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 The main objective of this paper is to provide a state-of-the-art review, 

analyze and discuss stochastic local search techniques used for solving hard 

combinatorial problems. It begins with a short introduction, motivation and 

some basic notation on combinatorial problems, search paradigms and other 

relevant features of searching techniques as needed for background.  

In the following a brief overview of the stochastic local search methods 

along with an analysis of the state-of-the-art stochastic local search 

algorithms is given. Finally, the last part of the paper present and discuss 

some of the most latest trends in application of stochastic local search 

algorithms in machine learning, data mining and some other areas of science 

and engineering. We conclude with a discussion on capabilities and 

limitations of stochastic local search algorithms. 
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1. INTRODUCTION 

Researchers are struggling to tackle combinatorial problems as the number of these is present in 

several branches in science and industry on which computational methods have been widely applied, 

including artificial intelligence, machine learning, data mining, operations research, bio-informatics and 

electronic commerce. Some of the most well-known combinatorial problems include finding shortest or 

cheapest paths in graphs, finding solutions for propositional formulae (SAT), scheduling, time-tabling, 

planning, optimizing resource allocation and other various domains [1]. Stochastic local search (SLS) has 

proved to be successfully and extensively used approach for solving combinatorial hard problems.  

SLS algorithms use randomization method during the generation or selection of candidate solutions [1]. 

These algorithms are commonly used for solving hard combinatorial optimization and decision problems.  

As presented by [1] some of the early and successfully applied examples of SLS techniques used for solving 

optimization problems includes the Lin-Kernighan algorithm, which is applied for solving the travelling 

salesman problem (TSP) [2], evolutionary algorithms [3] and simulated annealing [4] as well as some other 

successful examples of using these algorithms for solving NP-complete decision problems, including graph 

coloring problem (GCP) [5], the Satisfiability problem in propositional logic (SAT) [6, 7]. More recently, 

SLS algorithms have successfully been applied for problem-solving and for modeling in various areas of 

scientific and engineering problems. 

The working principle in traditional local search algorithms when dealing with an instance of  

a combinatorial problem rely on the fact that search for solutions happen in the space of candidate solutions. 

Additionally, the local search process starts by moving from current solution to other solution in  

a neighborhood space of the candidate solutions, and decision on each search step has been made by using 
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only existing information [1]. On the other side, SLS algorithms, when used for solving hard combinatorial 

problems are characterized by randomization, respectively, generation of initial solutions as well as decisions 

taken on each step is typically based on randomization. Furthermore, some SLS methods during the search 

process use some kind of memory techniques in order to keep a limited number of most recently visited 

candidate solutions [1]. As mentioned above several SLS algorithms have been effective approach used 

mainly to solve hard combinatorial problems, including SAT, MAX-SAT, TSP, Scheduling, Time-Tabling 

and Protein Folding. Some other useful progress regarding to SLS algorithms for SAT is done, covering 

algorithms of the GSAT, GWSAT, robust SLS algorithms for MAX-SAT (WalkSAT, IRoTS, GLSSAT and 

SAPS) and other hybrid SLS methods [1]. 

SLS algorithm engineering involves many challenges that the research community must address. 

They are a very strong supporter of many effective heuristics for solving hard computationally complex 

problems. Generally, engineering of these types of algorithms in manual way requires a very careful and to 

much effort in order to reach high and acceptable performance. On the other side, automatic algorithm 

configuration is an impressive approach introduced to improve the performance of algorithms for computationally 

hard problems. 

A lot of work related to algorithm engineering has been done by research community with regard on 

automatic algorithm configuration and parameter tuning techniques. Examples of these include ParamILS 

algorithm introduced by Hutter et al. [8], automated algorithms configuration and parameter tuning presented 

by Hoos in [9], automatic design of hybrid SLS algorithms by Marmion et al., [10], grammar-based generation of 

SLS heuristics by Mascia et al. [11], permutation flowshop problems by Pagnozzi and Stützle [12], algorithm 

comparison by automatically configurable SLS frameworks by Mascia et al., [13], revisiting simulated annealing 

by Franzin and Stützle [14]. On the other side, Franzin et al., [15] studied the effect of transformations for 

numerical parameters, Franzin and Stützle [16] performed comparison of acceptance criteria in randomized local 

searches, Mu et al., [17] conducted a research on the impact of automated algorithm configuration etc. 

