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 The gaussian minimum shift keying (GMSK) is one of the best suited digital 

modulation schemes in the global system for mobile communication (GSM) 

because of its constant envelop and spectral efficiency characteristics. Most 

of the conventional GMSK approaches failed to balance the digital 

modulation with efficient usage of spectrum. In this article, the hardware 

architecture of the optimized CORDIC-based GMSK system is designed, 

which includes GMSK Modulation with the channel and GMSK 

Demodulation. The modulation consists of non-return zero (NRZ) encoder, 

an integrator followed by Gaussian filtering and frequency modulation (FM). 

The GMSK demodulation consists of FM demodulator, followed by 

differentiation and NRZ decoder. The FM Modulation and demodulation use 

the optimized CORDIC model for an In-phase (I) and quadrature (Q) phase 

generation. The optimized CORDIC is designed by using quadrant mapping 

and pipelined structure to improve the hardware and computational 

complexity in GMSK systems. The GMSK system is designed on the Xilinx 

platform and implemented on Artix-7 and Spartan-3EFPGA. The hardware 

constraints like area, power, and timing utilization are summarized.  

The comparison of the optimized CORDIC model with similar CORDIC 

approaches is tabulated with improvements. 
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1. INTRODUCTION 

In the current era of high-speed communication, the prime objective of the system is to achieve 

modulation that has a power spectrum with a constant amplitude and adequate bandwidth. Out of all, some of 

the efficient techniques are minimum shift keying (MSK) and GMSK. They are derived from the constant-

phase frequency shift keying (CPFSK) family of modulation operating at a constant envelope [1, 2].  

As a modulated signal has the characteristic of constant amplitude, the power utilization will be low by using 

a class CRF amplifier. Employing an amplifier is necessary for battery operated units. The GMSK is well 

suited digital modulation type and used in the GSM standard. The spectral efficiency and constant envelope 

are two unique characteristics in GMSK are credited in enhancing result despite the adjacent channel 

interference (ACI) and non-linear amplifiers presence. The GMSK signal is an extended form of MSK signal 

by performing pre-filtering over it and also converts a particular case in the CPFSK or a filtered offset-

quadrature phase shift keying (O-QPSK). The GMSK signal is generated from the various methods [3-10] 

and is classified as high-resolution synthesizer indirect modulation, and voltage controlled oscillator (VCO) 

direct modulation and quadrature amplitude modulation (QAM). The GMSK modulation technique is well 

known partial response continuous phase modulation (CPM) and suitable for the non-linear power amplifier. 

The GMSK system is used in many applications as a modulation technique, which includes the automatic 
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identification system (AIS) receiver for ship-based radio-data transmission systems, spectrum sensing for 

cognitive radio (CR) and vessel monitoring using status data transmitting model [11]. 

Section 2 describes the proposed optimized CORDIC based GMSK system with detailed 

architecture and also explains the optimized CORDIC model adopted in GMSK systems. Section 3 explains 

the simulation results of the GMSK system and analyzes the hardware constraints of optimized CORDIC 

based GMSK systems and comparison of the optimized CORDIC model with existing techniques. Section 4 

concludes the overall work with improvements. 

This section discusses the existing work of GMSK systems and its applications and also discussion 

of existing CORDIC techniques. The Babu et al. [12] describes the GMSK modulator for GSM applications, 

which includes differential encoder followed by pre-calculated gaussian values for pulse shaping, an IQ 

generation using a lookup table (LUT) based sine-cosine generator. Walter et al. [13] explain about GMSK 

Modulator, which performs the modulation using a delta-sigma frequency discriminator based synthesizer  

to produce the RF modulated signal and also prototyped the GMSK Modulator for GSM transmitter 

standards. The Gao et al. [14] presents the GMSK Demodulation using the general processing unit (GPU) on 

the ompute Unified Device Architecture (CUDA) programming platform and mainly includes Read-only 

memory (ROM) modules for Waveform generation, low pass FIR filter followed by multiplication and 

addition. Ghnimi et al. [15] present GMSK modulation under radio mobile propagation environments with 

different channels on a software-based environment. Supriya et al. [16] present reconfigurable coordinate 

rotation digital computer (CORDIC) based on rotating, vectoring mode for circular and hyperbolic trajectory. 

