
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 10, No. 3, June 2020, pp. 3295~3306

ISSN: 2088-8708, DOI: 10.11591/ijece.v10i3.pp3295-3306  3295

Journal homepage: http://ijece.iaescore.com/index.php/IJECE

Efficient two-stage cryptography scheme for secure distributed

data storage in cloud computing

Rabab F. Abdel-Kader1, Samar H. El-Sherif2, Rawya Y. Rizk3
1,3Department of Electrical Engineering, Port-Said University, Egypt

2Faculty of Management Technology and Information Systems, Port-Said University, Egypt

Article Info ABSTRACT

Article history:

Received Oct 23, 2019

Revised Dec 18, 2019

Accepted Jan 8, 2020

 Cloud computing environment requires secure access for data from the cloud

server, small execution time, and low time complexity. Existing traditional

cryptography algorithms are not suitable for cloud storage. In this paper,

an efficient two-stage cryptography scheme is proposed to access and store

data into cloud safely. It comprises both user authentication and encryption

processes. First, a two-factor authentication scheme one-time password

is proposed. It overcomes the weaknesses in the existing authentication

schemes. The proposed authentication method does not require specific extra

hardware or additional processing time to identity the user. Second,

the plaintext is divided into two parts which are encrypted separately using

a unique key for each. This division increases the security of the proposed

scheme and in addition decreases the encryption time. The keys are

generated using logistic chaos model theory. Chaos equation generates

different values of keys which are very sensitive to initial condition and

control parameter values entered by the user. This scheme achieves

high-security level by introducing different security processes with different

stages. The simulation results demonstrate that the proposed scheme reduces

the size of the ciphertext and both encryption and decryption times than

competing schemes without adding any complexity.

Keywords:

Authentication

Chaos model

Cloud computing security

Cryptography

Decryption/Encryption

Copyright © 2020 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Rabab F. Abdel-Kader,

Department of Electrical Engineering,

Port-Said University,

Port-Said, 42523, Egypt.

Email: rababfakader@eng.psu.edu.eg

1. INTRODUCTION

Cryptography is very important to convert original text (plaintext) into encrypted text (ciphertext) to

keep sensitive data more secure. This process can be done by many encryption techniques, and the inverse of

this process is done to get back the plaintext using the corresponding decryption techniques. Cryptography

techniques use a secret key to encrypt and decrypt sensitive data. Cryptography achieves many security

issues like data integrity, authentication, non-repudiation, and confidentiality, so it gains high importance [1].

Standard cryptography algorithms are classified into three main categories [2] as shown in Figure 1.

Firstly, symmetric algorithms which use a single secret key for encryption and decryption. This key is known

to the sender and receiver. There are many famous symmetric algorithms such as Data Encryption Standard

(DES), 3DES, Advanced Encryption Standard (AES), Blowfish, RC6. Secondly, asymmetric algorithms

which use two keys, the public key for encryption and private key for decryption. These algorithms can be

described by high computational cost and slow speed in comparison with symmetric algorithms. There are

many examples of asymmetric algorithms such as Elliptic Curve Cryptography (ECC), Diffie Hellman, RSA,

and Elliptic Curve Digital Signature Algorithm (ECDSA). Third, Hash algorithms, compress data to be

converted from arbitrary size to fixed size. Some examples of hash algorithms are MD5 and SHA.

mailto:rababfakader@eng.psu.edu.eg

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 : 3295 - 3306

3296

Figure 1. The three main categories of standard cryptography algorithms

Cloud computing Infrastructure as a Service (IAAS) presents an important service to users through
the internet which called cloud storage [3-6]. There are many advantages to this service such as possible
remote data access at any time and on-demand resource deployment. Data must be stored safely into cloud
storage, so cryptography is very important. Encryption process must be done on files before storing into
the cloud. In addition, authentication in cloud is a very important step which proves that the accessing user is
the real user [7-9]. Many authentication schemes were proposed to authenticate users in cloud, but a lot of
them had some security troubles. The previous work in authentication process suffered from some
problems [10, 11]. These problems can be summarized in using mobile phone applications, using extra
hardware, receiving message through the internet, and extra time to identity the user.

