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 In this paper, a universal method has been developed to determine the price 

of a hydro resource (one cubic meter) for the operational regulation of a 

hydropower plant (HPP), which is a combination of an optimization method 

and a method for assessing the marginal utility. The proposed approach is 

based on the correct representation of differential incremental rate 

characteristics of water at an HPP and fuel at a thermal power plant (TPP). 

To know the price of a hydro resource used for electricity generation at a 

hydropower plant. This gives the possibility to increase the efficiency of 

management both at a hydropower plant, and in a water utilization system as 

a whole. Using the examples of Novosibirsk HPP, it is expected to develop 

an estimation of economic effect from the implementation of the developed 

criteria, the proposed method of the calculation of a hydro resource price at 

HPP, and the method of separating fuel costs at CHPP. As a result of the 

implementation the developed method for the HPP, a price of electricity sold 

in the flexible energy market will be compared to the price of the electricity 

produced and sold at CHPP, being equal to approximately 330 rubles/MW h. 
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1. INTRODUCTION 

In this paper, a universal method which is a combination of an optimization method and a method 

for assessing the marginal utility has been developed [1]. Using this method, it is reasonable to solve the 

problem of short-term operational optimization of load distribution in hydrothermal power systems. Consider 

in detail the novelty and the efficiency of the proposed method in comparison with the existing approach [2]. 

At present, the problem of optimal distribution of the power system load between hydropower plant 

(HPP) and thermal power plant (TPP) is solved using the equality of the differential incremental rate 

characteristics of fuel consumption at TPP and water consumption at HPP. Even in the USSR, such 

characteristics were called the incremental rate characteristics [3]. It can be said that the problem of 

evaluating the price of a hydro resource associated with the operating conditions of an HPP in the power 

system has never been solved [4]. This issue will be focused on in the further presentation of the 

investigation. 

Despite the fact that this task is related to the short-term optimization of operating conditions of 

power plants in the power system due to the limited energy resources at the HPP, it cannot be solved 

separately from the optimization of the long-term operating conditions of the power system [5]. In this paper, 

https://creativecommons.org/licenses/by-sa/4.0/
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the short-term optimization implies daily optimization, while the long-term optimization means water-power 

operating conditions of the HPP throughout the year taking into account the seasonal operating conditions of 

the HPP [6]. 

 

 

2. THE MATHIMATICAL MODEL OF POWER PLANTS MANAGEMENT 

In general, the criterion for the optimal load distribution in the power system without taking into 

account the technical constraint is as (1) [7]. 

 

𝑏1 = 𝑏2 = ⋯ = 𝑏𝑛 =  𝜆𝑞 = 𝑖𝑑𝑒𝑚 (1) 

 

where b1, b2,…, bn–incremental fuel rate characteristics at TPP (n is the number of TPP in the power system): 

q: incremental water rate characteristics at the HPP; 

λ: conversion factor, the meaning of which will be considered. 

It should be noted that TPPs are presented in optimization tasks as generating sources with 

“unlimited energy resources” [8]. This implies that any power of a power plant within the permissible range 

of its operation at a given moment will be provided with a reserve of energy resource, regardless of the power 

value carried by the power plant at the previous moment. This gives the reason for combining all thermal 

power plants into one equivalent TPP, taking into account all the technical constraints [9]. 

Hydropower plants belong to generating sources with “limited energy resources”, since their amount 

is determined by the hydrograph of the river and the final useful capacity of the reservoir. This suggests that 

the HPP power at a given moment depends on the power, with which the HPP operated in the previous time 

interval [10]. Therefore, the hydropower plants cannot be equivalent, since each of them is unique with the 

above-considered conditions. 

Differential incremental rate characteristics of HPP and TPP have different dimensions, namely: 

 

𝑏 =
𝑑𝐵

𝑑𝑁
 (2) 

 

𝑞 =
𝑑𝑄

𝑑𝑁
 (3) 

 

where B–fuel consumption rate (ton of coal equivalent/hour), Q–water consumption rate (m3/second). 