In the last years, to much effort has been made by research community relating to the application of 

SLS in various domains of science and engineering. Some of the most successful examples of SLS 

application includes: combinatorial problems (SAT and TSP), artificial intelligence, machine learning and 

data mining, scheduling, time-tabling, protein folding and to many other areas. In this paper we have been 

much more focused on the research work conducted in the last five years in the area of SLS. We will start 

with the work of Zhou and Hu [18], who presented the gradient-based adaptive stochastic search (GASS) for 

non-differentiable optimization and latter Rosin [19], who presented how the unweighted SLS can be 

effective for random CSP benchmarks, Drugan [20], in which was presented stochastic Pareto local search 

for many objective quadratic assignment problem instances, Frohlich et al., [21] presented application of SLS 

for satisfiability modulo theories. 

Another significant contribution to the field includes a paper by Boughaci et al., [22] with regard to 

the application of SLS for image steganography, Wang et al., [23] on estimation of the distribution algorithm 

with a SLS for uncertain capacitated arc routing problems, followed by Rezoug and Boughaci [24] dealing 

with integration of self-adaptive harmony search with a SLS for tackling knapsack problem. Furthermore, in 

the last two years there are several other studies conducted with regard to the SLS application, including 

Putikhin and Kascheev [25], they used SLS for solving SAT problems by extending continuous Boolean 

formulas, Chu et al., [26] presented neighboring variables based configuration checking in SLS for weighted 

partial maximum satisfiability, Luo [27], who applied stochastic iterative evolution CT reconstruction algorithm 

for limited-angle sparse projection data, Yu et al., [28] introduced the Thompson sampling for optimizing 

SLS. Oliveira et al., [29] studied analysis of the ACO algorithm for solving TSP, Paquete and Stützle [30] 

presented a review of SLS Algorithms for multi objective combinatorial optimization, Niu et al., [31] introduced  

a new SLS approach for computing preferred extensions of abstract argumentation, Santos et al., [32], who 

performed analysis of SLS methods for the unrelated parallel machine scheduling problem and Weise et al., [33], 

who showed an improved generic BET-AND-RUN strategy with performance prediction for SLS. 

The number of papers published in last twenty years on some of the most-well known computer 

libraries (such as IEEE, Springer, Elsevier and ACM) better shows the latest trends direction and scientific 

significance of this field. SLS and its successful application has also attracted the attention of several 

scientific disciplines including computer science and their branches such as artificial intelligence, machine 

learning, data mining, economics and management, physics, chemistry and bio-informatics. There has 

already been one excellent book introduced by two pioneers of the field, Hoos and Stützle [1], which presents 

an excellent and comprehensive overview on SLS methods, techniques and algorithms application. In 2015, 

ten years later, again were Hoos and Stützle [34] who provide a general overview on SLS Algorithms. 

This paper serves like a complementary one to those previously published, on the same time 

provides state-of-the-art review on SLS methods, algorithms and most recent development trends and 

application in science and industry. First, it gives a short overview on combinatorial problems and search 
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paradigms and some other useful background notation. Then, SLS methods are presented from three kind of 

aspects (classes): the first class is known as “simple” SLS methods, as the term shows they are mainly based 

on simple search techniques, the second class comprises of hybrid SLS methods, which integrate several 

searching techniques and heuristics and the third class named as “population-based” SLS methods that 

proceeds with a set or population of candidate solutions. These SLS methods comprise a number of well-

known techniques which mainly have been inspired by natural phenomena, and some of the most successful 

application of these methods in science and industry have been presented. Finally, besides the recent 

achievements, some future challenges and limitation are briefly discussed. 

The rest of this paper is organized as the following: In the second section is given a brief overview 

of background theory starting with a general introduction of combinatorial problems, search paradigms and 

SLS techniques. The third section gives comprehensive review of the state-of-the-art in SLS algorithms, 

methods and techniques from its early stage of development to the present days. The fourth section presents 

the most recent application of SLS algorithms in machine learning, data mining and other areas in science 

and industry. The last section provides briefly some concluding remarks. 

 

 

2. BACKGROUND AND NOTATION 

In the following is given a short introduction in background theory and notation as it has been 

considered as more than necessary in order to facilitate understanding of the SLS methods, techniques and algorithms. 

 

2.1.  Combinatorial problems 

Combinatorial problems can be categorized in two major groups: combinatorial decision problems 

and combinatorial optimisation problems. The two prototypical combinatorial problems widely known are 

SAT and TSP. The number of these problems is large, and they are present in several branches of computer 

sciences, economics and management, physics, chemistry, bio-informatics and other research areas in science 

and industry in which computational methods find applications. Some other well known combinatorial 

problems includes finding shortest round trips (TSP), solving propositional formulae (SAT), planning and 

scheduling, time-tabling, resource allocation, prediction of protein structures, etc. 

