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 Soil moisture is one of the contributing factors that accelerates soil erosion 

and landslide events due to the increase in pore pressure which eventually 

reduces the soil strength. For landslide prediction and monitoring purposes, 

large-scale measurement involves estimating the soil moisture. However, 

estimation of soil moisture usually involves point-based measurements at a 

particular site and time, which is difficult to capture the spatial and temporal 

soil moisture dynamics. This paper presents the estimation of the SMI using 

Landsat 8 images for prediction and monitoring of landslide events in Ulu 

Kelang, Selangor. The selected SMI map for dry, moist, and wet seasons are 

obtained from climatology rainfall analysis over 20-year periods (1998-

2017). SMI is assessed based on remote sensing data which are land surface 

temperature (LST) and normalized difference vegetation index (NDVI) using 

GIS software. Overall results indicated that rainfall distribution is high 

during inter-monsoon (IM), followed by northeast monsoon (NEM) and 

southwest monsoon (SWM) season. High rainfall distribution is a direct 

contributor towards SMI condition. Results from simulation show that April 

2017 is known to have the highest SMI estimation season and selected to be 

the best SMI mapping parameter to be applied for prediction and monitoring 

of landslide events. 
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1. INTRODUCTION 

Rainfall has been known as the main factor for most of the landslide events in the region of high 

seasonal rainfalls [1-4]. Any given rainfall event will cause an increase of pore water pressure within the soil 

on the area. Whenever a slope filled with water, the fluid pressure will provide a block of flexibility which 

reduces the resistance of movement and eventually causing the slope to fail. This condition can get even 

worse due to the soil conditions of the affected area [5-7]. It is important to identify the soil moisture of the 

area before considering rainfall as the factor that causing the landslide event, especially on deep-seated 

landslides and terrains with complex hydrological [8, 9]. Commonly, soil moisture measurement can be 

estimated by using three methods: in situ measurements, hydrological model, and remote sensing. In situ 

measurements were the best method among the three which can provide the highest accuracy, but it only 
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offers point-based measurement and limited due to high dependencies of installation and maintenance cost. 

The second method is to obtain variations of continuous soil moisture is through the land surface or 

hydrological model. Nevertheless, model-based approaches tend to deal with the issue of time drifts, large 

numbers of reliable data inputs and computationally intensive for large monitoring areas. Therefore, remote 

sensing and GIS techniques proved to be reliable alternative to soil moisture estimation on a global scale  

[10-14]. 

Remote sensing techniques offer a continuous estimation of soil moisture for a large area. For this 

case-study, soil moisture estimations are referring to the near-surface soil moisture (NSSM), which 

characterizes the first 5 cm or less of the topsoil profile. In recent years, remote sensing techniques have been 

advanced and varied their estimation to make more effective tool for monitoring soil moisture index (SMI) 

and other related variables such as land surface temperature (LST) and the normalized difference vegetation 

index (NDVI) [15-17]. LST calculation is defined from thermal emission, while NDVI is estimated based on 

portions of the electromagnetic spectrum, namely red and near-infrared (NIR) surface reflectance. These 

methods are sometimes known as optical and thermal infrared of remote sensing. Previous studies were 

conducted based on passive or active microwave data to estimate the soil water substance in the surface soil 

layer within 0 to 10 cm [18, 19]. 

Other usage of these optical and/or thermal data is to indirectly identify soil moisture condition by 

referring the changes of biophysical factors, such as surface energy balance and vegetation cover, which were 

affected by the availability of soil water. Results from various studies show a potential in monitoring both 

root zone and surface of soil moisture by using thermal and/or optical derived from vegetation. Over the 

years, various vegetation indices have been used to estimate soil moisture and the response of vegetation to 

the spatial and temporal variations [20-22]. The aim of this study is to estimate the soil moisture index from 

Landsat 8 images based on dry, moist, and wet seasons. The analysis of SMI condition season is conducted to 

provide the best SMI mapping parameter in predicting and monitoring of landslide occurrences in Ulu 

Kelang, Selangor.  

 

 

2. RESEARCH METHOD  

2.1  Study area and data set 

This study was carried out at Ulu Kelang, Selangor which is located at the latitude of 3°12’30’’N 

and longitude of 101° 45’ 28’’ E with a 5 km distance from Kuala Lumpur city center as shown in Figure 1. 

Ulu Kelang is a residential area which is known as one of Malaysia's most landslide-prone areas. The average 

of annual rainfall in Ulu Kelang area is about 2,440 mm. The rainfall distribution mainly based on two 

monsoon seasons, known as the southwest monsoon (SWM), beginning from May to August and the 

northeast monsoon (NEM) which is from November to February. In Ulu Kelang, the soil moisture is mostly 

influenced by rainfall distribution [23-26]. 
 

