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 The detection of paroxysmal atrial fibrillation (PAF) is a fairly complex 

process performed manually by cardiologists or electrophysiologists by 

reading an electrocardiogram (ECG). Currently, computational techniques 

for automatic detection based on fast fourier transform (FFT), Bayes optimal 

classifier (BOC), K-nearest neighbors (K-NNs), and artificial neural network 

(ANN) have been proposed. In this study, six features were obtained based 

on the morphology of the P-Wave, the QRS complex and the heart rate 

variability (HRV) of the ECG. The performance of this methodology was 

validated using clinical ECG signals from the Physionet arrhythmia database 

MIT-BIH. A feedforward neural network was used to detect the presence  

of PAF reaching a general accuracy of 97.4%. The results obtained show that 

the inclusion of the information of the P-Wave, HRV and QR Electrical 

alternans increases the accuracy to identify the PAF event compared to other 

works that use the information of only one or at most two of them.  

Keywords: 

Artificial neural network 

Digital signal processing 

Electrocardiogram 

Features extraction 

HRV 

Methodology for detection 

Paroxysmal atrial fibrillation 

P-Wave 

QR electrical alternans 

Copyright © 2020 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

Henry Castro, 

Faculty of Engineering, Bioengineering, 

Universidad Santiago de Cali, 

Calle 5 # 62-00 Cali, Colombia. 

Email: hecastro1@gmail.com 

 

 

1. INTRODUCTION  

Atrial Fibrillation (AF) is the most clinically diagnosed cardiac arrhythmia, both in outpatients and 

hospitalized patients. Its prevalence and incidence increase with age reaching epidemic characteristics  

in senior citizens. The indicators of progress of paroxysmal atrial fibrillation (PAF) to a persistent  

or permanent one have not been fully identified, therefore, detecting an AF in its early form is important  

to avoid the risks of a stroke, heart failure and / or mortality [1]. 

The process of detecting an AF is performed manually by a cardiologist or electrophysiologist  

by interpreting the electrocardiogram (ECG) records. This process is highly demanding due to both  

the number of records to be analyzed and the fact that sometimes it is necessary to examine each beat 

individually to ensure the correct identification of the cardiac pathology. Thus, an automated method  

for classification and detection would improve the diagnostic and prevention of an AF [2-5]. 

To date, different authors have proposed methods that automate the detection of PAF. Some authors 

have reached a detection accuracy between 70% and 92% [6-9] using the characteristics of the P wave [10], 

others propose the use of heart rate variability obtaining an accuracy between 81.2% and 94.7% [7, 11-18], 

finally, [9] proposes the use of QR electrical alternation reaching an accuracy of 70%. According to this,  

the problem of appropriately detecting a FAP is not fully solved yet, due to results achieved by these methods 

are not definitive and can still be improved. So, in this paper a new methodology is proposed to address  
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this problem integrating multivariate statistics [19] on the characteristics of the P wave, heart rate variability 

and QR electrical alternation. The accuracy obtained using this new method was 97.4%. 

A PAF is characterized by irregular movement of the left atrium that prevents the proper blood flow 

into the circulatory system and also by a reduction of the time that the ventricles valves have to receive and 

send blood to the lungs. In an ECG signal, these two characteristics have an impact in the morphology  

of the P-Wave and in the distance between the P-Wave and the R-Wave see Figure 1, therefore,  

it is important to locate the characteristic points P-Onset, P-Offset, P Width and P Height, as well as the PR 

segment, heart rate variability (HRV) and QR electrical alternation to fully describe a PAF. 
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Figure 1. Characteristic of an ECG signal 

 

 

Different authors relied on one or two characteristics for the detection of PAF as illustrated  

in Table 1. In this paper, unlike other works reported in the literature, it is proposed to use 

the information of the three characteristics to cover all the symptoms of the PAF and extract six relevant 

features to improve the detection rates. Sensitivity, specificity and accuracy were used as performance 

metrics for the evaluation of the methodology proposed here. Table 1 lists some works that address the same 

theme and the characteristics used. 