 

2.2.  Search paradigms 

In general almost all computational approaches used to deal with hard combinatorial problems can 

be represented as search algorithms. The working principle employed in case of the search approach is to 

generate and evaluate candidate solutions in iterative way. On one hand, when combinatorial decision 

problems approach is used, the process of evaluating a candidate solution is related with the process of 

decision whether it represents an actual solution. On the other hand, when dealing with optimization 

problems, it generally implies determining the respective value of the objective function. 

a. Solution methods for combinatorial problems-there has been a great interest and many efforts have been 

made to the design of combinatorial (optimization) problems, and a number algorithm for solving these 

kinds of hard and complex problems have been designed. In general, these algorithms are typically 

categorized as either exact or approximate algorithms. The first class is known as exact algorithms and 

comprises algorithms that guarantee to solve every finite size instance of a combinatorial optimization 

problem. While the other class comprises algorithms which make a trade-off between the guarantee of 

finding optimal solutions and getting good solutions in polynomial-time [35]. 

b. Constructive algorithms-generate initial solutions from scratch and later solution components are added 

to the initial solutions according to some rules until a solution is complete. This type of algorithms is 

considered to be the fastest approximate methods, however the solutions provided by them quite often is 

with lower quality compared with one provided by local search algorithms.  

c. Local Search-the working principle of local search algorithms is as following, they start by generating 

an initial solution and then iterate from current solution to other candidate solution in a neighborhood 

space of the candidate solutions, by replacing actual solution by better one found [35]. 

d. Perturbative (local) search-when dealing with combinatorial problems candidate solutions consist of 

solution components and typical case is with assigning truth values to individual propositional variables 

when dealing with SAT problems. On the other hand, candidate solutions can easily be changed into 

new candidate solutions by applying one or more modification on respective solution components.  

This process of changing is known as the perturbing of a given candidate solution. According to [1] 

search algorithms which are based on this mechanism (technique) in order to generate the candidate 

solutions are called perturbative search methods. 

e. Constructive (local) search-the generation of the candidate solutions in combinatorial problems are 

made by repeatedly extending partial solutions that can be defined as a search problem and the main 
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objective here is to get a ‘good’ candidate solution, where used for optimization problems, and  

the “goodness” correlate to the objective function. Algorithms based on this mechanism are called 

constructive search methods (also known as constructive heuristic methods). 

 

2.3.  Stochastic local search 

The working principle in traditional local search algorithms when applied to solve combinatorial 

problem is characterized with fact that search for solutions happen in the space size of candidate solutions.  

In addition, the local search proceeds by first taking an generated initial candidate solution, and then is 

iterated from one candidate solution to another candidate solution within predefined neighborhood, and  

the decision on each step is taken based only on existing local information [1]. However, local search 

typically is characterized with two kind of problems such as: (i) getting stuck in local optima and (ii) being 

misguided by evaluation (objective) function. 

 

 

3. SLS METHODS 

In this part, are shortly presented some of the most prominent SLS methods, including their 

application to solve hard combinatorial problems.  

 

3.1.  Simple SLS methods 

 In order to ensure the search process to escape from a local optima (minimum), a number of SLS 

methods accept worsening moves. This part is devoted to these methods which are known as simple SLS 

methods, as these methods employ only one type of search techniques, on limited neighborhood sets [34]. 

a. Randomized iterative improvement (RII)-is simply based on iterative improvement extended with 

randomization. More precisely, in each step iteration is performed based on probability 𝑤𝑝, the selection 

of next searching position 𝑠′ is done using uniformly at random within current neighborhood 𝑁(𝑠), 
known as uninformed random walk step, or in other circumstances 1 − 𝑤𝑝 is used to perform an 

improvement step. Here, the 𝑤𝑝 is called as walk probability or sometimes it is also known as noise 

parameter. One of the main advantages of RII is that they are easy to be implemented [1]. 

The successful application of RII algorithms have been proven in several optimizations and 

decisions problems. As presented by [34] in the 1990s are implemented some version of RII by using 

minor variations, in such cases the random iteration is defined with regard to the amount of constraint 

violations in place of choosing uniformly at random, changes those that enable RII algorithms to be one 

of the current state-of-the-art algorithms used to solve SAT problems and CSPs [34]. 

b. Probabilistic iterative improvement (PII)-unlike some other methods that accepts some worsening 

search steps, here this method is based on the idea of using some acceptance criteria which is based on 

probabilistic evaluation function. In contrast to RII, each step of PII requires two steps: the first step 

deals with selection of neighboring candidate solution 𝑠′ in current neighborhood 𝑁(𝑠), which typically 

is done by using uniformly at random approach; the second step is used to determine whether to accept 

or not 𝑠′ as the new candidate solution. In addition, for class of problems where minimization is 

required, the Metropolis conditions is used as acceptance probability [34]. 