In this paper, a two-stage cryptography scheme for secure distributed data storage (TCS_DD)
is proposed to encrypt files before sending them into the cloud. It includes both authentication and
cryptography stages. First, a two- factor authentication scheme is presented to overcome the weaknesses
found in existing authentication schemes. Second, the plaintext is divided into two parts sent to different
cloud servers in order to guarantee more security. In each part, only half of the characters are encrypted. Each
part is encrypted using a unique key that is generated using logistic chaos model theory. Users can download
the two parts of his file at any time. Each character in each part is decrypted using its unique key which is
generated from the same chaos equation used in the encryption process.

The organization of this paper is as follows: a brief overview of related work is presented in
section 2. The proposed two-stage cryptography scheme is introduced in section 3. Section 4 shows
the simulation results of the proposed scheme compared to the existing schemes. Finally, the main
conclusions are presented in section 5.

2. RELATED WORK

Different cryptography schemes were proposed to keep data secure but each with its own limitations
and drawbacks. Subarea in [12] presented a scheme which used ECC to encrypt the plaintext and then
communicated with the destination through a secured channel. Simultaneously, MD5 was used to get
the hash value from the same plaintext. This value was encrypted using DUAL RSA and also sent to
the destination. This scheme achieved integrity by comparing the new hash value with the decrypted one and
also achieved difficulty for attackers to extract the text from the encrypted one, but it used two asymmetric
encryption algorithms (ECC and DUAL RSA) which exploit extra time for encryption.

Another scheme that used a combination of symmetric and asymmetric cryptography algorithms
was presented in [13]. In this scheme, AES was used firstly for encryption and then ECC. MD5 was used to
get the hash value from the ciphertext and then was compared with one which was evaluated at
the destination. The decryption process was also performed by AES and ECC. This scheme required more
time for encryption and decryption because two cryptography algorithms were used sequentially.

Int J Elec & Comp Eng ISSN: 2088-8708 

Efficient two-stage cryptography scheme for secure distributed data storage… (Rabab F. Abdel-Kader)

3297

A hybrid of symmetric and asymmetric algorithms was proposed by Zhu in [14]. AES was used to

encrypt the plaintext and ECC was used to encrypt the key and digital signature belonged to the AES

algorithm. The key KAES belonged to the AES was used for one time only by the sender. At the receiver

side, signature verification was done to obtain the original information. This scheme suffered from

a low-security level.

A two-phase hybrid cryptography algorithm (THCA) for wireless networks was presented in [15].

This scheme splits the plaintext into two parts. The first part was encrypted by the AES algorithm and its key

was encrypted using the ECC algorithm. Both are considered asymmetric cryptography algorithms.

The second part was encrypted using the RSA algorithm. It also used the MD5 algorithm for integrity.

The reverse of the previous steps was done for decryption and retrieving the plaintext.

A secure cluster-based routing protocol (SCBRP) is also presented for wireless sensor

networks [16]. It uses adaptive particle swarm optimization (PSO) with optimized firefly algorithms during

data transmission. Data in encryption form was sent to the sink node. The message that should be sent was

divided into two sub-blocks. The first one was encrypted using AES algorithm, but the other one is encrypted

using RC6 algorithm. MD5 algorithm was also used to achieve data integrity. SCBRP aimed to reduce

energy consumption over an individual node to improve the whole network lifetime. Energy-efficient

clustering, secure routing, and security verification were used to design SCBRP. However, this algorithm

uses two symmetric algorithms which are considered a very weak point in its design.

Existing traditional cryptography algorithms are not suitable for cloud storage. There are some

requirements must be achieved for the cloud computing environment such as secure access for data from

the cloud server, small execution time, and low time complexity. Many recent encryption schemes were

applied to data before uploading into cloud storage, some are discussed next.

Bansal in [17], presented a scheme to store files into the cloud storage in a secure manner. The user

accesses the cloud storage safely using a unique key. Image matching was used for authentication for more

security. Then, the user could upload his file into the cloud. To keep data safe in the cloud storage, the user

divides the file into blocks and chose some bits from each one; these bits were encrypted using the ECC

algorithm. After that, the file was stored in the cloud safely. In this scheme, Metadata was chosen from each

block and encrypted using ECC, and then stored at the back of the file. Integrity could be achieved by

comparing Metadata with the original file and making sure that no changes have occurred. In this scheme,

the whole file was not encrypted, only some bits so it achieved less overhead, CPU power and execution

time. This scheme did not achieve enough security for the whole data in the file. It might be useful only to

check if data had been modified or not.