 

 

Table 1. Characteristics used for the detection of PAF 
Reference P-Wave HRV QR Electrical alternans 

[11] ✗ ✓ ✗ 

[6] ✓ ✗ ✗ 

[7] ✓ ✓ ✗ 

[8] ✓ ✗ ✗ 

[9] ✓ ✗ ✓ 

[12] ✗ ✓ ✗ 

[16] ✗ ✓ ✗ 

[15] ✗ ✓ ✗ 

[14] ✗ ✓ ✗ 

[13] ✗ ✓ ✗ 

[17] ✗ ✓ ✗ 

[18] ✗ ✓ ✗ 

Proposed method ✓ ✓ ✓ 

 

 

2. RESEARCH METHOD 

In the proposed methodology, a previously digitized ECG signal is received as input. The signal  

is processed in four main stages (Preprocessing, characteristic points extraction, features extraction, 

detection) and it is determined whether or not a PAF exists, as illustrated in Figure. 
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Figure 2. Block diagram of proposed method 

 

 

2.1.  Preprocessing 

The first part of the algorithm is prepared to receive as input the lead II of a standard 12-lead ECG 

signal. Due to the variable nature of the sampling frequency of the ECG signal, an 1170Hz resampling  

is performed to ensure a standard frequency for the subsequent application of a low-pass finite impulse 

response digital filter (FIR) and to allow each of the characteristic points of the signal to be established more 

precisely. This stage comprises three steps: Resampling, moving average and filtering. 

 

2.1.1. Resampling 

The proposed methodology uses six features for the recognition of atrial fibrillation that are based 

on the morphology of the signal. Therefore it is very important to preserve the frequency content as well  

as the shape of the signal during processing. For this reason, it is required to be represent each beat  

by a sufficient number of points that ensure a good detection and a good feature extraction. 

The height and width of the P-Wave are features that need a good morphological representation, 

thus, in this paper we considered using a resample frequency to ensure that the P-Wave has at least  

50 samples.Considering that there are documented cases of patients with PAF at the age of 22 [20],  

the maximum heart rate (𝐻𝑅𝑉𝑚𝑎𝑥 ) considered in this methodology was calculated using the proposed (1). 

The result obtained was 168 beats per minute (BPM). 

 

𝐻𝑅𝑉𝑚𝑎𝑥 = (220 − 𝑎𝑔𝑒) ∗ 85% (1) 

 

Subsequently, it was found that the duration of the P-Wave is 43 ms using 𝐻𝑅𝑉𝑚𝑎𝑥  on (2). 

 

𝑃𝑊𝑎𝑣𝑒𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
60 𝑠

𝐻𝑅𝑉𝑚𝑎𝑥 
∗ 12% (2) 

 

Finally, a resampling frequency (𝐹𝑟𝑠) of approximately 1170 Hz was obtained through (3) by relating the 50 

samples that represent the P-Wave with its duration. 

 

𝐹𝑟𝑠 =
50 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑃𝑊𝑎𝑣𝑒𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
 (3) 

 

2.1.2. Moving average 

ECG signals normally have a baseline wander that must be corrected to reference the voltage levels 

of the signal to a zero DC level. The moving average given in (4) is commonly used to do this which requires 

specifying a window size (𝑀). This paper proposes to obtain M based on the most common heart rate value 

present in the signal. To find this value, we obtain the frequency with the highest energy value in the power 

spectral density of the signal bounded between 60 bpm and 200 bpm. Therefore, M is defined as the inverse 

of the frequency with the highest energy value rounded to the nearest even value. This is shown in (5).  

Said frequency was obtained applying the fast Fourier transform (FFT) to the signal autocorrelation  

given in (6). 

 

�̂�(𝑛) =
1

𝑀
∑ 𝑥(𝑛 + 𝑖)

𝑀

2

𝑖=−
𝑀

2

 (4) 
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𝑀 =
1

arg max |𝐹𝐹𝑇(𝑅𝑥𝑥(ℓ))| 
     𝐹𝑟𝑠 ∗

60 𝑏𝑝𝑚

60 𝑠
< 𝑀 < 𝐹𝑟𝑠 ∗

200 𝑏𝑝𝑚

60 𝑠
 (5) 

 

𝑅𝑥𝑥(ℓ) = ∑ 𝑥(𝑛)𝑥(𝑛 − ℓ)𝑁−1
𝑛=0  (6) 

 

2.1.3. Filtering 

An ECG signal is represented by (7), where, 𝑦(𝑛) is the signal generated by cardiac activity with  

a frequency range of 2.5 Hz and 45 Hz [21], r (n) is electrical noise and white noise with frequencies greater 

than 45 Hz and b (n) is baseline noise with frequencies less than 2.5 Hz [22]. 