 

𝑝𝑎𝑐𝑐𝑒𝑝𝑡(𝑇; 𝑠; 𝑠
′):= (

1 if𝑔(𝑠′) < 𝑔(𝑠)

𝑒𝑥𝑝(
𝑔(𝑠′)−𝑔(𝑠)

𝑇
) otherwise,

  

 

where 𝑝𝑎𝑐𝑐𝑒𝑝𝑡(𝑇; 𝑠; 𝑠
′) represents probability of acceptance and 𝑔 denotes the evaluation function which 

should be reduced. The parameter 𝑇 named as 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 represents the impact of the probability whether 

to accept or not worsening search steps and is equivalent to constant-temperature defined to simulated 

annealing. It is worth mentioning that for value of 𝑇 = 0, then, PII will effectively turns into an iterative 

improvement procedure, and for value of T=∞, then accomplishes uniform random walk [34]. 

c. Simulated annealing (SA)-is simple SLS method, which shares similar features with PII, apart from 

temperature parameter 𝑇 that is modified at run time. This method is inspired by natural phenomenon 

analogy, respectively the slow cooling of solid materials. The parameter T (temperature) initially has 

the high value, which then is progressively decreased until the lowest temperature value is reached. 

High temperature values means that probability of accepting worsening candidate solutions will be high. 

Thus, as temperature decreases, the probability of accepting worsening candidate solutions decreases as 

well, which means that search process progressively begins to be greedy. Furthermore, for very low 

temperatures (small values of T), almost only neighbors that have better or at least equal value of 
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evaluation to the current candidate solution can be accepted [34]. SA has been successfully and widely 

used to solve hard computational problems, by involving various forms of annealing and acceptance tests. 

d. Tabu search (ts)-is another simple SLS method, which is characterized by explicit memory dependency 

during the search process [36]. In its simple form, known as simple tabu search, it performs iterative 

improvement from one potential solution 𝑠 to an improved solution 𝑠′ in the neighborhood of 𝑠 until 

some stopping criterion has been satisfied. In order to avoid getting stuck on local optima and to ensure 

that all regions in their neighborhood have been explored, some kind of short-term memory has been 

used. In order to skip memorizing whole set of candidate solutions and explicitly forbidden these, here 

is assigned a tabu status to each component and is keept track of each solution component when it was 

last modified. TS algorithms even simple one has proved to perform quite good in several number of 

problems. However, its performance is strongly related on the tabu tenure settings. In order to escape 

the problem of finding fixed settings, which are suitable for a given specific problem, reactive tabu 

search mechanism has been introduced in order to modify the tabu tenure settings at run-time [34]. 

e. Dynamic local search (DLS)-in the previous section we have presented several techniques used for 

escaping from local optima by using minimally worsening steps in local search. Unlike other ‘simple’ 

SLS methods presented above, DLS [1] doesn’t permit worsening search steps, but in contrast it updates  

the evaluation function during the local search in order to avoid getting stuck on local optima [34].  

According to [34] the updated evaluation function 𝑔′ is calculated as the sum 𝑔′(𝑠) and 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑖), 
that is: 

 

𝑔′(𝑠): = 𝑔(𝑠) + ∑𝑖∈𝑆𝐶(𝑠) 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑖) (1) 

 

𝑔′(𝑠) represents the original evaluation function value, 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑖) denotes penalties for every solution 

component 𝑖, 𝑆𝐶(𝑠) represents a set of solution components of 𝑠. At the beginning, all penalties have  

the value equal to zero. Depending on the penalty updating mechanism and choice of solution components 

that are used to adjust the penalties, there exist different variants of DLS. In the beginning, 𝑢(𝑖) is calculated 

for each 𝑖 according to equation: 𝑢(𝑖): = 𝑔𝑖(𝑠)/(1 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑖)) where 𝑔𝑖(𝑠) is used to measure the effect of 𝑖 
on the evaluation function and then penalties are increased for solution components that have maximal utility [34]. 

