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 This paper presents a new technique for a Takagi-Sugeno (TS) fuzzy 

parallels distribution compensation-PID'S (TSF-PDC-PID'S) to improve  

the performance of egyptian load frequency control (ELFC). In this technique, 

the inputs to a TS fuzzy model are the parameters of the change of operating 

points. The TS fuzzy model can definite the suitable PID control for a certain 

operating point. The parameters of PID'S controllers are obtained by ant 

colony optimization (ACO) technique in each operating point based on an 

effective cost function. The system controlled by the proposed TSF-PDC-

PID’S is investigated under different types of disturbances, uncertainty and 

parameters variations. The simulation results ensure that the TSF-PDC-PID'S 

can update the suitable PID controller at several operating points so, it has a good 

dynamic response under many types of disturbances compared to fixed 

optimal PID controller. 

Keywords: 

Fuzzy  

Parallel distribution  

PID 

Power system control 

Takagi-Sugeno  
Copyright © 2020 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

Mohamed A. Shamseldin, 

Faculty of Engineering and Technology, 

Future University in Egypt,  

90th St, First New Cairo, Cairo Governorate 11835, Egypt 

Email: Mohamed.abelbbar@fue.edu.eg 

 

 

1. INTRODUCTION 

The Egyptian power system consists of different types of generating stations, which can be 

classified into the three types [1]. The first type stations having non-reheat generating units such as gas 

turbine power stations and few steam power stations [2]. The second type, stations having reheat generating 

units such as the majority of thermal stations and combined cycle power stations [3]. The third type,  

the hydro-electric power stations [4, 5]. The Egyptian power system contains seven zones: Cairo, Middle 

Egypt, Upper Egypt, East El-Delta, El-Canal, West El-Delta and Alexandria, as shown in Figure 1. The seven 

zones are strongly tied together forming one area power system [6-10]. 

Each of the first five zones contains both reheat and non-reheat power stations, while the north 

upper Egypt zone contains only reheat power stations and the last zone-south upper Egypt zone-contains only 

hydro power stations. Each zone comprises several power plants (non-reheat, reheat, and hydro power plants 

or a combination of them) [9, 10].The Egyptian power system data including the type and number of 

generating units in each station, the rating and inertia constant of different units, and the inherent reserve in 

each unit are given in [7-9]. The incompatibility between electric power generation and load demand causes  

a frequency deviation in addition to tie-line power deviation in the interconnected power system. Also,  

the large value of frequency deviation reasons several disturbances such as destroying the equipment, 

transmission line overloading and interference with system protection [6]. 

To avoid such problem, several load frequency control (LFC) techniques are presented to keep  

the system frequency at nominal value [1]. The objectives of LFC are to minimize the transient deviations in 

area frequency and tie-line power interchange and to ensure their steady state errors to be zeros [2]. Although 
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the active power and reactive power have combined effects on the frequency and voltage, the control 

problem of the frequency and voltage can be decoupled [3]. The frequency is highly dependent on the active 

power while the voltage is highly dependent on the reactive power [4]. According to the most recent 

research, several control strategies were implemented in the LFC loops of different power systems [5]. 

The main disadvantage of integral LFC was the poor dynamic response of the system while high 

gain may cause instability for the system [8]. The conventional PID controllers for LFC were applied on 

several engineering applications due to their structure simplicity and easy to implementation [9]. Moreover, 

the PID controllers are suitable for on-line applications due to its simple calculations and its fast  

response [10]. The PID controllers have a good performance for a certain operating point while it may give 

a poor response at change the operating point for the system. In addition, it cannot deal with the system 

nonlinearity and uncertainty [11]. 

To develop the performance of the PID controllers, several approaches based on tuning algorithms 

have been proposed. The tuning algorithms of PID gains include the traditional and intelligent adjustments. 

