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 In this paper, We propose a new nonlinear conjugate gradient method (FRA) 
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1. INTRODUCTION 

The optimization problem finds application in several fields, such as pure mathematics, 

mathematical and computational physics, mathematical physics, fluid dynamics, an traffic routing in 

telecommunication systems [1], cyber-physical security [2], intelligent transportation systems [3], and smart 

grids [4]. The conjugate gradient method is an effective one for solving large-scale unconstrained 

optimization problems because it need not the storage of any matrices. Well-known conjugate gradient 

methods are [5-9]. Global convergence properties of these methods have been studied [9-12].  

In this paper, we consider the following unconstrained optimization problem: 

 

(𝑝): 𝑚𝑖𝑛{𝑓(𝑥)}: 𝑥𝜖Ṟ𝑛 (1) 

 

where 𝑓 smooth and its gradient ∇𝑓(𝑥𝑘) is available 

 

 𝑥𝑘+1 = 𝑥𝑘 + 𝑡𝑘𝑑𝑘   , 𝑡𝑘 >  0    𝑘   0;  1;  2;  3  (2) 

 

https://creativecommons.org/licenses/by-sa/4.0/
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where  𝑡𝑘 a positive step size along the search direction obtained by line search. 𝑥𝑘 is the current iterative 

point and 𝑑𝑘  is search direction has the form 

 

By  𝑑𝑘 = {
−𝑔𝑘                    𝑖𝑓  𝑘 = 1
−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1   𝑖𝑓 𝑘 ≥ 2

 (3) 

 

where 𝛽𝑘a parameter characterizes the CG method and 𝑔𝑘 denotes ∇𝑓(𝑥𝑘); 

The main difference among CG methods is in the formulas of computing their parameters. Some of 

the well known CG methods are reviewed in [13]. A very famous formula for computing 𝑔𝑘 is proposed by 

Fletcher and Reeves (FR) [5] as following 

 

𝐵𝑘
𝐹𝑅 =

‖𝑔𝑘‖2

‖𝑔𝑘−1‖2 Fletcher Reeves [5] (4) 

 

𝐵𝑘
𝑃𝑅𝑃 =

𝑔𝑘
𝑇(𝑔𝑘−𝑔𝑘−1)

‖𝑔𝑘−1‖2 Polak − Ribière − Polyak [6] (5) 

 

𝐵𝑘
𝐷𝑌 =

𝑔𝑘
𝑇𝑔𝑘

((𝑔𝑘−𝑔𝑘−1)𝑇𝑑𝑘−1
Dai − Yuan [9], (6) 

 

𝐵𝑘
𝑊𝑌𝐿 =

𝑔𝑘
𝑇𝑔𝑘−

‖𝑔𝑘‖

‖𝑔𝑘−1‖
𝑔𝑘−1

𝑔𝑘−1
𝑇𝑔𝑘−1

Wei 𝑒𝑡 𝑎𝑙. [10], (7) 

 

where ‖. ‖ Denotes the Euclidean norm. This formula is usually considered the .rst nonlinear CG parameter [14]. 

Having the direction𝑑𝑘, the ideal choice for the steplength 𝑡𝑘would be the global minimizer of, conditions 

that require 𝑡𝑘satisfying. In order to find the step length (𝛼𝑘), we use strong wolf powell (SWP) line search, 

 

𝑓(𝑥𝑘 + 𝑡𝑘𝑑𝑘) ≤   𝑓(𝑥𝑘) +  𝛿𝑡𝑘𝑔𝑘
𝑇𝑑𝑘      (8) 

 

|∇𝑓(𝑥𝑘 + 𝑡𝑘𝑑𝑘)𝑇 . 𝑑𝑘| ≤ −𝜎𝑔𝑘
𝑇𝑑𝑘      (9) 

 

where (0 < 𝛿 <
1

2
) and (0 < 𝜎 < 1) 

Strong Wolfe conditions used for establishing the global convergence in [9, 12], and [14-17]. The 

pioneer works about the global convergence of FR method with inexact line search was proposed by Al-Baali 

[18]. He proved that the FR method satisfied the sufficient descent directions and globally convergent under 

the (SWP) conditions with 0𝛿𝜎
1

2
, in [9, 19]. This result was extended to 𝜎 =

1

2
. It is shown that FR 

method with the (SWP) line search may not be a descent direction for the case that 𝜎 >
1

2
. For the 𝐵𝑘

𝐹𝑅, 

neither Armijo nor Wolfe line search, guarantee that the condition suffucient descent. In 2006 [20], Nocedal, 

J. and Wright, S. (2006) [21-23]. The paper is organized as follows, in section 2. We introduce the new 

algorithm for 𝐵𝑘 in section3, we analyze the global convergence property of the new method. Finally, 

numerical results and conclusion in sections 4 and 5. 
 