 

3.2.  Hybrid SLS methods 

There exist several more complex SLS methods known as hybrid methods, which integrate different 

types of search techniques (ex., construction search with perturbative local search) or involving other types of 

complex modifications of current candidate solutions, in order to generate effective initial starting point for 

following iterative improvement search [34]. The following section presents a short overview of the most 

prominent hybrid methods. 

a. Greedy randomized adaptive search procedures (GRASP)-the working principle used by GRASP [37] is 

integration of randomized greedy constructive search with a successive perturbative local search The process 

of generating improved solutions by construction heuristics (greedy randomized procedure) is continually 

repeated until a termination criterion is met. The presence of the word adaptive specified in GRASP 

name, is to denote that hybrid search procedure involves an adaptive construction heuristic. In the similar 

way, the term randomized denotes that randomization is used, and it is realized by using the so-called restricted 

candidate list that keeps the best-scoring components depending on a heuristics function [34]. 

b. Iterated greedy (IG)-is another algorithm that belong to hybrid SLS methods. The working principle of 

IG is that it iteratively performs greedy construction heuristics in order to produce a sequence of 

candidate solutions that have high-quality. In this algorithm, the key principle is to switch between 

solution construction and destruction phases, while this ensures better performance through integration 

of two types of search techniques different to each other [34]. 

The basic principle applied to IG algorithm, was rediscovered a number of times and presented 

with different names, such as: ruin-and recreate, iterative flattening and iterative construction heuristic.  

IG algorithms have been successfully used for solving a number of problems and obtained results show 

that, especially when integrated with perturbative local search, they achieved impressive results on 

many optimization problems [38, 39]. 

c. Iterated local search (ILS)-is another successful hybrid SLS method, which is mainly known as hybrid 

between perturbation mechanism and local search algorithm. As presented in [34] an ILS algorithm 

comprises by four basic types of mechanisms: (i) mechanism used to generate an initial solutions  

(ex., construction heuristics), (ii) a subsidiary (perturbative) local search procedure, (iii) a perturbation 

procedure that performs modification to candidate solution and (iv) an acceptance criterion. ILS 

algorithms, especially its basic version, is characterized as fast and easily implemented. Furthermore, by 

applying some types of modification, ILS represents state-of-the-art method used to solve a wide range 
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of combinatorial problems [34]. During the last years several versions of ILS have been rediscovered 

and found under different names, like large-step Markov chains [40] and chained local optimization 

[41], but also there exist some conceptual connection of the underlying algorithms with different types 

of variable neighborhood search, furthermore VNS and SVNS methods are considered as versions of 

ILS, which benefit by using the advantages of perturbation at run time [34]. 

 

3.3.  Population-based SLS methods 

These methods are considered more complex compare to other SLS methods, because they are 

established based on principle of using a set or population of candidate solutions.  

a. Ant colony optimization (ACO)-is part of population-based SLS methods that has been widely and 

successfully employed to solve many complex combinatorial problems [42-44]. This algorithm relies on 

biological phenomena (ants), and here term artificial ants represents multi-agent methods whose 

inspiration comes from collective behaviors of real ant colonies. Typically, communication based on 

pheromones of the biological ant is the paradigm used. Combination of artificial ants with local search 

algorithms have been successfully used in several optimization tasks. Further details about these 

mothods can be found in [29, 44]. 

b. Evolutionary algorithms (EAs)-is one of the most widely used and succesfull population-based SLS 

method used for solving complex computational problems in recent years. EAs have been generally 

inspired from biological evaluation which characterized by three most well-known evolution 

mechanism such as mutation, recombination and selection. Another significant mechanism is evaluation 

function, which is known as fitness. These algorithms are also characterized with randomization process 

which is used to generate the initial set of candidate solutions, and then greedy construction heuristics 

that is mainly employed to seed the population. Later, this underlying population is subject of three 

most well known genetic-based mechanism known as mutation, recombination and selection.  

In general, EAs performance is strongly related with the right use of the evolutionary mechanism, due 

to this fact, too much research work has been done with regard to design and effective use of mutation 

and recombination mechanism [34]. EAs have been extenssively used to solve different kinds of real 

world problems and results obtained show that EAs achieved state-of-the-art result when applied to 

solve combinatorial related problems including finding short and implementation-friendly addition chains [45] 

and finding nash equilibrium in electricity markets [46, 47]. 

 

 

4. STATE-OF-THE-ART IN SLS 

In this section, we have briefly presented a state-of-the-art review in SLS methods and its successful 

application in science and engineering. 

