengan cara [PEMULIHAN] 

yang diberikan oleh [FASILITAS] 

Knowledge pattern in English: 

By [RESPONSIBLE PERSON] from [LOCATION], handling by means [RECOVERY] given by 

[FACILITIES] 

R11 Obat yang dikonsumsi [OBAT] karena didiagnosa yang diberikan ahli adalah 

[DIAGNOSA] 

Knowledge pattern in English: 

Medicine consumed [DRUG] because being diagnosed by an expert is [DIAGNOSIS] 

 
 

The output from the mapping of new knowledge formation patterns with the results of 

the classification of paragraph annotations in summary form looks like the following. In this research take an 

example of data testing using online articles [26]: 

 
Di <Desa Sigedong Kabupaten Temanggung> terdapat seorang meninggal dunia karena 

Diare. Sebagai penanggulangannya Dinkes Temanggung telah mendirikan Posko dan 

melakukan sosialisasi untuk menerapkan hidup bersih dan sehat. 

In English: 

In Sigedong Village, Temanggung Regency, one person died of Diarrhea. As a response, 

the Temanggung Health Office has established a Command Post and conducted 

socialization to implement a clean and healthy life. 
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The testing scenarios carried out for the stages of dependency relations are more focused on 

extrinsic evaluation which is divided into two categories, namely in Table 6 which is used for testing based 

on the suitability of the summary results, appropriate summary outputs, and inappropriate outputs. Remarks 

for Table 6: (a) summary by an expert; (b) summary by the system; (c) the appropriate output (d) the output 

is not appropriate. Based on Table 6 seen in point (a), an expert determines the output that should be 

generated by the system, then in point (b) is the output generated by the system using a combination of 

summary features + annotations of medical elements + phrase tagging + opinion analysis. In point (c) is  
a comparison between the output determined by an expert, with the output produced by the system. Pattern  

(d) is a non-matching comparison of output between points (a) and points (b). The results of the average 

success of the system to produce output in accordance with an expert's decision are 0.857. Figure 5 is  

a comparison of the performance output produced by the system with a decision previously made by an 

expert. The results obtained on the system are said to be good when approaching the value of '1', meaning 

that the output on the system has a degree of similarity to the decisions made by an expert. 

Meanwhile, Table 7 is used for evaluating an expert's evaluation of the outputs generated from  

the system integration semantic template method with a health surveillance system. Based on Table 7  

the results obtained from extrinsic evaluation are 0.720 with the decision to agree. The assessment given by 

an expert into a system between 0-100. The decision agreed to illustrate that the summary method + 

annotation of medical elements + phrase tagging + opinion analysis, the system is able to produce results that 

resemble the way an expert does inference. 
 

 

Table 6. Testing annotation fitness 

# 
E1 E2 E3 E4 E5 

a b c d a b c d a b c d a b c d a b c d 

1 6 13 5 1 8 13 8 0 7 13 6 1 5 13 5 0 9 13 9 0 

2 7 7 4 3 6 7 4 2 7 7 4 3 6 7 5 1 7 7 7 0 

3 9 21 8 1 11 21 10 1 11 21 8 3 12 21 12 0 11 21 10 1 

4 6 11 6 0 8 11 7 1 7 11 6 1 9 11 9 0 7 11 7 0 

5 6 14 6 0 8 14 7 1 5 14 4 1 10 14 10 0 8 14 8 0 

6 5 11 5 0 6 11 6 0 7 11 6 1 8 11 5 3 7 11 7 0 

7 11 8 8 3 8 8 8 0 8 8 5 3 11 8 8 3 8 8 8 0 

8 4 5 3 1 4 5 2 2 5 5 4 1 4 5 3 1 4 5 4 0 

9 9 10 7 2 8 10 6 2 9 10 8 1 9 10 7 2 9 10 8 1 

10 5 7 4 1 6 7 5 1 6 7 6 0 5 7 4 1 5 7 4 1 

 
 

 
 

Figure 5. Comparison of system performance output with decisions of an expert on a system 
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Table 7. Assessment of an expert assessment 
Testing E1 E2 E3 E4 E5 

1 0.80 0.70 0.70 0.80 0.70 

2 0.80 0.70 0.80 0.80 0.80 

3 0.70 0.80 0.80 0.70 0.70 

4 0.70 0.80 0.80 0.70 0.80 

5 0.80 0.80 0.80 0.70 0.70 

6 0.70 0.70 0.80 0.70 0.70 

7 0.70 0.70 0.70 0.70 0.70 

8 0.80 0.80 0.80 0.80 0.70 

9 0.80 0.80 0.80 0.80 0.80 

10 0.70 0.80 0.80 0.80 0.80 

 

 

4. CONCLUSION 

Generated semantic template method that has been successfully implemented on health domain is 
public health surveillance system. During implementation, there are several proposals have been generated, 

i.e. natural language transformation into medical element annotation (LPpAJSFPePnGOD) to identify causal 

relationship pattern, paragraph annotation pattern to classify sentence position on medical article paragraph 

and build a semantic relationship pattern for semantic annotation. 
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