A hybrid of the symmetric and the asymmetric encryption algorithms for cloud computing security

was proposed in [18]. After selecting one file to be uploaded into the cloud, the symmetric Blowfish

algorithm is applied to encrypt the file. The secret key of the Blowfish algorithm was encrypted using

the asymmetric RSA algorithm. After that, secure hash algorithm-2 (SHA-2) was applied to the encrypted

file to generate the message digit. Next, the digital signature algorithm (DSA) was applied to the previously

generated message digit. SHA-2 and DSA were used to achieve secure transmission and authorization.

Using a combination of symmetric and asymmetric algorithms made the decryption process very difficult for

hackers to attack. However, it suffers from high complexity because of using a hybrid of symmetric and

asymmetric algorithms in addition to SHA-2 and DSA for authentication.

Chueh et al. designed and implemented a security system for cloud storage [19]. The scheme used

the third party auditor (TPA) with the AES encryption algorithm for storing files into the cloud safely. Before

uploading a file into the cloud, a 32-byte password is generated randomly and subjected to a password-based

key derivation function 2 (PBKDF2) and HMAC-SHA256 to produce the derived encryption key. This key

was used to encrypt the original file using the AES encryption algorithm. After the encryption process,

the user could enter a password which would be considered a master key after applying (PBKDF2).

This master key was used to encrypt the encryption key. Finally, the encrypted file was sent to the cloud

storage provider (CSP), and the encrypted encryption key was sent to the TPA. Using the TPA for storing

the encrypted key of the encrypted file prevented any user or CSP itself from decrypting the encrypted file.

This scheme achieved better key management in addition to safer verification. Any time, the user could get

the encrypted file from the CSP and the encryption key from the TPA. Then, he could decrypt the encryption

key by using his pre-chosen password to get the master key. Finally, he could decrypt the encrypted file and

get the source file safely. In this scheme, the key needed to be encrypted before storing into the TPA which

caused more overhead and increased complexity.
A ciphertext Policy Attribute-Based Encryption (CP-ABE) scheme was proposed by K. Han and

others in [20]. This scheme depended on generating keys with multiple attributes using multiple distributed
parts. It also achieved backward secrecy by updating attributes and re-encrypted ciphertext. In this scheme,
Different cryptography schemes were proposed to keep data secure but each with its own limitations and
drawbacks. Subarea in [12] presented a scheme which used ECC to encrypt the plaintext and then

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 : 3295 - 3306

3298

communicated with the destination through a secured channel. Simultaneously, MD5 was used to get
the hash value from the same plaintext. This value was encrypted using DUAL RSA and also sent to
the destination. This scheme achieved integrity by comparing the new hash value with the decrypted one and
also achieved difficulty for attackers to extract the text from the encrypted one, but it used two asymmetric
encryption algorithms (ECC and DUAL RSA) which exploit extra time for encryption.

Security-Aware Efficient Distributed Storage (SA-EDS) scheme was proposed in [21]. There were
three algorithms used in this scheme. The first is called the Alternative Data Distribution (AD2) algorithm
which was used to know if the plaintext needs to be divided and stored in distributed cloud servers.
The second one is called Secure Efficient Data Distributions (SED2) algorithm which took the plaintext as
input and gave two separate ciphertexts as output. The third one is called the Efficient Data Conflation
(EDCon) algorithm which was used to enable users to retrieve the text by merging the two separate
ciphertexts from distributed cloud servers. It took the two encrypted parts of the text and the key and then
gave the plaintext. In this scheme, using three algorithms caused more overhead and more complexity.

Design and implementation of the self-encryption method on file security were proposed in [22].
The scheme was applied to the text before uploading it into the cloud. It divided the plaintext and
the ciphertext into 1024 bits chunks using the XOR process. The scheme used the date and starting time of
the encryption process as a seed key. It also used a database for storing the ID of the file which contained
the plaintext and the key. At the decryption phase, the key was retrieved from the database to get
the plaintext. Storing the key into the database was considered a drawback in this scheme because it could
be attacked.