 

4.1. Integration of systematic search and SLS 

SLS and systematic search usually have been considered as two separate approaches applied to solve 

complex combinatorial optimization and decision problems. Due to their specific characteristics for a while 

these approaches have been considered more concurrent then complementary. However, during the last 

decade has been identified an increased attention to the exploring, design and development of hybrid 

methods, which involve integration of systematic search and SLS approaches with purpose enhancing  

the algorithms. These hybrid methods can be classified in two major classes depending on the role of 

combined techniques and the role they play. According to this categorization the first class comprises 

approaches where the systematic search techniques serves as master process while other procedure (SLS) is 

engaged to tackle any issue that can arise throughout the systematic search steps. In the second class, these 

roles have been changed, here SLS algorithm serves as the master process, while systematic search technique 

is used when dealing with specific tasks that arise during running time of SLS algorithm [34]. 

 

4.2.  SLS algorithm engineering 

The definition of general-purpose SLS methods is not simple as that of fully defined recipes: 

meaning that there are some open choices during the algorithms design, furthermore only proper 

combinations of these choices can help on designing of effective algorithms, which can be used for solving 

specific domain problems. As suggested by [34] more and more methodological research is needed to be 

undertaken towards an improved design and implementation of SLS algorithms. Although SLS algorithms 

engineering follows the motivation of algorithms engineering; they are mainly used to solve NP-hard 

problems that are characterized with complex and unpredictable behavior, additionally, the presence of 

stochasticity makes analysis of these algorithms more hard and complex. 
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4.3.  Automatic configuration of SLS algorithms 

As many other algorithms, the performance of SLS algorithms is strongly related to the number of 

design choices and parameter settings. Finding right design and configuration of SLS algorithms involves 

setting a large number of categorical, ordinal and numerical parameters. The main goal in designing of 

automatic configuration of SLS algorithms is to find the proper settings of these parameters in order to 

achieve the optimal performance [34]. According to [17] the automatic configuration of SLS algorithms is  

a powerful and widely used approach that has significant role in the design and development of algorithms 

that provide better performance in problem solving. 

As we mentioned above the performance of SLS algorithms usually depends on the number of 

design choices and parameter tuning. In doing so, many researchers have been for a while unhappy with 

manual algorithm configuration, and in a number of fields they have introduced their approaches for 

automatic parameter tuning. Approaches for setting parameters have been presented and described by  

a number of authors, but we will describe some of the most prominent ones that have been published their 

research work in the last decade. Hutter et al., [8] in their study presented methods that set proper parameters 

automatically in order to enhance the performance on a given class of problem instances. Two years later, 

another extensive research was conducted by Hoos [9] on automated algorithms configuration and parameter 

tuning. In this study, they presented an extended introduction to the significant role that automated 

algorithms configuration and parameter tuning techniques play in the implementation of algorithms that have 

better performance. This study also gives a brief survey on the area of algorithm configuration and parameter 

tuning techniques. 

Another study on automatic design of hybrid SLS algorithms has been introduced by Marmion et al., [10] 

who proposed a practical, unified structure that integrates several SLS methods. This approach is unified due to  

the fact that involves these metaheuristics into a single structure which can be separately instantiated and can 

be used to generate complex combinations and variants as well. Around the same time, grammar-based 

generation of SLS heuristics through automatic algorithm configuration tools has been introduced by  

Mascia et al., [11]. Authors proposed here a new approach that is based on using some sequence of 

categorical, integer, and real-valued parameters and automatic algorithm configuration in order to find out  

the algorithm that performs better for the specific problem at hand. There is another study conducted by 

Mascia et al., [13], concerning to the algorithm comparison by automatically configurable SLS frameworks, 

which is a case study using flow-shop scheduling problem (FSP). The obtained results showed that hybrid 

algorithms that are instantiated were able to match and improve over the best conventional SLS method. 

Another research with regard to the impact of automated algorithm configuration on the scaling 

behavior of state-of-the-art inexact TSP solvers was presented by Mu et al., [17]. He investigated the effects 

of automatic algorithm configuration in regard to improving the performance of the two well known inexact 

solvers for the TSP, EAX and LKH. By using this new way of analyzing the empirical scaling of running 

time as a function of problem instance size, demonstrated that automated configuration has important effect 

on the scaling behavior of EAX. 

Work on automated algorithm configuration and parameter tuning techniques has been also done by 

Franzin and Stützle [16] who have evaluated several acceptance criteria based on experimental work.  

They first made tuning of numerical parameters of the algorithms using automatic algorithm configuration 

approach for quadratic assignment problem and a permutation flowshop problem. Franzin et al., in [15] 

presented the effect of transformations of numerical parameters in automatic algorithm configuration.  