The famous traditional method is the Ziegler-Nichols that suggested rules for obtaining the proper PID 

controller parameters [12]. Recently, several optimization techniques (such as genetic algorithm, particle 

swarm optimization, simulating annealing, evolutionary programming, bacterial foraging, ant colony and 

agent reinforcement learning) have been applied to power system to tune the PID controllers for LFC system 

as promising new tools to improve the performance of the controller for certain operating condition [13].  

The previous studies use the fuzzy logic control for nonlinear systems [14]. Especially, the TS fuzzy 

model has been usually subjected to the control design of nonlinear systems [15], since it can merge  

the advantages of both fuzzy logic theory and linear system theory [16]. The Fuzzy logic theory aids us to use 

qualitative [17], linguistic information about a complex nonlinear system to execute the task of the modeling and 

control design into a group of linear systems [18]. 

Different fuzzy techniques such as fuzzy PID, fractional-order fuzzy PID, fuzzy factional-order PID 

tuned via relative rate observer for the ELFC were proposed in [19]. Using these techniques, different 

changes in the system operating points and parameter variations under drives disturbances were implemented 

to test the validities of the controller [20]. The operation of the fuzzy techniques based on self-tuning to 

update scaling factor of the fuzzy normalizing gains during system operating points [21].  
In this paper, it is assumed that the ELFC controlled system has different optimal PID controllers 

corresponding to their operating points [22]. The parameters of PID controllers have been obtained using  
the ACO technique according to an effective cost function [23]. For each operating point the system is 
controlled by optimal PID and denotes by a linear subsystem [24]. A new technique of parallel distribution 
compensation PID controllers based on TS fuzzy mechanism are combined of these linear systems together 
to obtain the overall complex model and control design [25]. Although the fuzzy controller is constructed 
using a certain operating point while the feedback gains should be estimated at all operating conditions to 
guarantee the global stability and control performance [26, 27]. The TSF-PDC-PID is designed to select  
the suitable OPID controller according to operating point condition for Egyptian load frequency control 
(ELFC) [28-30]. 

 

 

 
 

Figure 1. Typical single-line diagram of Egyptian power system [10] 
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2. THE EGYPTIAN LFC SYSTEM  

The EPS’s total installed generation capacity and peak load were, respectively, about 22500 MW 

and 19740 MW in 2008 [7]. The EPS was incorporating about 180 generating units belonging to the following 

categories [8]:  

 None reheat generating units represented by gas turbine power stations and few steam power stations 

which is about 24% of the installed capacity [9].  

 Reheat generating units represented by the majority of thermal stations and combined cycle power station 

which is about 62% of the installed capacity [10].  

 Hydroelectric power stations which is about 14% of the installed capacity [11]. 

The national energy control center NECC of the Egyptian Electricity Authority has developed 

a dynamic power frequency model for the EPS [12]. The NECC model is originally built for solving load 

shedding problems and considers only the effect of primary reserve. The EPS consists of seven strongly tied 

zones. These zones have not considered any interconnection details and the study is carried out based on 

single area power system model [12]. The validity of the model has been tested through two different 

generator outage contingencies in two different loading conditions [28]. 

Figure 2 shows the block diagram of the Egyptian Power System LFC model as represented by 

Simulink [10, 12]. The parameters of this model are divided into two sets. The first set of parameters does not 

depend on system operating conditions. Table 1 lists the values of those parameters as estimated by  

NECC [7-12]. The other set of parameters changes with time according to the operating condition. The data 

required to calculate the changing parameters are concerned with the data of each generator including:  

status (ON or OFF), type of unit (non reheat, reheat, or hydro), unit rating (MW), unit output (MW) for  

the operating condition under study, inertia of the unit, and the spinning reserve of the unit in percentage of 

the unit rating. 

 

 

 
 

Figure 2. The block diagram of the Egyptian power system LFC model in Simulink representation 

 

 

The Simulink model considers the generating rate constraints GRC for different generating units. 