The designs use more coordinate calculation unit for recursive and pipelined architecture in both the modes 

of the CORDIC, which consumes more chip area.Chen et al. [17] present multiple rotation CORDIC for 

configurable fast fourier transform (FFT) accelerator, the FFT twiddle factors calculation based on  

the CORDIC rotation, which saves the hardware cost and CORDIC model designed using compression 

iteration with four rotations, twiddles direction prediction and segmented parallel iteration. However, this 

process utilizes much time in the FFT process. Chung et al. [18] present the FPGA based biped robot angles 

and distance calculation using pipelined CORDIC based inverse kinematic. To reduce the hardware cost, 

hardware sharing machine techniques are adopted and replaced the multipliers and dividers by adders and 

shifters. The biped robot angle design uses 18-stages pipelined architecture to increases the operating 

frequency of the model. Chinnathambi et al. [19] present the area efficient CORDIC algorithm, which uses 

six stages with four different methods includes without and with a pipelined method, unrolled CORDIC, and 

mux based CORDIC. The Tiwari et al. [20] presents the hybrid CORDIC algorithm which includes mixed 

two CORDIC processor of same angle input and another partitioned hybrid CORDIC algorithm, which 

includes two CORDIC processors of divided angle inputs. However, these architectures utilize more time 

process and consume more power. Torres et al. [21] present FPGA based optimized CORDIC based atan2 

computation, which includes z-path implementation using LUT and cascaded carry chain. Wang et al. [22] 

present 16-bit CORDIC algorithm implementation, which calculation the full range calculation of angles for 

sine, cosine, and tangent. The CORDIC algorithms used in many applications for angle calculation includes 

quick response (QR) Decomposition multiple input multiple output (MIMO) channel detection [23], online 

spike time-dependent plasticity (STDP) learning with neurons [24].  

From the review of recent literature, it has been noticed that the amount of work carried on GMSK 

systems is majorly based on software approaches and few on hardware-based approaches. In the available 

existing hardware-based approaches carried neither on GMSK Modulator nor on GMSK Demodulator, and 

not the complete framework. The available existing works are facing hardware complexity, performance 

degradation, and more chip area consumption with huge power consumption. The ROM based LUT table is 

used for IQ generation, and Local oscillators or VCO are used IQ Modulation in all the approaches, which 

consumes more chip area and affect the system performance. To compute the IQ generation efficiently by 

incorporating the CORDIC method in GMSK systems. The existing CORDIC methods are highly 

conventional, uses more iterations, ROM based table used tangent generation. Thus there is a need for 

"Optimized CORDIC method for cost-effective GMSK systems." 

 

 

2. OPTIMIZED CORDIC BASED GMSK SYSTEM 

In this section, the proposed GMSK system using the optimized CORDIC model is explained with 

its hardware architectures. The design flow of the proposed GMSK system is represented in Figure 1.  

It mainly consists of a GMSK modulator and demodulator along with the channel. The GMSK modulator 

mainly consists of hardware blocks of NRZ (non-return-zero) encoder, integrator, Gaussian filter, and 

frequency modulation (FM) using optimized CORDIC and digital frequency synthesizer (DFS). Similarly, 

the GMSK demodulator mainly consists of hardware blocks of FM demodulation using optimized CORDIC 
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and DFS, differentiator, and NRZ decoder. In this design, 1-bit GMSK input is considered and generate  

the 1-bit GMSK output. 
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Figure 1. Design flow of proposed GMSK system 

 

 

2.1. GMSK modulator 

The GMSK modulator process the 1-bit input information in NRZ encoder. The XOR module 

receives the GMSK 1-bit input along with the data flip-flop (D-FF) output as an input in feedback form and 

grants the 1-bit output, which is input to integrator block, The integrator block mainly has four temporary 

registers which store the integrator data serially and add the last temporary data with first input to generate 

the integrator 1-bit output. The Gaussian filter is designed using finite impulse response (FIR) filter.  

