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ABSTRACT

In this paper, the Chebyshev-I conformable differential equation is considered.
A proper power series is examined; there are two solutions, the even solution and
the odd solution. The Rodrigues’ type formula is also allocated for the conformable
Chebyshev-I polynomials.
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1. INTRODUCTION
It is well known that the year 1695 is considered as the birthday of the so called field of fractional

calculus. L’Hospital wrote a letter on September 30, 1695 to Leibniz wondering about the notation used in the
publications for the derivative of the function

f(x) = x,
dnf

dxn
.

L’Hospital asked Leibniz the following question: what would the result be if n = 1
2 . Leibniz wrote

back to L’Hospital: an apparent paradox, from which one day useful consequences will be drawn. Since then,
many Mathematicians tried their definitions for a fractional order derivative; most of these definitions are based
on integration formulas . The commonly used definitions are those given by Riemann-Liouville, Caputo, and
Grünwald-Letnikov of non-integer derivatives. These definitions are summarized in the following lines [1–5].
Let n be a positive integer, α ∈ (n− 1, n], and x ≥ a.
− Riemann-Liouville (left-sided) α fractional derivative of f is defined by:

Dα
a [f(x)] =

1

Γ(n− α)

dn

dxn

∫ x

a

(x− ξ)n−1−αf(ξ) dξ,

where Γ(x) is the well known Gamma function.
− Grünwald-Letnikov (left-sided) α fractional derivative of f is defined by:

Dα
a [f(x)] = lim

h→0

1

hα

[n]∑
k=0

(−1)k
Γ(α+ 1)f(x− kh)

Γ(k + 1)Γ(α− k + 1)
.
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− Caputo (left-sided) derivative α fractional derivative of f is defined by:

Dα
a [f(x)] =

1

Γ(n− α)

∫ x

a

(x− ξ)n−1−α d
n

dξn
[f(ξ)] dξ., x ≥ a.

For a complete list of fractional derivatives, see the survey in [2].
An acceptable definition for fractional derivatives should agree with the ordinary derivatives.

As noticed in [3], the only property inherited by all definitions of fractional derivatives is the linearity property;
they counted the following drawbacks of one definition or another: the Riemann-Liouville derivative does not
reproduce the derivative of a constant to be 0. All definitions do not satisfy the product, quotient, and chain
rules. There are other drawbacks for the existing definitions of fractional derivatives.

The well-known Chebyshev differential equation of first kind is given in the form [6–13]:

(1− x2) y′′ − x y′ + n2 y = 0, n ∈ N.

Expanding the solution using a power series around the ordinary point x = 0 yields the well-known Chebyshev
polynomials of first kind, Tn(x). For Multivariate case, see [14–16]. The Chebyshev-I polynomials fulfill the
following orthogonality conditions [6, 7]:∫ 1

−1

Tn(x) Tm(x)√
1− x2

dx = 0, whenever n 6= m. (1)

2. RESEARCH METHOD
In this section, the conformable Chebyshev equation of first kind is defined and solved to give the

conformable Chebyshev functions of first kind. For α ∈ (0, 1], the α conformable derivative of y is denoted by
Dαy; the second α conformable derivative is denoted by DαDαy. Recently, in [3] the conformable derivative
is given in the following definition, see also [4].

Definition Let f : [0,∞) 7→ R, then the conformable derivative of f of order α is defined by:

Dαf(x) = lim
ε→0

f(x+ εx1−α)− f(x)

ε
, x > 0, α ∈ (0, 1). (2)

If f is α differentiable in (0, a), a > 0, and

lim
x→0+

Dαf(x)

exists, then we set
Dαf(0) = lim

x→0+
Dαf(x).

Let a, b, c, p ∈ R and f and g be α differentiable at a point x > 0, then the conformable derivative
satisfies the following properties:

Dα(c) = 0,

Dα(xp) = pxp−α,

Dα(af + bg) = aDαf + bDαg. (3)

It is satisfactory to consider the α conformable derivative for α ∈ (0, 1]. If α ∈ (n, n + 1], n ∈ N ,
then the conformable derivative, if it exist, is defined by

Dαf(x) = Dn
(
Dα−nf(x)

)
.