The applied values for GRC are 0.1 p.u MW/min and 0.2 p.u MW/min. for reheat turbines and non reheat 

turbines, respectively. The GRC of hydro plants is neglected since its actual value is much greater 

corresponding to the time durations of practical disturbances. Where the NECC in Egypt estimates the system 

parameters values, which are used in the nonlinear model of the EPS are given with per unit in Table 1 [9]. 
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Table 1. Egyptian LFC parameters 
 

Parameter Value Parameter Value Parameter value 

D 0.028 R1 2.5 Tw 1.0 
T1 0.4 R2 2.5 RL 0.8 
T2 0.4 R3 1.0 TL 2.5 
Tb 6 Td 5   
M 0.5 T3 90   

 
 

Four loading conditions of the EPS are considered to design the ACO-based PID gains. These four 
loading conditions represent the max and min loads in two daily load curves of the EPS in 2008 [7], which 
are the two days of the max water discharge Monday 30/6/2008 and the min water discharge Tuesday 
8/1/2008 from hydro power plants [8]. Four MATLAB m-files are used to calculate the changing parameters 
of the Simulink model [9]. Each m-file contains 6 data sets for each of the 180 generating units installed at 
2008 [10]. The first one indicates whether the unit is ON or OFF, while the second one is for the generating 
unit type [11]. The third and the fourth are for the rating and operating MW of the unit. The fifth and  
the sixth are for the unit inertia and the unit reserve in percent of its rating. Table 2 shows the calculated 
parameters out of the four m-files for the four considered operating conditions [12]. 
 

 
Table 2. Operating conditions of EPS at 2008 

Operating point H Pn1 Pn2 Pn3 Pc1 Pc2 Pc3 

1 5.7096 0.2529 0.6107 0.1364 2.87 6.51 1.25 
2 6.0168 0.3002 0.5200 0.1798 2.95 6.73 2.18 
3 5.8552 0.2433 0.6179 0.1389 3.24 7.12 2.38 
4 6.1452 0.3335 0.5455 0.1210 3.36 8.07 6.05 

 

 

3. THE PROPOSED CONTROLLER 
This section illustrates the design steps of proposed the parallel distributed compensation-PID'S to 

improve the performance the frequency (∆f) and the controllers outputs of Egyptian load frequency control system. 
 

3.1.  The parallel distributed compensation-PID 'S 
The parallel distributed compensation (PDC) offers a procedure to design a fuzzy controller from  

a given T-S fuzzy model [25]. To realize the PDC, a controlled object (nonlinear system) is first represented 
by a T-S fuzzy model [26]. In the PDC design, each control rule is designed from the corresponding rule of  
a T-S fuzzy model [27]. The constructing following fuzzy controller via the PDC is given by [28]: 
Control Rule i: 
if  
 

𝑍𝐼(𝑡) 𝑖𝑠 𝑀𝑖𝐼 … . 𝑎𝑛𝑑 𝑍𝑃(𝑡) 𝑖𝑠 𝑀𝑖𝑃   𝑡ℎ𝑒𝑛  𝑢(𝑡) = 𝑢(𝑖) = 𝑘𝑝
(𝑖). 𝑒 + 𝑘𝑖

(𝑖). ∫ 𝑒 𝑑𝑡 + 𝑘𝑑
(𝑖). ∆𝑒 (1) 

 

where     𝑖 = 1,2, … 𝑟   
For building the model using a TS fuzzy model, the ranges of each parameter (pn1, pn2, pn3) 

according to the Table 2 divides to named membership functions, as shown in Figures 3-5. The membership 
functions are assumed to be overlapped triangular shapes that have their middle vertexes positioned at 
the given crisp values and in a manner that assures that at any other crisp value is covered by exactly 2 
membership functions. 