The Gaussian filter is designed for 8-tap and targets to generate 16-bit output. It mainly uses 8-multipliers to 

multiply 8 FIR coefficients with integrator output, 15-delay flip-flops, and 7-adders. The 7th adder output 

generates the Gaussian filter output, which is input to FM Modulation. The FM Modulation hardware 

architecture is represented in Figure 2.  

The FM modulation mainly contains an optimized CORDIC model for IQ generation and two DFS 

for IQ Modulation along with Control unit and Adder module. The optimized CORDIC model generates  

in-phase (I) for cosine (cos1) waveform and quadrature (Q) for sine (sine1) waveform based on the phase 

input (phase_in). The detailed optimized CORDIC model is explained in section 2.4. The CORDIC model 

outputs are inputs to two DFS module. The two DFS is used to generate the arbitrary waveforms for  

the corresponding CORDIC outputs. The cosine (cos2) and sine (sine2) waveforms are generated for IQ 

modulation. The control unit is used to control the cos2 and sine2 waveforms using integrator output. 

If the integrator output is ‘1’, then cos2 as an output (I) and integrator output is ‘0’, then sine2 as an output 

(Q). The adder adds I and Q signals and frame the 12-bit GMSK modulation output (Gmsk_mod = I+Q). 
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Figure 2. Hardware architecture of FM modulation 
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2.2. Channel 

The channel is used to generate the random sequence generation that is called noise. The GMSK 

modulated output is mixed with the channel output to generate the randomized output, which is input  

to the GMSK demodulator. The channel module is designed using pseudorandom (PR) or maximum  

length (m) sequences based on the Galois field (GF) theory. 

The m-sequences are generated from the linear feedback shift register (LFSR) and which is 

commonly known as Galois-LFSR. For high-speed hardware implementation, Galois-LFSR is a better option 

than Fibonacci-LFSR because it consumes fewer clock cycles to clock delay path than Fibonacci-LFSR. 

In design, The Galois-LFSR for a 5th order generating polynomial is considered in GF (2). The 5th order 

generator polynomial of the designed LFSR is  

 

 (1) 

 

The Galois-LFSR design uses 6-multipliers, 6-delay elements, and 5-adders. The six coefficient are 

used in the generator polynomial is G= [1, 0, 0, 1, 0, 1]. The two LFSR of the same polynomial is considered; 

add the two LFSR outputs to generate the random sequence. The random sequence is similar to the additive 

white gaussian noise [AWGN] generation in real-time considerations.  

 

2.3. GMSK demodulator 

The GMSK demodulator is mainly incorporating FM Demodulator along with Differentiator and 

NRZ decoder. The 12-bit channel output is input to GMSK Demodulator. The Hardware architecture of FM 

Demodulation is represented in Figure 3. The CORDIC model generates the cosine and sine output based on 

the phase inputs. In that, consider the cosine (cos1) for the DFS module, which generates the updated output 

(cos2). The control unit receives the delayed DFS output and channel output, perform the comparison to 

generate the FM demodulated output. 

The differentiator receives the 1-bit FM demodulated output as an input, and it mainly consists of 

four temporary registers and subtract or units. It performs the differentiator operation to generate the 1-bit 

output. The NRZ decoder decodes the differentiator output and generates the 1-bit GMSK demodulated 

output. The GMSK output must match with GMSK input in order to ensure that the GMSK system is 

working correctly. 
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Figure 3. Hardware architecture of FM demodulation 

 

 

2.4. Optimized CORDIC model 

The optimized CORDIC model overcomes the conventional CORDIC problems like rotational angle 

coverage, more iterative stages, and less convergence speed. The proposed CORDIC model will be used for 

optimizing the angle range, computational and hardware complexity, usage of read-only memory (ROM) 

resources for LUT updation. The optimized CORDIC model is a preprocessing unit, pipelined CORDIC, 

a delay unit, and a post-processing unit is represented in Figure 4. The preprocessing unit has an 8-bit phase 

input and allocates the first 2-bit of MSB, i.e., phase input [7:6] has a 1st quadrant and the same 2-bit inputs 

to delay unit. In design, the delay unit is used for the synchronization process. The preprocessing unit finds  

the quadrant location based on the MSB 2-bits. The preprocessed 8-bit output is input to the pipelined 

CORDIC module. The delay unit output and pipelined CORDIC module output generates parallelly to 

maintain the synchronization.  