3. THE PROPOSED TCS_DD IN CLOUD COMPUTING

In this paper, a two-stage cryptography scheme is proposed to access and store data into cloud
storage safely. In the first stage, the scheme archives user authentication using the proposed Two-Factor
Authentication Scheme (TFAS) to prove that the accessing user is the real user. The first factor depends on
a traditional user name and password. The second factor depends on the one-time password (OTP) technique.
The user accesses his cloud account for download or uploads his file using OTP which is successful for only
one login.

In the second stage, the file to be stored is split into two parts and encrypted at the user side before
sending it into the cloud. The two encrypted parts are stored into two different servers. Files can be divided
into more parts and stored into more than two servers, but limiting the division to two reduces the overhead
and improves the efficiency. Therefore, the user must create two cloud accounts.

A unique key is used to encrypt each odd character of data, so we need a number of stream keys
equal to half the size of the plaintext. To generate the required keys, logistic chaos model theory is used
which depends on two important parameters (initial condition x0 and control parameter µ). The user enters
different parameters to encrypt each part, so it is very difficult for an attacker to predict these values and
decrypt the plaintext. The characteristics of the generated random sequences adhere to all performance
characteristics of chaos models as described in [23, 24]. These characteristics can be summarized as, ending
the problem of repetition, good randomness and complexity, extreme sensitivity to initial conditions, and low
cost with simple iteration.

To retrieve his file, the user first downloads the two parts of the file and decrypts each part
separately, and then merges the two decrypted parts forming the original file. This scheme keeps data more
secure because each specific user is capable of decrypting his file as he has the sole access to the control
parameters used in generating the keys. It also achieves less complexity and reduces the execution time of
encryption and decryption processes.

3.1. Stage 1: Authentication using TFAS

In this stage, a two-factor authentication technique is presented. This scheme uses OTP as
the second factor of authentication in addition to the traditional user name and password as the first factor.
The process consists of four phases; registration phase, login phase, encryption phase, and authentication
phase. During the initial user-registration phase, the user selects his user name and password. Subsequently,
the user selects a pattern contains four cells in any order from a 3×3 grid. The grid contains 9 cells numbered
from C1 to C9. Each of these cells contains a number ranging from 0 to 99. These numbers are randomly
generated. For the chosen pattern, the user enters the number which represents each cell and appears on it.
Both the numbers in the pattern and the length of it is changed every login for the same user. For example,
he can enter the numbers which are appeared on C1, C2, C3, C6 or C1, C2, C5, C4 or C3, C6, C9, C8.
The only restriction for the user is that he must recall the order of the chosen cells to use it at the login phase.
Upon the completion of a new-user registration, the user name, password and the pattern which are chosen by
the user are stored in the database. This phase is illustrated in Figure 2.

Int J Elec & Comp Eng ISSN: 2088-8708 

Efficient two-stage cryptography scheme for secure distributed data storage… (Rabab F. Abdel-Kader)

3299

At the login phase, a login page appears to the user, in which he must enter his user name and
password which he had chosen at the registration phase. Then a grid of 3×3 cells will appear to the user.
The numbers shown on the grid cells are randomly generated. Every cell contains a number ranging from
0 to 99. So the numbers can be formed from one digit or two digits. Therefore, the length of the pattern
formed from the four cells chosen at the registration phase maybe 4, 5, 6, 7, or 8 digits. Each attempt by
the user to log in, the grid displays a random number in each cell. The user must remember the pattern which
he had chosen at the registration phase and enters the numbers listed on the cells corresponding to the chosen
pattern. These numbers are then encrypted using a special encryption application.

Figure 2. The proposed TFAS scheme

Next, during the encryption phase, a desktop application is used to encrypt the password.

When the user runs this application, a window form is displayed. The form asks the user to enter his user

name and password, and then the contents of the 4-cell which had been got at the login phase. If all

information is entered correctly in the form, the user can click on a button to run the code of the encryption

process. The output of the encryption code maybe 4, 5, 6, 7, or 8 digits. This output is used as OTP which is

the second factor of authentication in this scheme.