 

 

  
 

Figure 3. Membership functions for pn1 
 

Figure 4. Membership functions for pn2 
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Figure 5. Membership functions for pn3 

 

 

The Steps of controller design: 

 Calculate the weight for each rule as follows: 
 

𝑇ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖𝑡ℎ 𝑟𝑢𝑙𝑒 𝑖𝑠 𝑤𝑖 = min  (𝑚𝑓1(𝑝𝑛1), 𝑚𝑓2(𝑝𝑛2), 𝑚𝑓3(𝑝𝑛3))       (2) 

 

The ith weight is achieved by using triangle functions and a min block as seen in Figure 6 product block 

can also used instead of min): 

 Calculate the output of the controller as demonstrated in Figure 7 by implementing the following: 
 

𝑢 =
∑ (𝑢(𝑖). 𝑊𝑖)

𝑟
𝑖=1

∑ 𝑊𝑖
𝑟
𝑖=1

           (3) 

 

Let's take for example, Rule 1: 

IF pn1 is about 0.2529 (the value of pn1 that corresponds to rule 1) AND pn2 is about 0.6107  

(the value of pn2 that corresponds to rule 1) AND pn3 is about 0.1364 (the value of pn3 that corresponds to 

rule 1) then, 
 

𝑢 = 𝑢(1) = 1.8912 𝑒 + 0.088697 ∫ 𝑒 𝑑𝑡 + 0.9733. ∆𝑒 (4) 

 

Figure 8 shows the operation of the TS Fuzzy model for obtaining a best choice of variations of operating 

point operation. The operation is verifying (3). 

 

3.2.  The ant colony optimization algorithm (ACO) 

The ant colony optimization algorithm (ACO) is a probabilistic technique to be subjected to solve 

engineering problems to can find out suitable paths through graphs by decreasing the computational effort [31]. 

The first application, such algorithm was directed to search for an optimal path in a graph, based on  

the behavior of ants looking for a path between their colony and a source of food. In the environmental,  

ants initially search randomly and upon finding food return to their colony while laying down pheromone 

trails [32]. If other ants find such a path, they do not travel at random, but they follow the trail instead, 

returning and reinforcing such path if they eventually find food [33]. Over time, the pheromone trail begins 

to evaporate yielding to reducing its attractive strength [34]. The ant spends more time to travel down  

the path and back again, the pheromones should evaporate with time [35]. Accordingly, a short path gets 

marched over more frequently and thus the pheromone density becomes higher on shorter paths than longer 

ones [36]. Figure 9 demonstrates the behavior of real ants in finding the source of food. 

In this method, the actual closed-loop specification of the system combined with the controller, 

𝑡𝑟, 𝑀𝑝, 𝑡𝑠, 𝑎𝑛𝑑 𝑒𝑠𝑠 are used to evaluate the fitness function. This is done by summing the squares of  

the errors between actual and specified specifications as given below [37]. 
 

J =
1

[𝐶1(𝑡𝑟 − 𝑡𝑟𝑑) + 𝐶2(𝑀𝑝 − 𝑀𝑝𝑑) + 𝐶3(𝑡𝑠 − 𝑡𝑠𝑑) + 𝐶4(𝑒𝑠𝑠 − 𝑒𝑠𝑠𝑑)
 (5) 

 

Where, c1: c4 are positive constants (weighting factor), their values are chosen according to prioritizing their 

importance, (trd) is the desired rise time, (Mpd) is the desired maximum overshoot, (tsd) is the desired settling 

time, and (essd) is the desired steady state error [38-42]. Table 3 illustrates the calculated optimal values of 

the tuned ACS-PID's using cost function given by (5). 
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Figure 6. Calculating the weight of one fuzzy rule 

 

 

 
 

Figure 7. The block diagram of the PDC PID controller 
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Figure 8. Best choice of operating points using TS fuzzy model 
 

 

 
 

Figure 9. Ants from nest to the source of food 

 

 

Table 3. The obtained PID’S controller parameters optimized by Ant colony 
Operating point Controller kp ki kd 

1 PID1 1.8912 0.088697 0.97333 

2 PID2 1.8271 0.089623 0.96467 
3 PID3 1.5074 0.059246 0.958 

4 PID4 1.2144 0.093972 0.97133 

 

 

4. THE SIMULATION RESULTS 

The simulation results are obtained using MATLAB Toolbox. Different types of disturbances are 

implemented to ELFC to show the effectiveness of the TSF-PDC-PID'S. Many cases under drives 

disturbances with different operating points, parameter variation and parameter uncertainty are performed. 
 