A fractional power series of α is defined as a series of the form
∞∑
k=0

akx
kα, α ∈ (0, 1]. (4)
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Throughout this paper, let Pnbe the set of all polynomials of degree ≤ n.
For α ∈ (0, 1], we define the conformable Chebyshev differential equation of the first kind by:

(1− x2α) DαDαy − α xα Dαy + α2 n2 y = 0, n ∈ N. (5)

For few applications using the Chebyshev polynomials, see [17–26]. A solution of (5) in a proper
power series of α is considered. Let this solution be given by a conformable power series of α as

y =

∞∑
k=0

ak x
kα.

3. RESULTS AND ANALYSIS
Using the rules of conformable derivatives (3), then the α first and second conformable derivatives are

given by:

Dαy =

∞∑
k=1

α k ak x
(k−1)α,

DαDαy =

∞∑
k=2

α2 k(k − 1) ak x
(k−2)α. (6)

Substituting the proper power series and its conformable derivatives in (5) yields the following equa-
tion:

(1− x2α)

∞∑
k=2

α2k(k − 1)akx
(k−2)α − αxα

∞∑
k=1

α k akx
(k−1)α + α2 n2

∞∑
k=0

akx
kα = 0.

This is further simplified to

∞∑
k=2

α2k(k − 1)akx
(k−2)α −

∞∑
k=2

α2k(k − 1)akx
kα − αxα

∞∑
k=1

αkakx
(k−1)α+

α2n2
∞∑
k=0

akx
kα = 0.

In the last equation, substitute k + 2 for k in the first term to get:

∞∑
k=0

α2(k + 2)(k + 1)ak+2x
kα −

∞∑
k=2

α2k(k − 1)akx
kα −

∞∑
k=1

α2kakx
kα+

∞∑
k=0

α2n2akx
kα = 0.

Rewriting the last equation so that the summations start counting with k = 2 yields:

(2α2a2 + α2n2a0) +
[
6α2a3 − α2a1 + α2n2a1

]
xα

+

∞∑
k=2

[
α2(k + 2)(k + 1)ak+2 − α2k(k − 1)ak − α2kak + α2n2ak

]
xkα = 0.

To compute the values of the parameters of the fractional power series, the coefficients on both sides
are compared. The constant coefficient yields

2α2a2 + α2n2a0 = 0.
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Solving for a2 gives

a2 =
−n2

2
a0. (7)

The coefficient of xα yields

6α2a3 − α2a1 + α2n2a1 = 0.

Solving for a3 gives

a3 = −n
2 − 1

6
a1. (8)

The general term for the coefficient of xkα yields

α2(k + 2)(k + 1)ak+2 − α2k(k − 1)ak − α2kak + α2n2ak = 0.

This is solved for ak+2 to yield:

ak+2 =
k2 − n2

(k + 2)(k + 1)
ak.

This can be rewritten in the form

ak+2 = − (n− k)(n+ k)

(k + 2)(k + 1)
ak. (9)

The fractional power series contains either even or odd terms. Consequently, there are two independent so-
lutions. The first solution is the even-terms solution, and the second solution is the odd-terms solution. Both
solutions diverge at x = ±1. The only interesting solutions are polynomial solutions. For the even terms,
substituting k = 0 in the last formula gives (7) for a2. Substituting k = 2, 4, 6, . . . in the last formula gives
a4, a6, a8, . . . as follows:

a4 =
(n− 2)(n+ 2)

4(3)

n2

2
a0,

a6 = − (n− 4)(n+ 4)

6(5)

(n− 2)(n+ 2)

4(3)

n2

2
a0,

a8 =
(n− 6)(n+ 6)

8(7)

(n− 4)(n+ 4)

6(5)

(n− 2)(n+ 2)

4(3)

n2

2
a0.

The general term looks as follows:

a2k = (−1)k
(n− 2(k − 1))(n+ 2(k − 1))

2k(2k − 1)
· · · (n− 4)(n+ 4)

6(5)

(n− 2)(n+ 2)

4(3)

n(n)

2(1)
a0.

This can be written as follows:

a2k =
(−1)k

(2k)!

k−1∏
i=0

(n− 2i)(n+ 2i) a0, (10)

where
∏

is the product symbol. If we set
a0 = (−1)[

n
2 ]

gives the following conformable Chebyshev polynomials:

T0(x) = 1,

T2(x) = 2x2α − 1,

Conformable Chebyshev differential equation of first kind (Abedallah Rababah)
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T4(x) = 8x4α − 8x2α + 1,

T6(x) = 32x6α − 48x4α + 18x2α − 1,

T8(x) = 128x8α − 256x6α + 160x4α − 32x2α + 1.