 

2. NEW ALGORITHM OF FRA 

We propose a new 𝐵𝐾 for the CG method. The sequence of iteration 𝑥𝑘 in the new method is 

obtained from (2) for which the direction d_k is computed by (3). While the parameter 𝐵𝑘 parameter Bk in 

the new method is; 

 

𝐵𝑘
𝐹𝑅𝐴  = 𝜆

‖𝑔𝑘
𝑇‖

2

‖𝑔𝑘−1
𝑇 ‖

2 𝜆 ∈ (0; 1) (10) 

 

where FRA designed the new modified method by Ahmed Chergui. 

Note that, for the direction 𝑑𝑘 defined by (3), withthe CG parameter computed by (10), we have, 
 

𝑔𝑘
𝑇𝑑𝑘 = −‖𝑔𝑘‖2+𝜆

‖𝑔𝑘
𝑇‖

2

‖𝑔𝑘−1
𝑇 ‖

2 𝑑𝑘−1
𝑇 𝑔𝑘 (11) 
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By the Cauchy-Schwarz inequality, it can be concluded that, 

 

𝑔𝑘
𝑇𝑑𝑘 ≤ −‖𝑔𝑘‖2 + 𝜆‖𝑔𝑘‖2 = (−1 + 𝜆)‖𝑔𝑘‖2 < 0 (12) 

 

So, the new direction 𝑑𝑘 is satisfied.  

In the new CG method, the step 𝑡𝑘 is determined by the (SWP). To this aim, we use a backtracking 

approach to compute the steplength. Now we are ready to propose the algorithm of the new CG method (10)  

 

Algorithm 1 
Step 1: Given 𝑥0 ∈ 𝑅𝑛set k =  1.   𝜀 ∈ (0, 1)set 𝑑0 = −𝑔0 = −∇𝑓(𝑥0) 

Step 2: Compute 𝐵𝑘 by (10), (4), (5), (6); (7) 

Step 3: Compute 𝑑𝑘 by (3); if ‖𝑔𝑘‖ = 0, then stop. 

Step 4: Calculate step length 𝑡𝑘 by (8) and (9) line search,𝜎 = 0.1, 𝛿 = 0.01 
Step 5: Let  𝑥𝑘+1 = 𝑥𝑘 + 𝑡𝑘𝑑𝑘  .  

Step 6: if 𝑓(𝑥𝑘) < 𝑓(𝑥𝑘−1) and‖∇𝑓(𝑥𝑘)‖ < 𝜖, then stop,  
Otherwise Set    𝑘 = 𝑘 + 1 go to step 2 

 

 

3. THE GLOBAL CONVERGENCE PROPRIETES 

In this section, we analyze the convergence of FRA method. To this aim, we made the following 

assumption: 

Assumption 1  

(H1)  The objective function  𝑓  is bounded below on the level set 𝑅𝑛 and is continuous and differentiable in 

neighborhood  𝑉 of the level set 𝛺 = {𝑥 ∈ 𝑅𝑛;  𝑓(𝑥) < 𝑓(𝑥0)}  

(H2)  The gradient 𝑔𝑘 is Lipschitz continuous in 𝑉, so a constant M ≥ 0 exists, such that  

 

‖𝑔(𝑥) − 𝑔(𝑦)‖ ≤ 𝑀‖𝑥 − 𝑦‖ 𝐹𝑜𝑟 𝑎𝑙𝑙𝑥, 𝑦 ∈ 𝑉 (13) 

 

The following lemma provides a lower bound for the steplength𝑡𝑘 (generated by Algorithm 1). The 

result of this lemma will be needed in the rest of this section. 