Finally, the authentication phase, the user must enter his username, password, and OTP into

the login page. This OTP may be 4, 5, 6, 7, or 8 digits. Its length may be changed every login for the same

user. All of this information is sent to the server. On the server-side, the server has the same encryption code

which exists at the user side. It is used to encrypt the contents of the cells which represent the user pattern.

A comparison is performed between the received OTP and the evaluated one. If the comparison process

is successful, the user can access the system. Otherwise, an error message is displayed to the user.

The authentication process is illustrated in Figure 2.

The proposed TFAS scheme can resist practical attacks. It overcomes the weaknesses in the existing

schemes. It is easy for users, does not have strong constrains, does not depend on receiving a message

through the internet, and does not require specific extra hardware or extra time to identify the user.

3.2. Stage 2: Cryptography

In this stage, the plaintext is divided into two parts sent to different cloud servers. Each part

is encrypted using a unique key that is generated using logistic chaos model theory. In the decryption, each

character is decrypted using its unique key which is generated from the same chaos equation used in

the encryption process.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 : 3295 - 3306

3300

3.2.1. The encryption process

The steps of the encryption process are illustrated in Figure 3. In the encryption process, firstly,

the length of the plaintext (n) is determined. The plaintext is divided into two parts; Part A (0: (n/2) -1) and

Part B (n/2: n). Only odd-numbered characters in each part will be encrypted by a unique key generated using

the chaos model theory while the even-numbered characters remain without encryption in order to minimize

the encryption and decryption time. The encryption keys are generated using the formula of the logistic chaos

model [25]:

 kn+1 = μ kn (1 − kn) (1)

The user chooses a random number for μ and k0 such that μ ∈ [0,4] , and k ∈ (0,1) respectively. Then for

each n, the corresponding kn+1 is calculated by (1).

Figure 3. The encryption process of TCS_DD

For Part A, the user enters the initial condition of the chaos formula k0A and the control parameter

μA . Stream keys are generated using logistic chaos formula. Some symbols must be encrypted in this part;

each one is encrypted with its unique key using XOR.

CA = ASCII(si)XOR ASCII(kA [l]) (2)

Where CA represents each encrypted character of Part A, si (for i=0 to i=(n/2)-1) represents a character in

Part A, kA [l] is the array of keys used to encrypt Part A. The encrypted characters of Part A are appended to

the Ciphertext of Part A (EA) using the function: EA.appendtext(CA) in the encryption algorithm shown in

Figure 4 while the unencrypted characters are appended using the function: EA.appendtext(si) as shown in

the algorithm.

For Part B, the user enters the initial condition of chaos formula k0B and the control parameter μB.

The same previous steps are done to encrypt some symbols of Part B.

CB = ASCII (sj)XOR ASCII(kB[l]) (3)

Where CB represents each encrypted character of Part B, sj (for j=n/2 to j=n) represents each character in

Part B, kB[l] is the array of keys used to encrypt Part B, and EB is the Ciphertext of Part B which is appended

using the function: EB.appendtext (CB) in the algorithm. The other symbols of Part B are appended

using the function: EB.appendtext (sj) as illustrated in the algorithm which is shown in Figure 4.

When the encryption process is complete, the user can send EA to a cloud server, while EB is sent to another

cloud server to ensure data security. Figure 4 shows the pseudo-code of the encryption process.

Int J Elec & Comp Eng ISSN: 2088-8708 

Efficient two-stage cryptography scheme for secure distributed data storage… (Rabab F. Abdel-Kader)

3301

Pseudo-code of encryption process

Input : F (plaintext)

Output : EA (ciphertext of Part A), EB(ciphertext of Part B)