 

 
 

Figure 1. Location of Ulu Kelang, Selangor 
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The ground-based measurement rainfall data is used to analyze the climatology of rainfall in Ulu 

Kelang, Selangor. The rain-gauge data was provided by jabatan pengairan dan saliran (JPS), Ampang. Two 

rain-gauge stations (JPS Ampang and Genting Kelang) were acquired to represent the rainfall distribution for 

20-year periods from 1998 to 2017. The soil moisture index was analyzed from Landsat 8 images were 

downloaded using USGS Earth Explorer website. Landsat 8 images were selected based on the climatology 

of rainfall and the availability of cloud free satellite images. The SMI map was produced by using ArcGIS 

10.2.2. The selected images are listed in Table 1. 

 

 

Table 1. Selected Landsat images 
Satellite  Date of acquisition Monsoon Season  Period Path/row 

Landsat 8 

12/2/2017 NEW Nov - Feb 

158/226 17/4/2017 IM Mar -April & Sept - Oct 
20/6/2017 SWM May - Aug 

 

 

2.2.  Methodology 

Figure 2 shows the methodology of the SMI analysis based on Landsat 8 images which were 

selected from climatology of rainfall analysis for dry (low moisture), moist (medium moisture) and wet (high 

moisture) seasons. The Landsat 8 images were selected in February, April and June of the year 2017. SMI is 

calculated based on the combination of the NDVI and LST calculation using (1) [27, 28]. 

 

 

 
 

Figure 2. The methodology flowchart of SMI analysis 

 

 

𝑆𝑀𝐼 = (𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇)/(𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑚𝑖𝑛) (1) 

 

Where, for a given NDVI, LSTmax and LSTmin are the maximum and minimum of surface temperature and 

the land surface temperature is LST, the surface temperature of a pixel for a given NDVI derived from 

remote sensing. The calculation of LST is based on the (2). 
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LST=𝑇𝑏/ [1+(α* 𝑇𝑏/𝐶2) ∗ ln(𝜀)] (2) 

 

Where 𝑇𝑏  in oC (3) is a Satellite brightness Temperature, 𝛼 is the wavelength of emitted radiance, 𝐶2 =
1.4388 and 𝜀 as in (4) 

 

𝑇𝑏 = (𝐾2/(ln(𝐾1/𝐿) + 1)) − 273.15 (3)  

 

𝜀 = 0.004 ∗𝑃𝑣 + 𝐶𝑉 (4) 

 

where 𝐾1 is sensor dependent calibration constant 1 (774.8853) and 𝐾2 is sensor dependent calibration 

constant 2 (1321.0789), L is Top of Atmosphere (TOA) spectral radiance, 𝑃𝑣 (5) and CV is correction value 

for Landsat Images (0.986). 

 

𝑃𝑣 = ((𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)/(𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛))
2 (5) 

 

NDVI is define as the ratio of reflectivity differences between NIR and the Red band to their sum. NDVI is 

calculated using (6): 

 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝑒𝑑)/(𝑁𝐼𝑅 + 𝑅𝑒𝑑) (6) 

 

Finally, the SMI analysis was obtained using the raster calculator in ArcGIS 10.2.2. The SMI maps 

provide a value between 0 and 1, which is represents the relative amount of soil moisture within the area, 0 

indicates the lowest soil moisture and 1 indicates the highest soil moisture on a specific day. 

 

 

3. RESULTS AND ANALYSIS  

3.1.  Climatology of rainfall analysis 

Rainfall climatology during the southwest monsoon (SWM) occurs between May-August whereas 

inter-monsoon (IM) happens in March-April and September-October, while northeast monsoon (NEM) is in 

November-February. The rainfall data were taken in Ulu Kelang, Selangor using ground-based measurement 

as in Figure 3.  

 

 

 
 

Figure 3. Monsoonal rainfall fluctuation 

 

 

The monsoonal rainfall fluctuation in Figure 3 is based on average monthly rainfall and rainy days 

over 20 years (1998-2017). During the SWM season, the highest rainfall was recorded is in the month of May 

which reached up to 531.2 mm with 16 rainy days. The following month was in declining trends as the 
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rainfall distribution was recorded at 359 mm (June), 351 mm (July) and 376 mm (August) respectively. The 

rainfall patterns during both IM season shows similarities in receiving high rainfall distribution in April 

(584.8 mm with 19 rainy days) and October (602.3 mm with 19 rainy days). During NEM season, Ulu 

Kelang area received higher rainfall as compared to WSM season. The highest rainfall distribution was 

recorded in November, which is at 703.1 mm with 22 rainy days. However, the rainfall pattern for the NEM 

season is similar to the SWM season whereby the rainfall distribution decreases in the following months: 

December, January and February. In general, rainfall received during NEM and IM seasons was the highest 

contributor to its annual rainfall distribution which the rainy months are in November and April. While the 

dry months are in January and February which happened at the end of NEM season. 