Therefore, the coefficient λ in (1) represents a conversion factor being called a measure of the 

effective use of hydro resources in the power system [11]. Therefore, it is necessary to experimentally select 

the value of λ taking into account the limited hydro resources at the HPP. In this case, the number of 

iterations can be five or more until condition (4) is fulfilled [12]. These circumstances lead to a serious 

complication of calculations associated primarily with an increase in the number of iterative procedures, 

solution time, and the convergence of this process.  

Based on the considerations, the condition of optimal load distribution in a hydrothermal power 

generation system can be presented in (4) [13]. 

 

𝑏 = 𝜆𝑞 = 𝑖𝑑𝑒𝑚  (4) 

QHPP = QGIV, 

H = const, 

РS = NTPP+NHPP, 

NTPP min ≤ NTPP ≤ NTPP max, 

NHPP min ≤ NTPP ≤ NHPP max, 

λ = const 

 

where b and q–incremental rate characteristics for water and fuel at the equivalent TPP and the HPP 

respectively; РS, NTPP, NHPP–power system load, values of power served by the equivalent TPP and the HPP 

respectively; NTPP min, NTPP max, NHPP min, NHPP max–minimum and maximum power for the equivalent TPP and 

the HPP respectively: QGIV–permissible water flow rate at the HPP determined by water-power calculations; 

λ–the dimension conversion factor. The condition H=const should be considered separately. 

 At high-head HPPs and the HPP cascade, the downstream changes (in other words, the head 

changes) is about 1%, since in this case the error for the head fluctuations is approximately 1%, then it can be 

neglected. In the cascade of HPPs, the downstream of one station is the upstream of the other. As is known, 

the upstream changes to a lesser extent when 1 m3/s of water flows from the upstream to the downstream, 

since the surface of the upstream is much larger than the downstream [14].  
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At medium-head and low-head HPPs, head fluctuations are more significant than at high-head 

HPPs. However, the head at any HPP changes insignificantly during 24 hours. Therefore, when deriving 

optimization criteria, most often, the head changes during 24 hours (under operational control) is not taken 

into account. The proposed approach is based, first of all, on the correct representation of the differential 

characteristics (2) and (3). Indeed, these characteristics should be derivatives not from the consumption of 

energy resources, but from the costs of their use: 

 

UВ=PВ *В (5) 

 

UQ=PQ *Q (6) 

 

where PB and PQ–the price of fuel at thermal power plants and the price of hydro resource at hydropower 

plants respectively. Then, expressions (2) and (3) will be calculated in (7) and (8). 

 

dN

dB
сb *  (7) 

 

dN

dQ
cq *  (8) 

 

As for the price of fuel at thermal power plants PB, there are no fundamental difficulties with its 

calculation. Even in the case of an equivalent thermal power plant, it can be calculated (with some 

assumptions) as a weighted average price. It can be said that the problem of evaluating the price of a hydro 

resource associated with the operating conditions of an HPP in the power system has never been solved. It is 

this issue that will be focused on in the further presentation of the paper. 

Despite the fact that this task is related to the short-term optimization of operating conditions of 

power plants in the power system due to the limited energy resources at the HPP, it cannot be solved 

separately from the optimization of the long-term operating conditions of the power system. In this paper, the 

short-term optimization implies daily optimization, while the long-term optimization means water-power 

operating conditions of the HPP throughout the year taking into account the seasonal operating conditions of 

the HPP. Therefore, the condition of optimal load distribution in a hydrothermal power system can be 

presented in the new formulation as (9). 

 

* *b q idem   (9) 

H = const, 

РS = NTPP+NHPP, 

NTPP min ≤ NTPP ≤ NTPP max, 

NHPP min ≤ NTPP ≤ NHPP max 

 

The fundamental differences between the new optimization condition (9) and the previous one (4) 

are obvious. Consider them in more detail. Here b* and q* are determined from (7) and (8) being derivatives 

of the costs associated with the use of energy resources at TPP and HPP, respectively.  