1. n = 𝐹. 𝑙𝑒𝑛𝑔𝑡ℎ //Get length of plaintext

2. Let i =0; Let j =n/2; Let 𝑙 =0; //initial values

3. Declare KA[] and KB[]
//Arrays KA and KB save keys used to encrypt Part A and B

respectively

4. Input kA[0]
//Input initial condition of chaos formula (random value from 0 to 1)

for Part A, k0A

5. Input µA //Input control parameter (random value from 1 to 4) for Part A

6. Input kB[0]
//Input initial condition of chaos formula (random value from 0 to 1)

for Part B, k0B

7. Input µB //Input control parameter (random value from 1 to 4) for Part B

8. Do {

9. PA = ∑ 𝑠𝑖

𝑖=
𝑛

2
−1

𝑖=0
 //Part A, 𝑠𝑖 represent symbol of Part A

10. CA = ASCII(𝑠𝑖) XOR ASCII (kA[𝑙]) //Encrypt each symbol with its unique key

11. EA.appendtext (CA) //Append each encrypted char to EA

12. i++ //increment i

13. EA.appendtext (𝑠𝑖) //append char 𝑠𝑖 to EA

14. KA[𝑙+1] = µA kA[𝑙](1- kA[𝑙]) //Generate a key using chaos formula

15. i++ //increment i

16. PB = ∑ 𝑠𝑗
𝑗=𝑛
𝑗=𝑛/2 //Part B, 𝑠𝑗 represent the symbol of Part B

17. CB = ASCII (𝑠𝑗) XOR ASCII (kB[𝑙]) //Encrypt each symbol with its unique key

18. EB.appendtext (CB) //append each encrypted char to EB

19. j++ //increment j

20. EB.appendtext (𝑠𝑗) //append char 𝑠𝑗 to EB

21. KB[𝑙+1] = µB kB[𝑙](1- kB[𝑙]) //Generate a key using chaos formula

22. j++ //increment j

23. 𝑙++} //increment 𝑙

24. While(i< n/2 && j < n) //Repeat this loop until i=n/2 and j= n

Figure 4. The pseudo-code of the encryption process

3.2.2. The decryption process

Figure 5 illustrates the steps of the decryption process. The user can download his data at any time.

Each data part is retrieved from the corresponding cloud server saved on and decrypted separately.

As explained before in the encryption process, the odd characters of the Ciphertext of Part A (EA) are

decrypted using the following equation after entering the initial condition of chaos formula k0A and

the control parameter μA which were used at the encryption process for this part.

DA = ASCII (si)XOR ASCII(kA [l]) (4)

Where DA represents each decrypted character of part A, si represents each character in EA, KA [l]
is the array of TCS_DD keys used to decrypt EA. Each decrypted character is appended to the plaintext (F)

using the function: F.appendtext (DA) in the algorithm. The other symbols of this part are appended using

the function: F.appendtext (si) as shown in the algorithm in Figure 6.

For the second part of the data, the exact same steps are repeated. First, the user enters the initial

condition of chaos formula k0B and the control parameter μB which were used at the encryption process for

this part. Next, the TCS_DD stream keys are generated using logistic chaos formula.

DB = ASCII (sj)XOR ASCII(kB[l]) (5)

Where DB represents each decrypted character of Part B, s_j represents each character in EB, KB [l]

is the array of keys used to decrypt EB. The function: F.appendtext (DB) in the algorithm is used to append

the decrypted characters to Plaintext (F), while the function: F.appendtext (s_j) is used to append other

symbols of this part as shown in the algorithm presented in Figure 6.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 : 3295 - 3306

3302

Figure 5. The decryption process of TCS_DD

Pseudo-code of decryption process

input: EA (ciphertext of Part A), EB (ciphertext of Part B)

output: F (plaintext)

1. nA = E𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ // Get the length of the first decrypted part

2. Declare kA [] : array of double //Array of KA save keys which are used to decrypt the ciphertext of Part A

3. Input kA[0]
//Input initial condition of chaos formula k0A (used at the encryption process of the first

part)