 

𝑥(𝑛) = 𝑦(𝑛) + 𝑟(𝑛) + 𝑏(𝑛) (7) 

 

Noise 𝑏(𝑛) was already removed using moving average in the last step. In this step, a low-pass filter with  

a cutoff frequency of 45 Hz was designed to remove the noise 𝑟(𝑛). 

The preprocessing stage is summarized in Algorithm 1. 

 
Algorithm 1. Preprocessing. 

Begin Load Signal, Fs 

Initialize S_res, S_norm, S_ac, Sf, M, Sm, S_filter 

S_res   Resample (Signal, 1170) 

S_norm   Normalize (S_res, -1,1) 

S_ac   Autocorrelation (S_norm) 

Sf   FFT (S_ac) 

M   arg maxf ( |Sf| ) s.t. 60 bpm < f < 200 bpm 

Sm   MovingAverage (S_res, M) 

S_filter   lowpass(Sm, 45 Hz) 

End 

 

2.2.  Characteristic point detection 

In the second stage of the methodology the peaks P, Q, R, S, P-Onset, P-Offset and Q-Onset were 

found on each beat of the ECG signal. These points, shown in Figure 3, will later be used to extract  

the features of the beat. 
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Figure 3. Characteristic points of an ECG signal 

 

 

2.2.1  R-Wave peak 

In this step, a moving window four times the size M found in section 2.1.2 was used to find  

the R-Wave peak. The window moves throughout the ECG signal finding peaks that exceed 0.6 times  

the maximum amplitude in the window and have a separation between them of at least 353 ms, that is,  

the heart rate does not exceed the maximum value chosen in this methodology of 170 bpm. 
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2.2.2. P-Wave peak 

The P-Wave peak was found based on the location of two consecutive R-Wave peaks. As seen  

in Figure 4, The P-Wave peak is the maximum value found within a defined search area between 70% and 

90% of the distance between two consecutive R-Wave peaks. 
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Figure 4. P-Wave peak search area 

 

 

2.2.3. Q-Wave peak 

The Q-Wave peak is characterized by a negative peak located just before the appearance  

of the R-Wave, for this reason, a derivative was used as a search method for this peak. According to 

the proposed (8), the value of the derivative is calculated on each sample one at a time before the R-Wave.  

This process is done until a derivative with a negative value is found as seen in Figure 5. In this paper  

we propose a distance of eight samples to be used in order to avoid small variations that could have  

a negative derivative in the path. 

 
𝑑𝑥(𝑛)

𝑑𝑛
=

𝑥(𝑛+4)−𝑥(𝑛−4)

8
 (8) 
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Figure 5. Q-Wave peak. red dots represent locations where the derivative was evaluated 

 

 

2.2.4. S-Wave peak 

The identification of the S-Wave peak was carried out following a procedure similar to that used 

with the P-Wave peak. This time, the minimum value was sought within a defined area between 0% and 10% 

of the distance between two consecutive R peaks as is shown in Figure 6. 
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Figure 6. S-Wave peak search area 

 

 

2.2.5. P-Onset 

The P-Onset point is defined as the sample where the P-Wave starts and ideally has a value of 0 mV. 

This point was found by evaluating each one of the samples prior to the P-Wave peak one by one until  

the condition set in the proposed (9) was met. This equation considers the fact that, in practice,  

the P-Onset has a positive value higher than the baseline, therefore, a value of 0.15 times the amplitude  

of the P peak was used to find it. 

 
1

5
∑ 𝑦(𝑛 + 𝑖)2

𝑖=−2 < 0.15𝑃𝑃𝑒𝑎𝑘 (9) 

 

2.2.6. P-Offset 

This characteristic point is defined as the sample where the P-Wave ends. To find this point,  

we proceeded in a similar way to the method used to find the P-Onset with the difference that the samples 

evaluated are located after the P-Wave peak. 

 

2.2.7. Q-Onset 

Q-Onset is the sample where the Q-Wave begins. To find this characteristic point, a similar method 

used in section 2.2.3 was considered. Each of the samples before the Q-Wave peak is calculated one by one 

on the derivative described by the proposed (10) until a positive value is found. In this case, a sensitivity 

greater than that required to find the Q-Wave peak is required, thus the distance was reduce from eight to 

four samples. 

 
𝑑𝑥(𝑛)

𝑑𝑛
=

𝑥(𝑛+2)−𝑥(𝑛−2)

4
 (10) 

 

The characteristic point detection stage is summarized in Algorithm 2. 