Similarly, when the fractional power series contains only odd terms, then the odd terms are given in the
following compact form:

a2k+1 =
(−1)k

(2k + 1)!

k−1∏
i=0

(n− 1− 2i)(n+ 1 + 2i) a1. (11)

If we set
a1 = (−1)[

n
2 ]n

gives the following conformable Chebyshev polynomials:

T1(x) = xα,

T3(x) = 4x3α − 3xα,

T5(x) = 16x5α − 20x3α + 5xα,

T7(x) = 64x7α − 112x5α + 56x3α − 7xα.

To derive a Rodrigues’ type formula for the Chebyshev-I polynomials, Tn(x), a polynomial tn(x) is to be
necessitated that fulfills the Chebyshev orthogonality:∫ 1

−1

tn(x)pn−1(x)√
1− x2

dx = 0, ∀pn−1 ∈ Pn−1. (12)

Rewrite the integrand in (12) in the form

tn(x)√
1− x2

pn−1(x) =

(
dn

dxn
φn(x)

)
pn−1(x)

and integrate the orthogonality conditions by parts n times to get

0 =

∫ 1

−1

(
dn

dxn
φn(x)

)
pn−1(x) dx =

n−1∑
i=0

(−1)iφ(n−1−i)n (x) p
(i)
n−1(x)

]1
x=−1

. (13)

The last formula is valid for any polynomial of degree ≤ n − 1, thus we acquire the following conditions on
φn(x) and its derivatives at x = −1, 1 as follows

φn(−1) = φ′n(−1) = · · · = φ(n−1)n (−1) = 0,

φn(1) = φ′n(1) = · · · = φ(n−1)n (1) = 0. (14)

The polynomial tn(x) is of degree n and thus

0 =
dn+1tn(x)

dxn+1
=

dn+1

dxn+1

(√
1− x2 d

nφn(x)

dxn

)
. (15)

The (15) with the conditions in (14) form a differential equation with 2n boundary conditions and has the
solution

φn(x) = bn
(
1− x2

)n− 1
2 , for some constant bn. (16)

Consequently, the polynomial tn(x) has the form
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tn(x) = bn
√

1− x2 dn

dxn

[(
1− x2

)n− 1
2

]
. (17)

Normalizing
tn(1) = Tn(1)

yields

(−1)n(2n− 1)(2n− 3) · · · (5)(3)(1) bn = 1.

And thus

bn =
(−1)n

(2n− 1)!!
, (18)

where (2n− 1)!! = (2n− 1)(2n− 3)(· · · (3)(1) denotes the double factorial. Since

(2n− 1)!! =
(2n)!

n!2n

thus

bn =
(−2)n n!

(2n)!
. (19)

Thus, the Chebyshev-I polynomials are given by the following Rodrigues’ type formula:

Tn(x) =
(−2)nn!

(2n)!
(1− x2)

1
2
dn

dxn

[
(1− x2)n−

1
2

]
. (20)

The conformable Chebyshev-I polynomials can be expressed by the following Rodrigues’ type for-
mula:

Tn(x) =
(−2)nn!

(2n)!αn
(1− x2α)

1
2 Dnα

[
(1− x2α)n−

1
2

]
, n ∈ N, α ∈ (0, 1]. (21)

It is also interesting to discuss and find a similar generalization to orthogonal polynomials on triangular do-
mains [14].

4. CONCLUSION
In this paper, the conformable Chebyshev differential equation of the first kind is introduced in formula

(5), using the conformable derivative defined in formula (2). Then the explicit form of the conformable Cheby-
shev functions are derived in the form of a power series and a Ridrigue’s type formula is also derived in (20).
We consider the conformable derivative given in formula (2) of a function f(x).
This means that the ordinary derivative f ′(x) exists and f ′(x) = D1f(x). Moreover, Dαf(x) = x1−αf ′(x)
andDαDαf(x) = (1−α)x1−2αf ′(x)+x2−2αf ′′(x) for α ∈ (0, 1]. From these formulas, it is clear that, if the
ordinary Chebyshev polynomials y(x) = Tn(x) are solutions of the ordinary Chebyshev differential equation,
then the functions u(x) = y(xα) = Tn(xα) are solutions of the conformable differential (5).
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