4. Input µA //Input control parameter (used at the encryption process of the first part)

5. Let i =0 //Initialize i with zero

6. nB=E𝐵. 𝑙𝑒𝑛𝑔𝑡ℎ //get the length of the second decrypted part

7. Declare kB[] : array of double // Array of KB save keys which are used to decrypt the ciphertext of Part B

8. Input kB[0] //Input initial condition of chaos formula k0B (used at the encryption process of Part A)

9. Input µB //Input control parameter (used at the encryption process of Part B)

10. Let j = 0; //Initialize j with zero

11. Let 𝑙 = 0; //Initialize 𝑙 with zero (index of array)

12. Do{

13. 𝐸𝐴 = ∑ 𝑠𝑖
𝑖 = 𝑛𝐴
𝑖=0 // ciphertext of Part A

14.
DA = ASCII (𝑠𝑖) XOR

ASCII (kA[𝑙])
//decrypt each symbol with different key

15. F.appendtext (DA) //append each decrypted char to F

16. i++ // Increment i

17. F.appendtext (𝑠𝑖) //append char 𝑠𝑖 to F

18. KA[𝑙+1] = µA kA[𝑙](1- kA[𝑙]) //Generate a key using chaos formula

19. i++ //Increment i

20. 𝐸𝐵 = ∑ 𝑠𝑗
𝑗 = 𝑛𝐵
𝑗=0 //ciphertext of Part B

21.
DB = ASCII (𝑠𝑗) XOR

ASCII (kB[𝑙])
//decrypt each symbol with different key

22. F.appendtext (DB) //append each decrypted char to F

23. j++ // increment j

24. F.appendtext (𝑠𝑗) //append char 𝑠𝑗 to F

25. kB[𝑙+1] = µB kB[𝑙](1- kB[𝑙]) //Generate a key using chaos formula

26. j++ // increment j

27. 𝑙++} //increment 𝑙

28. While(i<nA&& j <nB) //Repeat this loop until i=nA and j = nB

Figure 6. The pseudo-code of the decryption process

Int J Elec & Comp Eng ISSN: 2088-8708 

Efficient two-stage cryptography scheme for secure distributed data storage… (Rabab F. Abdel-Kader)

3303

3.2.3. Illustration of the proposed TCS_DD algorithm

To further explain the proposed TCS_DD algorithm, a detailed example run on a small plaintext of

size 44 characters. The plaintext is assumed to be:

Plaintext: https://www.sciencedirect.com/science/articl

After running the proposed encryption algorithm, the resulting ciphertext is:

Ciphertext: “Ittpr:./vwv.rcheocddhrdcu.com/rchencd/`ruibl”

That can be decrypted using the decryption algorithm to form the same plaintext. The results are

listed in Table 1 and Table 2. The detailed steps are as follows: The file is first divided into two parts; each

one contains half the number of characters in the file which is 22 characters. Only half of the characters in

each part will be encrypted and the other half will remain without encryption. The purpose of that is to reduce

both encryption and deception time. For the first part, assuming the random initial condition k0A of (1) can be

0.73, and the control parameter µA can be 2.37. For the second part, there are 11 characters must be

encrypted. The random initial condition k0B of (1) can be assumed to be 0.512, and control parameter µB also

can be assumed to be 3.95. From Table 1 and Table 2, it is shown how randomly keys are generated using

the logistic chaos model. These keys are used to make encryption and decryption processes more efficient.

Table 1. Detailed cryptography process for part A
Original character Encryption key Encrypted character Decryption key Output character

h 0.73 I 0.73 h

t 0.467127 T 0.467127 t

s 0.58993889711427 R 0.58993889711427 s

/ 0.573329057642509 . 0.573329057642509 /

w 0.57975615285347 V 0.57975615285347 w

w 0.577424325914373 V 0.577424325914373 w

s 0.578292972803391 R 0.578292972803391 s

i 0.57797239867077 H 0.57797239867077 i

n 0.578091122957898 O 0.578091122957898 n

e 0.578047210340964 D 0.578047210340964 e

i 0.578063460110444 H 0.578063460110444 i

Table 2. Detailed cryptography process for part B
Original character Encryption key Encrypted character Decryption key Output character

e 0.512 D 0.512 e

t 0.9869312 U 0.9869312 t

c 0.0509471255429115 C 0.0509471255429115 c

m 0.190988487970214 M 0.190988487970214 m

s 0.610321947460609 R 0.610321947460609 s

i 0.93942481823857 H 0.93942481823857 i

n 0.2247780250082 N 0.2247780250082 n

e 0.68829881470237 D 0.68829881470237 e

a 0.847447047707646 ` 0.847447047707646 a

t 0.510658168705002 U 0.510658168705002 t

c 0.98705129358743 B 0.98705129358743 c

4. SIMULATION RESULTS

To evaluate the performance of the proposed TCS_DD scheme and its effectiveness, three

performance measures were calculated: the size of the ciphertext, encryption and decryption times, and time

complexity.

 The size of the ciphertext is the size of the encrypted plain test file in bytes.

 Encryption time is calculated as the time required for encryption i.e. the time taken to convert

the plaintext into ciphertext. Decryption Time is the time required for converting the ciphertext back

into the plaintext.