 
Algorithm 2. Characteristic point detection. 

Begin Load S_filter, M 

Initialize limMin, limMax, tempWin, Vmax, Rpeaks 

//Find R-Wave peaks 

For i  0..length(S_filter), +M 

 limMin  max(i-2*M) 

 limMax  min(i+2*M) 

tempWin  S_filter[limMin..limMax] 

 Vmax  max(tempWin) 

 While True 

 Find the amplitude and location of the HighestPeak in tempWin 

If HighestPeak.amplitude < 0.6*Vmax 

 Break 

Else If Distance between HighestPeak.location and any peak in 

Rpeaks.location < 353ms 

 Break 
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Else 

 Insert HighestPeak in Rpeaks 

 Delete HighestPeak from tempWin 

End If 

 End While 

End For 

//Find P-Wave peaks 

Initialize Peak1, Peak2, RR, Peak, Ppeaks 

For each two consecutive peaks in Rpeaks 

 Peak1  First peak 

 Peak2  Second peak 

 RR  Peak2.location – Peak1.location 

 Peak  max( S_filter[Peak1+0.7*RR..Peak1+0.9*RR]) 

 Insert Peak in Ppeaks 

End For 

// Find Q-Wave peaks 

Initialize dQ, j, Qpeaks  //dQ means the derivative at Q 

For each Peak in Rpeaks 

 dQ  1 

 j  0 

 While dQ > 0 

  j  j+1 

  dQ  (S_filter[Peak.location – j+4] – S_filter[Peak.location – j – 4])/8 

 End While 

 Insert S_filter[Peak.location – j] in Qpeaks 

End For 

// Find S-Wave peaks 

Initialize Peak1, Peak2, RR, Peak, Speaks 

For each two consecutive peaks in Rpeaks 

 Peak1  First peak 

 Peak2  Second peak 

 RR  Peak2.location – Peak1.location 

 Peak  min( S_filter[Peak1..Peak1+0.1*RR]) 

 Insert Peak in Speaks 

End For 

// Find POnset 

Initialize j, temp, POnset 

For each Peak in Ppeaks 

 temp  Peak.location 

 While temp >= 0.15*Peak.amplitude 

  j  j + 1 

  temp  mean( S_filter[Peak.location -j-2.. Peak.location -j+2] 

 End While 

 Insert S_filter[Peak – j] in POnset 

End For 

// Find POffset 

Initialize j, temp, POffset 

For each Peak in Ppeaks 

 temp  Peak.location 

 While temp >= 0.15*Peak.location 

  j  j + 1 

  temp  mean( S_filter[Peak.location +j-2.. Peak.location +j+2]) 

 End While 

 Insert S_filter[Peak + j] in POffset 

 End For 

// Find QOnset 

Initialize dQ, j, QOnset 

For each Peak in Qpeaks 

 dQ  1 

 j  0 

 While dQ < 0 

  j  j+1 

  dQ  (S_filter[Peak.location – j+2] – S_filter[Peak.location – j – 2])/4 

 End While 

 Insert S_filter[Peak.location – j] in QOnset 

End For 

End 

 

2.3.  Features extraction 

Once the characteristic points have been identified, the six features presented on the third stage of 

the methodology described in Figure 2 are extracted for each beat of the ECG signal. The first three features 

P-Wave height, P-Wave width and PR segment are the magnitudes of the P-Wave peak, the difference 

between P-Offset and P-Onset, and the difference between Q-Onset and P-Offset respectively. As for 
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the fourth feature P-Wave Area, it is defined as the area under the curve between P-Onset and P-Offset. 

Considering that the ECG signal is discrete, a trapezoidal numerical integration is used as an approximation 

to the integral of the signal between these two points. The (11) describes this condition. 

 

∫ 𝑥(𝑡)𝑑𝑡
𝑃 𝑂𝑓𝑓𝑠𝑒𝑡

𝑃 𝑂𝑛𝑠𝑒𝑡
≈

1

2
∑

𝑥(𝑛)+𝑥(𝑛+1)

𝐹𝑟𝑠

𝑃𝑂𝑓𝑓𝑠𝑒𝑡

𝑛=𝑃𝑂𝑛𝑠𝑒𝑡
 (11) 

 

The fifth feature called Heart Rate Variability (HRV) is the number of beats per minute (bpm) that 

would be generated according to the distance between two consecutive R-Wave peaks. The (12) describes  

this process. 