The hardware architecture of the pipelined CORDIC module is represented in Figure 5. For a high-

speed CORDIC module with cosine and sine, a calculation is done by a single step pipelined technique.  

The preprocessed output (phase value) is input to Z0 and set the initial values to X0 and Y0. In the design, six 
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iteration stages are used with pipeline structure. For each iteration stage, the angle (a) value updated directly 

to eliminate the ROM LUT table. Each stage, a set of outputs like X1, Y1, and Z1 are obtained in each clock 

cycle, and processing speed of it will not affect the CORDIC calculation in stages because of the pipeline 

structure. The pipeline structure is directly proportional to the accuracy calculation. The sign (S) value will 

be updated based on the MSB (7th) bit of Z input value or next stage values like Z1... Z6. The addition or 

subtraction will be performed by using Sign (S) value. The 6th stage outputs are final cosine and sine values 

of pipeline CORDIC. The post preprocessing unit is used to convert the pipelined CORDIC output results 

based quadrants of the input values. In optimized CORDIC model, the input quadrant will be set “00” for 

input angle [0o, 90o], “01” for angle [90o, 180o], “10” for angle [180o, 270o] and “11” for angle [270o, 360o]. 
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Figure 4. Optimized CORDIC model 
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Figure 5. Hardware architecture of pipelined CORDIC module 

 

 

3. RESULTS AND ANALYSIS 

The optimized CORDIC based GMSK System results are analyzed in the below section.  

The proposed work is designed using Xilinx ISE 14.7 tool using Verilog-HDL language, and modelsim  

6.5f is used for simulation. The proposed design is prototyped and implemented on the both Spartan3E and 

Artix-7 FPGA platform by considering devices-XC3S250E-4FT256 and XC7A100T-3CSG324 respectively. 

The optimized CORDIC based GMSK system simulation results are represented in Figure 6.  

The global clock (clk) signal is activated with a positive edge along with active-low reset (rst). The control 

signals like enable (en) and start signals are activated high and used in the GMSK modulation process. 

Assign the 1-bit GMSK input (gmsk_in) according to the user's interest. The GMSK system process starts 

according to the design process. The GMSK input assigned randomly with long delays to visualize  
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the GMSK modulation output. Based on the GMSK inputs in modulation, 12-bit GMSK modulated output 

(gmsk_mod_out) is generated. When the gmsk_in is high, the GMSK Modulated output works at 1.72 MHz, 

and when gmsk_in is low, the gmsk_mod_out output works at 485.43 kHz frequency for one sinusoidal wave 

signal. The demodulated output (gmsk_out) is generated after the GMSK demodulation process. The GMSK 

output is the same as the GMSK input with the delay of 1 clock cycle. This simulation result indicates that 

the GMSK systems work effectively with low latency. 

 

 

 
 

Figure 6. Simulation results of optimized CORDIC based GMSK system 

 

 

The optimized CORDIC based GMSK System is synthesized, and after a place and route operation, 

the hardware resource utilization in terms of area, time, and power are summarized in Table 1. The GMSK 

system utilizes less chip area in terms of 271 slices, 331 Slice Flip-flops, and 499four-Input LUTson FPGA. 

The GMSK system operated a maximum frequency of 89.068 MHz with a minimum period of 11.227ns on 

Spartan-3EFPGA. The power consumption report is generated using the X-Power analyzer tool with an 

FPGA system frequency of 100 MHz. The GMSK system consumes the 0.052W total power. 

The optimized CORDIC model is synthesized separately, and after a place and route operation,  

the hardware resource utilization in terms of area and time are summarized in Table 2. The optimized 

CORDIC model utilizes 88 slices, 119 Slice flip-flops, and 157four-Input LUTs on FPGA. The optimized 

CORDIC operated at 156.937 MHz maximum frequencies with a minimum period of 6.372ns on  

Spartan-3EFPGA. 