The authors here studied the impact of altering the sampling space of parameters in automated algorithm 

configurations. Franzin and Stützle [14] described SA as an ensemble of algorithmic components and describe SA 

variants from the literature within these components. They have also experimentally demonstrated the potential 

of this new approach on three well-known combinatorial optimization problems, such as quadratic 

assignment problem and two variants of the permutation flow shop problem. Pagnozzi and Stützle [12] 

presented an automatic design of hybrid SLS algorithms for permutation flowshop problems (PFSP).  

Here, they automatically generated a new state-of-the-art algorithm for some of the most widely studied 

variants of the PFSP. 

 

4.4.  Application of SLS algorithms 

This part gives a brief overview of some successful applications of SLS algorithms used to solve 

optimization and search problems. We have categorized these examples in two major groups: application of 

SLS algorithms in machine learning and data mining and, application of SLS algorithms in other areas of 

science and engineering. 
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4.4.1. SLS in machine learning 

In this section, are presented some of the most recent trends on application of SLS in the area of data 

mining, graph mining and machine leaning. Hossain et al., [48] presented the application of SLS for pattern 

set mining. Here authors proposed the application of SLS for solving the pattern set mining, particularly, to 

the task of concept learning. They applied here a number SLS algorithms on a conventional benchmark problem 

instance for pattern set mining and the results obtained showed promising results for further exploration. 

Brunato and Battiti [49] investigated SLS for direct training of threshold networks. In this study 

authors applied SLS algorithms for training neural networks by involving threshold activation functions, a 

novel technique known as binary learning machine (BLM). BLM works based on the principle of changing 

individual bits of each weight and selecting improving moves.  

Brunato and Battiti in [50] presented a new algorithm based on multiscale SLS with binary 

representation for training neural networks. In this work they proposed a telescopic multiscale version of 

local search, where the number of bits was increased in an adaptive way, in this way leading to a faster search 

process and to local minima of better quality. Laachemi and Boughaci [51] presented an interesting work 

regarding Web service classification. In this paper, authors combined SLS with support vector machine 

(SVM) for Web services classification. This method was performed in two steps, first SLS meta-heuristic 

was used for feature selection, and later SVM algorithms was applied to do the classification task. 

Additionally, this method, which typically involves SLS and SVM for Web service classification was further 

validated by authors on the quality of web service (QWS) Dataset.  

Nekkaa and Boughaci in [52] proposed a hybrid search method that integrates harmony search 

algorithms (HSA) with SLS for feature selection as a combinatorial optimization problem in classification. 

They introduced a novel selection strategy based on probability technique employed in HAS-SLS, which 

manages to select the appropriate solutions by using SLS to filter out irrelevant or redundant features, by 

providing a good trade-off between exploration and exploitation. Furthermore, the hybrid HAS-SLS is then 

integrated with a SVM classifier. 

Farhi and Boughaci in [53] proposed use of SLS method for solving the frequent subgraph mining 

(FSM) problem. They introduced here the notion of diversification that comprise one of the most prominent 

approaches applied to solve hard optimization problems. The implementation and evaluation of proposed 

methods was tested on several types of data sets including synthetic and real-world one. At the same time this 

method was compared to other state-of-the-art methods currently used, including local search, GA and 

variable neighborhood search (VNS) algorithms. This method was able to efficiently discover diversified 

subgraphs in the search space through exploring new solutions by using randomness during the search 

process. The obtained results showed that SLS method produce competitive results and solutions found have 

better quality compared to those found by LS, GA and VNS algorithms. 

Mafarja et al., [54] proposed binary variants for the latest version of grasshopper optimization 

algorithms (GOA) used for feature selection. More precisely, GOA algorithms is applied to select optimal 

feature subset by removing irrelevant features, which latter will be used for classification purposes into  

the wrapper-based framework. Authors here introduced two mechanisms in order to design a binary version 

of GOA. The first mechanism, is one which is based on both Sigmoid and V-shaped transfer functions, and 

algorithms are named as BGOA-S and BGOA-V, respectively. The second mechanism involves a novel 

technique that integrates the best solution obtained so far. Additionally, a mutation operator is used to 

enhance the exploration phase in BGOA algorithm and is named as BGOA-M. These methods are evaluated 

on a considerably several benchmark data sets and obtained result showed that the performance achieved by 

BGOA and BGOA-M is superior when compared to performance obtained by other similar recently used 

techniques in the literature. 