 

ℎ(𝑖) =
60

𝑅𝑃𝑒𝑎𝑘(𝑖)−𝑅𝑃𝑒𝑎𝑘(𝑖+1)
∗ 𝐹𝑟𝑠 (12) 

 

In (12), 𝑖 is the beat number. 𝑅𝑃𝑒𝑎𝑘(𝑖) is the location of the R-Wave peak. 𝐹𝑟𝑠 is the resampling 

frequency, 1170 Hz in this case. The sixth and last feature called QR electrical alternans is defined as 

the difference between the amplitude of the R-Wave peak and the Q-Wave peak. The features extraction 

stage is summarized in Algorithm 3. 

 
Algorithm 3. Features extraction. 

Begin Load S_filter, Rpeaks, Ppeaks, Qpeaks, Speaks, POnset, POffset, QOnset 

Initialize PWaveHeight, PWaveWidth, PRsegment, PWaveArea, HRV, QRelectricalAlternans 

For i  0..length(Ppeaks), +1 

PWaveHeight[i]  Ppeaks[i].amplitude 

PWaveWidth[i]  POffset[i].location – POnset[i].location 

PRsegment  QOnset[i].location – POffset[i].location 

For j  POnset[i]..POffset[i] 

PWaveArea  (S_filter[j] + S_filter[j+1]) / 1170 

 End For 

 HRV  round( 60/(Rpeaks[i+1].location – Rpeaks[i].location) ) 

 QRelectricalAlternans  Rpeaks[i].amplitude – Qpeaks[i].amplitude 

End For 

End 

 

2.4.  Detection 

Detection is the final stage of the proposed methodology. To determine the presence of a PAF  

in the ECG, a feedforward neural network with two hidden layers each with 10 neurons was used  

as a classifier [23]. This neural network, whose training was carried out using 60% of the information  

in the database shown in Table 2, to identify the presence or not of a PAF in each beat of the ECG.  

 

 

Table 2. Features of the afdb and nsrdb databases 
Beat P-Wave height P-Wave width PR segment P-Wave area HRV QR electrical alternans 

1 0.2071 0.0810 0.0610 8.6713 100 3.9239 

2 0.2027 0.1500 0.0520 11.8936 99 3.7981 

3 0.2115 0.0840 0.0670 9.3284 99 3.8411 

4 0.1953 0.0870 0.0520 9.1685 97 3.6280 

5 0.2258 0.0920 0.0490 9.8478 98 3.6520 

6 0.2393 0.1600 0.0490 13.6071 97 3.6853 

7 0.2129 0.1050 0.0520 9.7955 100 3.6865 

8 0.2113 0.1520 0.0440 12.6941 99 3.7488 

9 0.2031 0.1070 0.0460 8.8721 98 3.7074 

10 0.2326 0.1620 0.0490 14.5673 97 3.6717 

··· 

··· 

··· 

··· 

··· 

··· 

··· 

99000 0.3202 0.2240 3.9800 35.7019 3 1.1344 

99001 0.2796 0.3030 0.1710 57.2834 34 0.5804 

99002 0.4000 0.2990 1.6790 79.2437 5 0.1704 

 

 

The detection stage is summarized in Algorithm 4. 

 
Algorithm 4. Detection. 

// Training 

Begin Load afdb, nsrdb 

Initialize PAF_features[1..99002, 1..6], input 
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For each signal in afdb and nsrdb 

Obtain PWaveHeight, PWaveWidth, PRsegment, PWaveArea, HRV, 

QRelectricalAlternans 

End For 

PAF_features  [PWaveHeight, PWaveWidth, PRsegment, PWaveArea, HRV, 

QRelectricalAlternans] 

Set input as the 60% of PAF_features selected randomly 

Train ANN using input  

End 

 

2.4.1. Performance metrics 

Sensitivity (SN), specificity (SP) and accuracy (ACC), shown in (13-15) respectively, were 

calculated since these are the most widely used performance metrics to assess the probability of success of 

a classifier [24]. Table 3 shows the results of these metrics in different works reported in the literature. 