 

3.2.  Soil moisture index (SMI) analysis 

Based on the climatology of rainfall analysis, the months of February, April and June were selected 

to represent the SMI map as the parameter for landslide events in Ulu Kelang, Selangor. The estimation of 

normalized difference vegetation index (NDVI) and land surface temperature (LST) are based on essential 

data for obtaining SMI calculation. The NDVI values range from -1 to 1 where the negative value of 

vegetation indicates a poor vegetative cover, while the positive value indicates a dense and good vegetative 

cover. Figures 4(a), 4(b) and 4(c) show the NDVI values for February (-0.03 to 0.56), April (-0.01 to 0.56) 

and June 2017 (-0.06 to 0.54) respectively.  

 

 

   
(a) (b) (c) 

 

Figure 4. The normalized difference vegetation index (NDVI) for (a) February 2017, (b) April 2017 and  

(c) June 2017 

 

 

While the LST values range for February, April and June 2017 is between 17 0C to 31.7 0C. The 

LST map in Figure 5 is classified into four classes, LST less than 22 0C, LST between 22 0C to 24 0C, LST 

between 24 0C to 27 0C and LST more than 27 0C. The result in Figures 5(a), 5(b) and 5(c) show in April 

2017 by 41.47% of area is estimated as high LST values which is more than 27 0C. Meanwhile the LST 

estimation in June showed low LST values in most areas. 

Figures 6(a), 6(b) and 6(c) show the SMI Map for February, April, and June 2017 respectively. The 

minimum SMI for all selected months is between 0.000001 to 0.000006 and the maximum SMI is between 

0.999997 to 1.00000. This is in line with SMI indicator which in the range of 0 to 1. The SMI map is 

classified into three classes, SMI less than 0.3 (<0.3, dry area), SMI between 0.3 and 0.5 (0.3-0.5, moist area) 

and SMI more than 0.5 (> 0.5, wet area). The brown spot areas known as dry areas, which indicate the SMI 

value close to zero was highly affected by water deficit. While the yellow spot areas are identified as moist 

areas. The SMI value near to 1 is represented by green spot areas which known as the wet area or forest cover 

and have the highest moisture as compared to the rest of land cover.  

Figure 7 shows the total area of SMI classes in February, April and June for the year of 2017. From 

the analysis, there is a large dry area which is approximately 41% (6.5349 km2) in February compared to 

moist (28%) and wet area (31%). While in April, 17% (2.709 km2) was identified as dry area, 32%  
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(5.1381 km2) as the moist area and 51% (8.1882 km2) as the wet area. In June, all SMI classes were within 

the same percentage where dry area covers 31% (5.1921 km2), moist area at 33% (4.9419 km2) and wet area 

at 36% (5.9013 km2). Based on the analysis conducted on the selected months, April was found to be the 

most wet/rainy month compared to February and June. This is due to 83% of the area in April was covered 

by moist and wet areas, while in February it was only at 51% and June at 69%. 

Based on these analyses, April is found to be the most wet/rainy season which aligned to the IM 

season periods of March-April and September-October and also the beginning of NEM in November and 

December. While June is represented as the moist season for SWM. The month of February is identified as 

the dry season which indicates the end of NEM season (January and February). However, only one SMI map 

will be selected to represent the SMI parameter for landslide events. The best selected parameter is based on 

the SMI map in April as most of the landslide events occur in high SMI value during the rainy season. 

 

 

   
(a) (b) (c) 

 

Figure 5. Land surface temperature (LST) for (a) February 2017, (b) April 2017 and  

(c) June 2017 

 

 

   
(a) (b) (c) 

 

Figure 6. Soil moisture index for (a) February 2017 (dry season), (b) June 2017 (moist season), and  

(c) April 2017 (wet season) 
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Figure 7. The areas distribution for 3 classes of SMI in February, April and June for the year 2017 at Ulu 

Kelang, Selangor 

 

 

4. CONCLUSION  

Soil moisture was the key parameter to monitor and predict the rainfall-landslide occurrences, 

especially in hilly areas. The main objective is to generate SMI map estimation, derived from Landsat 8 

images by considering the monsoonal season which is influenced by the rainfall distribution. Based on the 

analysis, results indicated that rainfall distribution is high during IM season followed by NEM season. The 

month of February, April and June 2017 were selected to present the soil moisture condition for dry, moist, 

and wet seasons. The highest SMI estimation seasons (wet season) was selected as the SMI parameter in the 

prediction of landslide occurrences analysis for Ulu Kelang, Selangor. 
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