There is also no verification in the condition for the requirement that the average daily water flow 

rate at the HPP is equal to the given flow rate obtained from the water-power calculations in the annual 

context. This is due to the fact that when plotting incremental rate characteristics for the HPP (q*), the power 

is considered, with which the HPP will operate in a given period of the year [15]. This means that the flow 

rate and water head were taken into account. Therefore, the verification for the equality of the average daily 

water flow rate at the HPP to the given flow rate is redundant. Then, the iterative nature of calculations 

mentioned above disappears that is the main advantage of the proposed approach. In addition, there is no 

verification for λ=const, because the differential characteristics of the costs for the use of energy resources at 

TPP (fuel) and HPP (water) have the same dimension in monetary terms. 

This makes it possible to use more understandable and correct optimization criteria for optimal load 

distribution in a hydrothermal power generation system. Moreover, knowledge of the cost of water resources 

that are used to generate electricity at a hydroelectric power station is in itself valuable and informative. It 

gives the possibility to increase the efficiency of management both at the hydropower plant, and in the water 

utilization system as a whole. 
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3. DEVELOPMENT OF THE METHOD TO CALCULATE A HYDRO RESOURCE PRICE FOR 

OPERTONAL CONTROL OF THE HPP  

Up-to-day level of technological development requires to combine three aspects of optimization: 

thermodynamic, technical-economic and environmental-into one system [16]. Hydro resources play a very 

important role in saving primary energy and material resources at the input of the technical system. In the 

long run they reduce harmful impacts on humans and environment as a whole. 

To convert a hydro resource price in [rubles/(m3/s)] with the consideration of the HPP operational 

features to the price of 1 kW in [rubles/MW h], the profit maximization criterion MR=MC was applied [17]. 

It is necessary to determine the marginal costs at the HPP for power output, or, in other words, to form the 

proportion. 𝑈𝑞 =
𝑈𝑏

𝑡𝑔𝑎⁄  The incremental rate of fuel at the TPP (b) and water (q) at the HPP are considered 

as products. 

If utility as a whole is not quantifiable, the same can be related to marginal utility. But the theory of 

value does not need any precise definition of marginal utility [18]. If it needs something, then only the 

following: when a system of needs for an individual is known and he owns a specified set of goods X, Y, Z, 

we can find out his marginal rate of substitution between any two goods. The marginal rate of substitution of 

a certain good Y for any other good X is defined as the amount of Y that can compensate an individual for 

the loss of the marginal unit of X. Therefore, there should be some value that would leave it in the same state, 

in which it was before substitution. Obviously, this marginal rate of substitution is nothing more than the 

exchange ratio of utility for X to marginal utility for Y. This ratio is called relative marginal utility [19].  

If the quantities of X and Y are plotted on the indifference diagram (assuming the quantities of all 

other goods to be given), the marginal rate of substitution between X and Y will be measured by the slope of 

the indifference curve that passes through the point, at which the individual is located. It simply depends on a 

system of indifference curves [20]. Using the given indifference map, we can directly determine the slope at 

any point. If the slopes are given at all points within the area, we can develop the indifference map for that 

area. If an individual intends to be in equilibrium with respect to the system of market prices, his marginal 

rate of substitution between some two goods should be equal to the ratio of their prices, otherwise he could 

undoubtedly benefit by replacing a certain amount of one good with an equal value (at market rate) of the 

other good [21]. This is the framework into which the law of proportionality between marginal utilities and 

prices fits. 

Marginal utility can be represented by the indifference line. Moreover, according to the rules for 

constructing the line, see in Figure 1 [22]. In this case, according to the rules for plotting indifference curves, 

it is necessary to derive reciprocals of b and q, i.e. 1/b and 1/q, and put them on X-axis and Y-axis, after that 

connecting this point by a line as shown in Figure 1. 