 

𝑆𝑁 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (13) 

 

𝑆𝑃 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (14) 

 

𝐴𝐶𝐶 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (15) 

 

 

Table 3. Comparison of methods for detection of PAF. 
Reference SN (%) SP (%) ACC (%) 

[11] 80.0 96.0 88.0 

[6] - - 81.5 

[7] 82.1 - - 

[8] 96.0 88.0 92.0 

[9] - - 70.0 

[12] 46.5 98.6 81.2 

[16] 90.4 95.2 92.8 

[15] 92.9 96.3 94.6 

[14] 91.5 96.1 94.7 

[13] 91.5 / 93.3 / 94.1 96.9 / 92.8 / 93.4 - 

[17] 94.5 96.5 - 

[18] - - 93.1 / 93.1 /92.5 

Proposed method 96.7 97.4 97.4 

 

 

3. RESULTS AND ANALYSIS 

To evaluate the proposed methodology, the Atrial Fibrilation (afdb) and Normal Sinus Rhythm 

(nsrdb) databases from Physionet [25] were used. Each one has ECG signal samples from both sick and 

healthy patients. Each signal is processed using the methodology described before. Figure 7(a) shows an 

original ECG signal from the database, while Figure 7(b) shows the signal after preprocessing. Finally, 

Figure 7(c) shows the signal with its characteristic points obtained. 

The extraction of characteristics was applied to each of the records in both databases. We obtained 

six features of a total of 99,002 beats as illustrated in Table 2. To ensure the linear independence of 

the features, the degree of correlation between each of them was determined through the correlation matrix. 

As it is shown in Table 4, the relation between the six features is low in all cases except between P-Wave 

area, P-Wave height and P-Wave width which is moderate. These results ensure that the features obtained 

through the proposed methodology are suitable for the training of a neural network. 

The PAF was detected through a feedforward neural network whose training data corresponded to 

60% of the information provided by the 99,002 beats obtained before. The network was trained on 10 

different occasions and was obtained the SN, SP and ACC in each training. The calculations of 

the maximum, minimum, average and standard deviation of each performance metric are shown in Table 5. 

A comparative analysis of the performance metrics between different classifiers used in similar 

works and the proposed methodology was done. The results are shown in Table 3. The proposed 

methodology obtained a minimum SN of 96.4% that is higher than the others. On the other hand,  

the SP reached a maximum value of 98.1% being surpassed only by [8], however, the ACC exceeds all  

the reported works even with its minimum value of 96.3%.  
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Figure 1. (a) Original signal from the database, (b) preprocessed signal, (c) detection of characteristic points 

 

 

Table 4. Correlation matrix of the features 
 P-Wave height P-Wave width PR segment P-Wave area HRV QR electrical alternans 

P-Wave height 1 0.2073 0.0090 0.6089 0.2191 -0.0315 

P-Wave width 0.2073 1 0.0182 0.6249 0.0495 -0.1202 

PR segment 0.0090 0.0182 1 0.0126 -0.0185 -0.0222 

P-Wave area 0.6089 0.6249 0.0126 1 0.1759 -0.2082 

HRV 0.2191 0.0495 -0.0185 0.1759 1 -0.0751 

QR electrical alternans -0.0315 -0.1202 -0.0222 -0.2082 -0.0751 1 

 

 

Table 5. SN, SP and ACC metrics of the proposed method 
Metric Maximum Minimum Mean Coefficient of variation 

SN 97.2% 96.4% 96.7% 0.38% 

SP 98.1% 96.4% 97.4% 0.49% 

ACC 97.5% 96.3% 97.4% 0.42% 

 

 

4. CONCLUSION  

To date, different authors have proposed methods that automate the detection of PAF using  

the characteristics of the P wave, heart rate variability or QR electrical alternation. The accuracy reached by 

these methods vary between 70% and 94.7%. Thus, the problem of appropriately detecting a FAP is not fully 

solved yet, due to results achieved by these methods are not definitive and can still be improved. 

This paper proposes a methodology to identify the presence of a PAF in patients by analyzing their 

ECG. The methodology includes both the identification of the characteristic points of the ECG signal and  

the methods to extract six features that allow a PAF to be detected through a classifier. The results obtained 
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show that the inclusion of the information of the P-Wave, HRV and QR electrical alternans for the extraction 

of features increased the accuracy in the detection of a PAF to 97.4% on average. The SN obtained was 

higher than that obtained in other works, achieving at least a result of 96.4%. The SP was similar  

to the results obtained by the works consulted.The results obtained serve as the basis for the future 

implementation of a methodology that allows predicting the occurrence of a PAF in a given period of time. 
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