 

3.1.  Sufficient descent condition 

Theorem 1: suppose that the sequence {𝑔𝑘} and {𝑑𝑘} are generated by (2) (3) and FRA .the step length 𝑡𝑘, is 

determined by inexact line search (9) and (10) if 𝑔𝑘 ‡ 0, then 𝑑𝑘 possesses the sufficient descent condition: 

 𝑔𝑘
𝑇𝑑𝑘 ≤ − 𝐶‖𝑔𝑘‖2 

Proof: By the formula (10), we have the following: 𝐵𝑘
𝐹𝑅𝐴 = 𝜆

‖𝑔𝑘‖2

‖𝑔𝑘−1‖2 ≥ 0 

 

Hence we obtain 0 ≤ 𝐵𝑘
𝐹𝑅𝐴 ≤

‖𝑔𝑘‖2

‖𝑔𝑘−1‖2 (14) 

 

Using (9) and (14), we get, 

 

|𝐵𝑘
𝐹𝑅𝐴𝑔𝑘

𝑇 . 𝑑𝑘−1| ≤ 𝜎
‖𝑔𝑘‖2

‖𝑔𝑘−1‖2
|𝑔𝑘

𝑇 . 𝑑𝑘−1| (15) 

 

By (3), we have 𝑑𝑘 = −𝑔𝑘 + 𝛽𝑘𝑑𝑘−1    

 
𝑔𝑘

𝑇.𝑑𝑘

‖𝑔𝑘‖2 = −1 + 𝐵𝑘
𝐹𝑅𝐴 𝑔𝑘

𝑇𝑑𝑘−1   

‖𝑔𝑘‖2  (16) 

 

we have 𝑔0
𝑇𝑑0 ≤ −‖𝑔0‖2 < 0 

If 𝑔0 ‡ 0; suppose that di; i = 1, 2,…, k; are all descente directions, that is 𝑔𝑘
𝑇𝑑𝑘 < 0 

By (16); we get; 
 

|𝐵𝑘
𝐹𝑅𝐴𝑔𝑘

𝑇 . 𝑑𝑘−1| ≤ −𝜎
‖𝑔𝑘‖2

‖𝑔𝑘−1‖2 𝑔𝑘
𝑇 . 𝑑𝑘−1 (17) 

 

That is; 
 

𝜎
‖𝑔𝑘‖2

‖𝑔𝑘−1‖2 𝑔𝑘
𝑇 . 𝑑𝑘−1 ≤ 𝐵𝑘

𝐹𝑅𝐴𝑔𝑘
𝑇 . 𝑑𝑘−1 ≤ −𝜎

‖𝑔𝑘‖2

‖𝑔𝑘−1‖2 𝑔𝑘
𝑇 . 𝑑𝑘−1  (18) 
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As shown in (17) and (18) deduce −1 + 𝜎
𝑔𝑘−1

𝑇 .𝑑𝑘−1

‖𝑔𝑘−1‖2 ≤
𝑔𝑘

𝑇.𝑑𝑘

‖𝑔𝑘‖2 ≤ −1 − 𝜎
𝑔𝑘−1

𝑇 .𝑑𝑘−1

‖𝑔𝑘−1‖2  

By repeating this process and the fact 𝑔0
𝑇𝑑0 = −‖𝑔0‖2, we have 

 

− ∑ (𝜎)𝑖 ≤𝑘−1
𝑖=0

𝑔𝑘
𝑇𝑑𝑘

‖𝑔𝑘‖2 ≤ −2 + ∑ (𝜎)𝑖𝑘−1
𝑖=0  (19) 

 

As shown in (19). Can be written as; 

 

−
1

1−𝜎
≤

𝑔𝑘
𝑇𝑑𝑘

‖𝑔𝑘‖2 ≤ −2 +
1

1− 𝜎
 (20) 

 

By making the restriction 𝜎 ∈ (0, 0.1) we have 𝑔𝑘
𝑇𝑑𝑘 < 0 . 