 

4.5.  Other SLS application 

In recent years, more and more efforts have been devoted to the application of SLS algorithms for 

solving of several computational hard optimization and search problems. Unlike previous section, here are 

briefly presented some of the recent successful application of SLS in other science and industry fields, 

including SAT, MAX-SAT, TSP, scheduling and routing problems. Boughaci et al., [22] combined SLS 

meta-heuristics with the least significant bits (LSB) technique for image steganography. The authors in this 

study, implemented three methods named as LSB, LSB+LS and LSB+SLS, which achieved significant 

results by also demonstrating the benefits of the proposed method in image steganography. Drugan [20] 

presented the use of stochastic pareto local search (SprLS) for many-objective quadratic assignment problem 

(MOQAP) instances. Putikhin and Kascheev [25] presented a heuristic approach for finding initial values for 

SLS in solving SAT problem by using continuous extensions of Boolean formulas.  

Wang et al., [23] proposed a novel robust optimisation approach that involves estimation of  

the distribution algorithm (EDA) and SLS for tackling uncertain capacitated arc routing problems.  
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This method combines an EDA with a novel two stage SLS procedure to perform minimization of the 

maximal total cost over a set of different scenarios. Here, the SLS procedure is used to avoid extreme fitness 

values of unpromising moves in local search. The results obtained experimentally on two sets of benchmark 

problems showed that this algorithm outperforms state-of-the-art results. 

Zhou and Hu in [18] proposed gradient-based adaptive stochastic search for non-differentiable 

optimization algorithm for solving general optimization problems with little structure. The proposed approach use 

random sampling technique to iteratively find high quality solutions from a parameterized distribution model over 

the solution space. Chu et al., [26] proposed a new SLS algorithm called CCHNV (hard neighboring 

variables based configuration checking) for solving WPMS (weighted partial maximum satisfiability). 

Results obtained by a number of experiments on a broad range of WPMS instances showed that CCHNV 

performance outperforms the state-of-the-art SLS algorithms recently used to solve WPMS problem.  

Luo [27] proposed a stochastic iterative evolution CT reconstruction algorithm for limited-angle 

sparse projection data. The working principle of this algorithm is as follow: a stochastic approach is applied 

for searching, and Markov Chain is used to predict iterative evolution model and accelerate the proposed 

algorithm’s convergence. The experimental results obtained by the proposed algorithm in image reconstruction 

from limited-angle sparse projection data are promising and robustness. 

Some other successful applications of SLS introduced recently include: analysis of SLS methods 

used for solving the unrelated parallel machine scheduling problem presented by Santos et al., [32], improved 

generic BET-AND-RUN strategy with performance prediction for SLS by Weise et al., [33]. On the other side, 

Lorenz and Wörz [55] demonstrated benefits of using the learned clauses on SLS, followed by He at al., [56] who 

presented his approach for solving floating-point constraint by using SLS, Caceres et al., [57] who proposed 

using of SLS in direct aperture optimisation problem in intensity modulated radiation therapy. Susan and 

Bhutani [58] introduced a novel memetic algorithm that incorporates greedy SLS mutation for course 

scheduling and Chu et al., [59] presented promising empirical investigation of using SLS for solving MAX-

SAT problem. 

 

 

5. CONCLUSION 

Nowadays, there is great interest in research community and industry to solve complex 

combinatorial optimisation and decision problems, as the number of these is present in several branches in 

science and industry on which computational methods have been widely applied. SLS is very important and 

powerful tool used for solving hard combinatorial optimisation problems. As a new approach it is mainly 

characterized by randomization during the local search. SLS algorithms have been used for a while to tackle 

hard combinatorial problems as the number of these is present in several branches in science and industry 

including artificial intelligence, machine learning, data mining, operations research, bioinformatics and 

electronic commerce. 

Various SLS methods have been employeed to solve combinatorial optimisation problems, but 

usually all these methods have been grouped in three major classes: the first class is known as "simple" SLS 

methods, as the term denotes they are mainly based on simple search techniques, the second class comprises 

of hybrid SLS methods, which integrate several searching techniques and heuristics and the third class which 

is more complex and is known as population-based SLS methods, which proceeds with a set or population of 

candidate solutions. These SLS methods comprises a number of well-known techniques mainly inspired by 

natural phenomena, which have been widely applied to various tasks. 

Except the fact that these algorithms are widely used and are powerful tool in tackling hard 

combinatorial problems, manual configuration of these algorithms is complex and time consuming task.  

In order to overpass these problems a lot of research work has been done with regard to the automated 

algorithm configuration and parameter tuning techniques. Additionally, some of the latest successful 

application of SLS algorithms in machine learning, data mining and other fields in science and industry have 

been presented. We hope that issues discussed in this paper will push forward the discussion in the area SLS 

research, on the same time it may serve as complementary material for other researchers interested in area of SLS. 
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