 

 

Table 1. Hardware utilization summary of optimized CORDIC based GMSK system on Spartan-3EFPGA 
 Hardware Resources Optimized CORDIC based GMSK system 

Area Number of Slices 271 

Slice Flip-Flops 331 

4-input LUTs 499 

Time Minimum Period (ns) 11.227 

Max.Frequency (MHZ) 89.068 
Power Total power (W) 0.052 

 

 

Table 2. Hardware resource utilization of optimized CORDIC module on Spartan-3EFPGA 
Resource Utilization Optimized CORDICDesign 

Number of Slices 88 

Slice Flip-Flops 119 

4-input LUTs 157 
Max.Frequency (MHZ) 156.937 

 

 

The proposed optimized CORDIC model is compared concerning previous CORDIC methods  

like general unrolled CORDIC, Pipelined unrolled, and mux based CORDIC [25] in terms of  

performance parameters like area (Slice flip-flops, number of slices) and Latency (Number of clock cycles) 

are tabulated in Table 3. The performance parameter results are analyzed on the Spartan-3E FPGA for all  

the CORDIC methods. 

The proposed method improves the area overhead around 36.36% in Slice-FF's 46.98% in slices  

and 36.36% in latency concerning pipelined unrolled CORDIC method. Similarly, compared with pipelined 
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mux based CORDIC method, around 4.8 % in slice-FF’s, 33.83% in slices, and 12.5% in latency 

improvements. The above results, the proposed CORDIC is reduced the hardware complexity and improves 

the performance with area optimization in GMSK systems. To improve the design constraints using FPGA 

technology, here, Atrix-7 FPGA is considered, which is 28nm Technology compared with Spartan-3E FPGA, 

which works at 90nm Technology. The hardware utilization of Optimized CORDIC based GMSK system on 

Artix-7 FPGA is tabulated in Table 4, and the hardware resource utilization of only optimized CORDIC 

Module on Artix-7 FPGA is tabulated in Table 5. 

 

 

Table 3. Performance comparison of optimized CORDIC module with previous [25] 
CORDIC Method Slice Flip-flops No. of Slices Latency(Clock cycles) 

General Unrolled CORDIC [20] 134 160 7 

Pipelined Unrolled CORDIC [20] 187 166 11 

Pipelined Mux based CORDIC [20] 125 133 8 

Proposed Optimized CORDIC 119 88 7 

 

 

Table 4. Hardware utilization summary of optimized CORDIC based GMSK system on Artix-7FPGA 
 Hardware Resources Optimized CORDIC based GMSK system 

Area Slice Registers 145 

Slice LUTs 321 
LUT-FF pairs 133 

Time Minimum Period (ns) 3.854 

Max.Frequency (MHZ) 259.477 
Power Dynamic power (W) 0.008 

Total power (W) 0.09 

 

 

Table 5. Hardware resource utilization of optimized CORDIC module on Artix-7 FPGA 
Resource Utilization Optimized CORDICDesign  

Slice Registers 98 

 Slice LUTs 114 

LUT-FF pairs 81 
Max.Frequency (MHZ) 509.71 

 

 

4. CONCLUSION  

The optimized CORDIC based GMSK systems are designed and implemented on Spartan-3E and 

Artx-7FPGA. The GMSK systems mainly contain NRZ-Encoder and decoder, integrator-differentiator, 

Gaussian filter, and FM-modulation-demodulation along with channel. In FM modulation and demodulation, 

the optimized CORDIC model is incorporated for IQ generation, and DFS has used IQ modulation.  

The optimized CORDIC reduces the computational and hardware complexity by using pipeline structure along 

with quadrant mapping in GMSK systems. The GMSK system is simulated and synthesized on the Xilinx 

platform. The GMSK system resource constraints like area, time, and power utilization are tabulated.  

The GMSK systems operate at 89.068 MHz and consume less power of 0.052W on sparatn-3E FPGA. 

Similarly, on Artix-7 FPGA, the GMSK systems operate at 259.477 MHz and consume less power 

of 0.09W. The optimized CORDIC model is compared with other CORDIC methods with improvements in 

area and latency. The optimized CORDIC model utilization shows improvements around 33.83% in slices 

and 12.5% in latency than pipelined-Mux based CORDIC technique. 
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