4.1.  Case 1: Step disturbance ΔPd = 5%  

In this test, the controlled of ELFC operates at operating point No. 1 with a 5% step disturbance is 

applied to investigate the proposed controllers (the ACS-PID 1 and the TSPDC-PID 1). ACS-PID 1 means 

that OPID obtained from ELFC offline using ACS optimization at operating point No. 1. The dynamic 

response of the frequency deviation ∆F and the control input are displayed in Figure 10. It is noted that  

the ACS-PID -1 results are identical with TSPDC-PID 1 at the same operating point. Moreover, the outputs 

of the controllers (the ACS-PID 1 and the TSPDC-PID 1) have the same response significantly. This verify 

that TSF-PDC-PID'S operates with high quality as compared with ACS-PID 1. 
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(a) (b) 

 

Figure 10. System dynamic responses case 1, (a) frequency deviation response and  

(b) control output response 

 
 

4.2.  Case 2:  Trapezoidal change in the disturbance ∆Pd 

This case investigates the proposed controllers (the ACS-PID 1 and the TSPDC-PID 2) when  
the operating point changes from 1 to 2. ACS-PID 1 means that ELFC operates with operating point no. 2 

while the ACS-PID 1 is still unchanged. During the simulation the Pd increases gradually to 2% within 15s 
and then, its value is still fixed from range 15s to 37s and finally, it decreases regularly to zero as shown in 

Figure 11(a). The frequency f responses and controller outputs are shown in Figures 11(b) and (c), 
respectively. Clearly, the system response using TSPDC-PID 2 has a small settling and rise time with low 
overshoot compared to the ACS-PID 1. 

 

 

 
(a) 

  
(b) (c) 

 

Figure 11. System dynamic responses case 2, (a) load disturbance, 

(b) frequency deviation response and (c) control input response 
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4.3.  Case 3: Step decrease (step-down) in ∆Pd  

In this test, the ELFC operates at operating condition No. 3 with a constant disturbance of 3% is 

applied for 37s then a variation in ∆Pd (step decrease to 1%) as shown in Figure 12 (a) is subjected to drive  

the system with each of the controllers; ACS-PID 1 and TSPDC-PID 3. The performance of frequency ∆f and 

the controller outputs are shown in Figures 12 (b) and 12 (c), respectively. As noticed, the system response 

with TSPDC-PID 3 gives the fastest response (small settling and rise time with low overshoot as compared to 

the others).  

 

 

 
(a) 

 

  
(b) (c) 

 

Figure 12. System dynamic responses case 3, (a) load disturbance, 

(b) frequency deviation response and (c) control output response 

 

 

4.4.  Case 4: Comparison between ACS-PID 1 and PDC-PID 3 through tracking-response 
The disturbances of ∆Tm and ∆Vref represented by a 0.05 step change from zero to 60 seconds, 

then, they decreased to 0.03 from 60 seconds to 110 seconds and finally, they reduced to 0.01 as shown in 

Figure 13(a). Also, Figures 13(b) and (c) show the system responses driven by TSPDC-PID 3 and ACS-PID 

1 controller. It is seen that the TSPDC-PID 3 overcomes these variations and gives a good response where 

a small settling time is achieved. The control output (∆u) of the TSPDC-PID 3 has a good performance that is 

characterized by similar responses of tracking references with faster responses. 