 

 

 
 

Figure 1. The indifference curve 

 

 

Such curves should be plotted as many as the power system operating conditions will dominate 

during optimization. Typically, this is the number of months in a year that represents the full range of 

operating conditions within seasons and a year. Thus, we obtain the condition: 

 
1

𝑏
=

1

𝑞
 at U=const (10) 

 

where U is the location of an individual (in our case, an electricity consumer) on the indifference curve. 
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From the power industry perspective, the producer will maximize profits by producing output at the 

point where marginal revenue equals marginal cost [23]. A graphic illustration of this condition is shown in 

Figure 2. 
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Figure 2. Calculation of the optimal volume of production: here D is the demand for energy produced for 

each season of the year; E opt-the optimal output for each season of the year; R opt is the stated price for the 

optimal volume of electricity production 

 

 

The algorithm for solving the problem is shown in Figure 3. Moreover, it should be noted that it is 

necessary to convert physical quantities 1/q [s*kW/m3] and 1/b [kW*h/ton of coal equivalent] into relative 

units, since this will allow comparing the indifference curve represented in relative units and the incremental 

rate characteristics for water at the HPP (q) and fuel at the CHPP (b) in one diagram as shown in Figure 4. 

When plotting the incremental rate characteristics for water at the HPP and fuel at the CHPP, the current 

values of incremental rates were divided by the average incremental rate. From the power industry 

perspective, the manufacturer will maximize profits by producing output at the point where marginal revenue 

equals marginal cost, see Figure 5 [24]. A graphic illustration of this condition is shown in Figure 6 of water 

and fuel, respectively. 

 

 

 
 

Figure 3. Block diagram of operational control on a flexible market 
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Figure 4. Incremental rate characteristics for water at the HPP and fuel at the CHPP combined with the 

indifference curve 

 

 

 
 

Figure 5. Marginal cost indifference line: where Uq–marginal costs at an HPP, Ub–marginal costs at a CHPP, 

b–incremental fuel rate at a CHPP, q–incremental water rate at a HPP, wp–hydro source price for operation 

control of the HPP 

 

 

 
 

Figure 6. The indifference curve and the incremental rate characteristics for water at the HPP and fuel at the 

CHPP in the high-water period 

 

 

Combining three curves in one diagram (i.e. the indifference curve and the incremental rate 

characteristics for water at the HPP and fuel at the CHPP), we obtain a new rule for the transition from the 

incremental water rate to the incremental fuel rate without using conversion factor λ [25]. Figure 4 show the 

value of the incremental water rate at the HPP q’ locating on the indifference curve, will be equal to the 
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corresponding value of the incremental fuel rate at the TPP locating on the same curve, since water and fuel 

in this case will have the same importance to the consumer. Moreover, in order to obtain the corresponding 

power value for a particular hour according to the daily load schedule, it is necessary to shift the indifference 

curve in parallel to itself. 

At the same time, for the transition from a hydro resource price in [rubles/(m3/s)] with the 

consideration of the HPP operational features to the price of 1 kW in [rubles/MW∙h], the profit maximization 

criterion MR=MC was applied. To convert water price into [rubles/MW∙h], it is necessary to determine the 

marginal costs at the HPP for power output, or, in other words, to form the proportion 𝑈𝑞 =
𝑈𝑏

𝑡𝑔𝑎⁄ . 

As products, the incremental rate of fuel at the TPP (b) and water (q) at the HPP are considered. The 

indifference curve in relative units for the high-water period is illustrated in Figure 7. According to the 

developed methodology, it is necessary to plot the incremental water rate characteristics for a given structure of 

operating equipment at the HPP for each optimization interval, which is a month or a decade for the period of 

filling the HPP reservoir [26]. To verify the operability of the proposed model, the simplified HPP operating 

modes were used, in particular, seasonal periods of the year is shown in Figure 8. 