Now, we prove the sufficient descent condition of 𝑑𝑘 if 𝜎 ∈ (0, 1) 

Set 𝑐 = −2 +
1

1−𝜎
 then 0 < 𝑐 < 1, and (17) turns out to be; 

 

𝑐 − 2 ≤
𝑔𝑘

𝑇𝑑𝑘

‖𝑔𝑘‖2 ≤ −𝑐 (21) 

 

Thus we obtain  𝑔𝑘
𝑇𝑑𝑘 ≤ −𝐶‖𝑔𝑘‖2  Or C=−2 +

1

1−𝜎
 . 

 

3.2.  Convergent analysis 

Lemma 1 Let the step length 𝑡𝑘 is generated by Algorithm 1. Then, under the assumptions H1 and 

H2, there is a positive constant C such that, 

 

𝑡𝑘 ≥ 𝐶
‖𝑔𝑘‖2

‖𝑑𝑘‖2 (22) 

 

Proof: Subtracting 𝑔𝑘
𝑇𝑑𝑘 from both sides of (10) and using (19) we have 

 

−(1 − 𝜎 )𝑔𝑘
𝑇𝑑𝑘 ≤ (𝑔𝑘+1 − 𝑔𝑘)𝑇 ≤ 𝑀𝑡𝑘‖𝑑𝑘‖2 (23) 

 

therefore; 

 

𝑡𝑘 ≥ −
(1−𝜎)

𝑀

𝑔𝑘
𝑇𝑑𝑘

‖𝑑𝑘‖2 (24) 

 

with (10) we obtain: 

 

𝑡𝑘 ≥ −
(1−𝜎)

𝑀

‖𝑔𝑘‖2

‖𝑑𝑘‖2 (25) 

 

This inequality means that (25) satisfies with C= −
(1−𝜎)

𝑀
 , the proof is completed. The next lemma 

is known as Zoutendijk condition [24]. 

Lemma 2: Suppose assumption 1 hold and 𝑑𝑘 is generated by Algorithm 1, 

then; 

 

∑
‖𝑔𝑘‖4

‖𝑑𝑘‖2
∞
𝑛=0 < ∞ (26) 

 

Proof: From (10) for any 𝑘 we have; 

 

𝑓(𝑥𝑘) − 𝑓(𝑥𝑘 + 𝑡𝑘𝑑𝑘) ≥ −𝛿𝑡𝑘𝑔𝑘
𝑇𝑑𝑘 ≥ −𝛿

(1−𝜎)

𝑀

(𝑔𝑘
𝑇𝑑𝑘)2

‖𝑑𝑘‖2  (27) 

 

Moreover, from the hypothesis (1), we have that {𝑓(𝑥𝑘)}is a decreasing sequence and has a limit in, which 

shows that lim
𝑘→∞

𝑓(𝑥𝑘+1) < +∞ and after (28) we have; 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Global convergence of new conjugate gradient method with inexact line search (Chergui Ahmed) 

1473 

+∞ > 𝑓(𝑥1) − lim
𝑘→∞

𝑓(𝑥𝑘+1) ≥ 𝛿
(1−𝜎)

𝑀
∑

(𝑔𝑘
𝑇𝑑𝑘)2

‖𝑑𝑘‖2  (28) 

 

Then ∑
(𝑔𝑘

𝑇𝑑𝑘)2

‖𝑑𝑘‖2 ≤ +∞, so, the proof is completed. 

Theorem 2: we assume that H1, H2 hold, and the sequence {𝑥𝑘} is generated by the Algorithm 1, 

then,  lim
𝑘→∞

‖∇𝑓(𝑥𝑘)‖ = 0 

 

 

4. NUMERICAL EXPERIMENT 

In this part, we report numerical experiments that indicate the efficiency of the new algorithm. To 

this aim, we implement the new algorithm (Algorithm 1), Fletcher and Reeves (FR) algorithm and the 

modified Fletcher and Reeves (FR), WYL [10], DY [9], PRP [6]. The numerical results are given in the 

different initial points. We considered 𝜀 = 10−6 , 𝜎 = 0.1, 𝛿 = 0.01, under inexact line search of (SWP). 

We used MATLAB R2010 the performance results are shown in Figures 1-5 and compare their results 

obtained from solving of 17 test problems from [25]. 