 

4.5.  Case 5: Parameters variation  

To test the robustness of the proposed controller associated with system parameters change,  

the values of R1, R2, R3, T1, T2, Tw, Th and Td will increase by 40% from their nominal values as shown in 

Table 4. The simulation results are implemented at operating point No. 4. From Figure 14, it is clear that  

the system responds smoothly with some oscillations during the disturbances is applied. However,  

the TSPDC-PID 4 has a small effect for parameter changes where the system accommodates with low 

overshoot and faster response than the ACS-PID1. 
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(a) 

 

  
(b) (c) 

 

Figure 13. System dynamic responses case 4, (a) load disturbance, 

(b) frequency deviation response and (c) control output response 

 

 

Table 4. Egyptian LFC parameters (Normal) and (+40%) 
Parameters variation Normal Value Parameters 

3.5 2.5 R1 

3.5 2.5 R2 

1.4 1.0 R3 

0.56 0.4 T1 

0.56 0.4 T2 

8.4 6 Th 

 7 5 Td 

 

 

 
(a) 

 

Figure 14. System dynamic responses case 5, (a) load disturbance 
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(b) (c) 

 

Figure 14. System dynamic responses case 5, (b) frequency deviation response  

and (c) control output response (continue) 

 

 

4.6.  Case 6: Uncertainty in parameters  

In this test, a comparison between the system driven by ACS-PID 1 and TSPDC-PID 2 under  

a relative disturbance Pd = 2% is applied during 5 ≤ t ≤ 30 seconds and Pd = 0% during 0 ≤ t ≤ 5 seconds. 

With different system parameter values, is carried out. The system is operated by the EPS-LFC with 

operating point No. 2. The parameters are changed as follows: from 0-60 (40% Value), 60-120 (-40% Value), 

120-180 (40% Value), 180-200 (+40% Value), as shown in Tables 5-7 and Figure 15. The time response of 

the frequency deviation ∆F and the control input deviation ∆U are shown in Figure 16. Again, the proposed 

controller TSPDC-PID 2 shows a great improvement in the system frequency than the other two with fewer 

overshoots and shorter settling time. The control input ∆U shows less effort made as compared to the other two. 

 

 

Table 5. Egyptian LFC parameters (Normal) 

 

 

 

Table 6. Egyptian LFC parameters (+40%) 
Parameter value Parameter value Parameter Value 

D 0.028 R1 3.5 Tw 1 
T1 0.56 R2 3.5 RL 0.8 

T2 0.56 R3 1.4 TL 2.5 

Th 8.4 Td 7   
M 0.5 T3 90   

 

 

Table 7. Egyptian LFC parameters (-40%) 
Parameter value Parameter value Parameter Value 

D 0.028 R1 1.5 Tw 1 

T1 0.24 R2 1.5 RL 0.8 
T2 0.24 R3 0.6 TL 2.5 

Th 3.6 Td 3   

m 0.5 T3 90   

 

 

 
 

Figure 15. Parameters variation 

Parameter value Parameter value Parameter Value 

D 0.028 R1 2.5 Tw 1 

T1 0.4 R2 2.5 RL 0.8 

T2 0.4 R3 1.0 TL 2.5 
Th 6 Td 5   

M 0.5 T3 90   
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(a) (b) 

 

 
(c) 

 

Figure 16. System dynamic responses case 6, (a) load disturbance, (b) frequency deviation response  

and (c) control output response 

 

 

5. CONCLUSION 

A new strategy for a Takagi-Sugeno fuzzy parallel distribution compensation- PID'S (TSF-PDC-

PID'S) was implemented to enhance the dynamic response of Egyptian load frequency control (ELFC).  

The parameters of the operating points of Egyptian load frequency considers as input to a Takagi-Sugeno 

fuzzy model. The proper optimal PID controller was selected using the Takagi-Sugeno Fuzzy model for  

a certain operating point. The ACS optimization algorithm used to optimize the parameters values of PID'S 

controllers at different operating points according to the selected cost function. Several types of disturbances, 

uncertainty and parameters variations applied on the system to ensure the validation of proposed controller. 

The simulation results provided that the parallel distribution compensation- PID'S can select the appropriate 

PID controller at different operating points so, it has a good performance through different kinds of disturbances 

compared to fixed PID controller. 
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