Taking into account the price of hydro source obtained using the proposed model, it is necessary to plot 

the marginal costs characteristics for water flow rate at the HPP, and then calculate the optimal amount of 

electricity generation at the HPP is shown in Figure 9. For the head of H=14.05 m the optimal amount of 

electricity generation at the Novosibirsk HPP was calculated using the developed criterion is shown in  

Figure 10. 

 

 

 
 

Figure 7. The indifference curve for the relative units for the high-water period 

 

 

 
 

Figure 8. Incremental water rate characteristic for the Novosibirsk HPP for H=14.05 m 
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Figure 9. Marginal costs characteristics for the Novosibirsk HPP for H =14/05 m 

 

 

 
 

Figure 10. The schedule of operating modes optimization at HPP for H=14.05 

 

 

The results of calculations are given in Table 1. The data obtained as a result of calculations 

correspond to the real values. To verify the developed methodology, it is necessary to compare the found 

values of the average daily water flow rate, which are obtained after the distribution of the daily load of the 

generation company between the HPP and the equivalent TPP according to the developed methodology, with 

the specified guaranteed value of the water flow rate at the HPP. 

The calculation results showed that the comparison of the average daily water flow rate obtained by 

the developed methodology with the specified guaranteed water flow rate for each period gave an error of 

about 5% for the high-water period, 4% for the low-water period, and 1% for operation with natural river 

flow, being amounted to 2034.097 m3/s for the high-water period, 241.98 m3/s for the low-water period, and 

630.87 m3/s for operation with natural river flow. This indicates the reliability of the results according to the 

developed methodology and allows making a conclusion about its validity and the possibility for application 

of the methodology to determination of the price for water as a hydro resource taking into account the 

operational features of HPP based on based on the maximization profit criteria. 

Similar calculations using the conventional methodology for distributing the load of the power 

system between its power plants by the Lagrangian multiplier method showed comparable results. For this 

methodology, there is an increase in the share of CHPP in electricity production for the needs of an electricity 
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consumer and an increase of the error when comparing the average daily water flow rate obtained by the 

Lagrangian multiplier method with the specified guaranteed value of water flow rate for each period. The 

comparison gave an error of about 3% for the high-water period, 7% for the low-water period, and 3% for 

operation with natural river flow, being amounted to 2086.62 m3/s for the high-water period, 235.06 m3/s for 

the low-water period, and 613.47 m3/s for operation with natural river flow. Therefore, it can be concluded 

that the developed methodology allows not only determining a price of a hydro resource using the operational 

features of the HPP, but also solving energy-saving and ecological problems. 

 

 

Table 1. Optimal values of Novosibirsk HPP power output  
Season For H=14.05 m For H=17.5 m For H=17.9 m 

Profit rate 0% 12% 0% 12% 0% 12% 

Power, MW 140 159 118 136 120 137 
Electric energy, MW∙h 100800 114480 84960 97920 86400 98640 

Posted price, RUB/MW∙h 257 270 325 336 315 320 

Revenue, RUB 77716800 92728800 27612000 32901120 27216000 31564800 
Profit, RUB  15012000  5289120  4348800 

 

 

4. CONCLUSION 

The criterion apparatus for a comprehensive assessment and optimization of the processes of electric 

power generation at hydroelectric power plants has been substantiated on the basis of the exergy approach 

with substantiation of the conceptual apparatus of "environmental parameters". A method has been developed 

to determine the price of water for hydroelectric power plants, which allows not only to improve the 

environmental situation in the region, but also to increase the competitiveness of power plants. Relevance of the 

concept of marginal utility for determining the price of water for hydroelectric power plants has been 

substantiated. A mathematical apparatus has been developed for exergy optimization of the integrated efficiency 

of processing primary energy resources on the basis of interrelated thermodynamic and environmental-

economic criteria for the purpose of generating electrical energy. Approbation of the developed exergo-

economic and technical criteria for comparing various technologies for the generation of electricity and heat 

based on the optimization of HPP operation modes was carried out. The model for the joint functioning of HPPs 

in the electricity market has been developed. 
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