In our experiments the stopping tolerance for the algorithms is Also, a failure is reported when  
𝑁𝐼 > 20000  or when the step length 𝑡𝑘 become less than eps=10-6. We use we use the performance profiles 

in [26, 27]. The total number of iterations, the total number of function evaluations, and the running time of 

each algorithm number of function evaluations. It can be seen that the FRA is the best solver with probability 

around 80%, while the probability of solving a problem as the best solver is around 60%, 26%, 18% and 7% 

for the FR, PRP, WYL and the DAY respectively. The performance index in. Figure 2 is the total number of 

iterations. From this figure, we observe that the NEW method (FRA) obtains the most wins on approximately 

70% of all test problems an the probability of being best solver is 55%, 29%, 26% and 8% for the FR, PRP, 

WYL and the DAY respectively. 
 

 

 
 

Figure 1. Performance profiles based on the number of function evaluations 

 

 

 
 

Figure 2. Performance of the number of iterations 

 
 

Figure 3. Performance profiles for running times 
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The CPU time is illustrated in Figure 3. From this figure, it can be observed that the NEW is the best 

algorithm. Another important factor of these three figures is that the graph of the NEW algorithm grows up 

faster than the other algorithms. From the presented results, we can observe that the FRA method is best than 

the FR, PRP, WYL and the DAY methods. In solving unconstrained optimization problems. 
Example 1: Extended Rosenbrock function (𝑥1  , 𝑥2  , . . 𝑥𝑛  ) = ∑ [100(𝑥𝑖−1 − 𝑥 𝑖

2)2 + (𝑥𝑖 − 1)2]𝑛−1
𝑖 , 𝑛 = 2, 

𝑥 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = (1, 1) 
In Table 1, The FRA method was successful in all attempts to achieve the optimal solution, while 

the other methods failed. 

- Remark 1: Table 2, shows that “FRA” has the best results since it solves about 100% from the test 

problems. Figures 4 and 5 list the comparison of FR method and DY, WYL, PRP, FR methods x0 = [1 7] 

 

 

Table 1. Numerical results for FRA, FR, PRP, WYL and DYin terms ofnumber iterations (NI) and CPU time 

with the strong wolf condition 𝜀 = 10−6 ; 𝜎 = 0.1; 𝛿 = 0.01;   ʎ = 0.9 
Initial point FRA FR PRP WYL DY 

 NI/CPU NI/CPU NI/CPU NI/CPU NI/CPU 
(10000, 10000) 637/6.41 Failed Failed Failed Failed 

(100000, 100000) 934/5.74 Failed Failed Faled Failed 
(1000, 1000) 299/0.887 Failed Failed Failed Failed 

(-1, 3) 196/0.600 313/2.528 4.66/2.80 14532/78.11 170/2.266 

(100, 100) 161/1.68 4693/20.043 Failed Failed Failed 
(1, 3) 122/0.414 104//4.019 243/1.43 Failed 112//0.23 

(0, -9) 163/0.533 355/0.89 340/1.639 Failed Failed 

(1, 7) 67/0.533 230/2.541 737/5.739 4470/15.315 149/1.195 

 

 

Table 2. Comparing the results obtained in Table 1 
Méthod Ranking The success  rate 

FRA 1 100% 

FR 2 55% 
PRP 3 44% 

DY 4 33% 

WYL 5 22% 

 

 

 
 

Figure 4. Performance of the number  

of function evaluations 

 
 

Figure 5. Performance of the number o 

f gradient evaluations 

 

 

- Remark 2: From the Figures 4 and 5, The FRA method performs better than other methods by selecting a 

starting point with the Resenbrock function  𝑓(𝑥1  , 𝑥2  , . . 𝑥𝑛  ) = ∑ [100(𝑥𝑖−1 − 𝑥 𝑖
2)2 + (𝑥𝑖 − 1)2 ]𝑛−1

𝑖 ,

𝑛 = 2. And she is best performance in terms of values gradients and functions and the number of 

iterations 
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5. CONCLUSION 

in this paper, we have proposed a new CGmethod named FRA for solving a large-scale 

unconstrained optimization problem. We proved the global convergence of this method and sufficient descent 

condition under the inexact line search of (SWP) numerical experiment show that the new method FRA is 

more efficient than the others methods DAY, WYL, FR, and PRP. 
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