 Time complexity is the computational complexity that describes the amount of time it takes to run

an algorithm.

These performance measures were compared to other recent competing encryption approaches

which use a combination of symmetric and/or asymmetric algorithms. These algorithms are: Subasree

algorithm [9], Kumar algorithm [10], Zhu algorithm [11], THCA algorithm [12], and SCBRP algorithm [13].

The proposed algorithm was implemented using C# programming language and the simulations were run on

an Intel i5-3317U 1.70 GHz CPU with 4.00 GB of RAM using 64-bit implementations to ensure maximum

utilization of the hardware.

https://www.sciencedirect.com/science/articl

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 : 3295 - 3306

3304

4.1. Size of ciphertext

TCS_DD scheme along with Subasree, Kumar, Zhu, THCA, and SCBRP were used to encrypt

several test files with different sizes ranging from 609 bytes to 184,162 bytes. The resulted ciphered file

(ciphertext) size was measured in bytes and listed in Table 3. From Table 3, each of Subasraa, Zhu, SCBRP,

and TCS_DD produces a ciphertext size which is equal to the size of the plaintext. While both THCA and

Kumar have a bigger ciphertext size. This is due to the fact that in the proposed algorithm each odd character

of plain text is encrypted using a unique key generating one encrypted character.

Table 3. Size of ciphertext (bytes)
Size of Plaintext (bytes) Subasree Kumar Zhu THCA SCBRP TCS_DD

609 609 846 609 641 609 609

25,615 25,615 35,142 25,615 25,647 25,615 25,615

35,080 35,080 48,226 35,080 35,112 35,080 35,080

61,386 61,386 84,340 61,386 61,418 61,386 61,386

184,162 184,162 353,008 184,162 184,194 184,162 184,162

4.2. Encryption and decryption time

Tables 4 and 5 show the encryption and decryption times for different sizes of plaintext ranging

from 609 bytes to 184,162 bytes using TCS_DD, Subasree, Kumar, Zhu, THCA, and SCBRP. It is clear that

the proposed TCS_DD yields the least processing time for both encryption and decryption processes. This is

achieved because the proposed scheme splits the file into two parts which can be encrypted simultaneously.

However, when the size of file reaches 184,162 bytes, SCBRP consumes less time. This is due that SCBRP

uses two symmetric algorithms which are very simple to implement however they are very weak against

hackers. Figure 7 and Figure 8 show the difference of encryption and decryption times between algorithms.

Table 4. Encryption time (ms)
Size of Plaintext (byte) Subasree Kumar Zhu THCA SCBRP TCS_DD

609 2063 1500 998 998 650 45

25,615 3683 1518 1022 1022 725 384

35,080 5651 1526 1059 1059 743 526

61,386 15351 4219 3143 3143 2150 920

184,162 105889 5752 3814 3814 2256 2762

Table 5. Decryption time (ms)
Size of Plaintext (byte) Subasree Kumar Zhu THCA SCBRP TCS_DD

609 1078 966 562 562 356 40

25,615 1085 972 713 713 452 320

35,080 1082 980 824 824 483 438

61,386 1197 991 891 891 525 520

184,162 2087 1099 907 907 547 767

Figure 7. Comparison of encryption time with

competing algorithms

Figure 8. Comparison of decryption time with

competing algorithms

Int J Elec & Comp Eng ISSN: 2088-8708 

Efficient two-stage cryptography scheme for secure distributed data storage… (Rabab F. Abdel-Kader)

3305

4.3. Algorithm time complexity

The time complexity of an algorithm is the amount of time which is needed to run to completion.

Table 6 shows the time complexity of the proposed TCS_DD compared to the other related algorithms for

the encryption and decryption process. From this comparison, it is clear that the time complexity of

the proposed TCS_DD scheme, as well as the other algorithms is O(n) where n is the size of the plaintext.

This means that the proposed algorithm enhances the overall performance without adding any complexity.

Table 6. Time complexity of encryption and decryption processes
Algorithm Encryption process Decryption process

Subasree O(log(n2)+4n) ≌ O(n) O(log(2n3)+4n) ≌ O(n)

Kumar O(log2(n+1)+√n+4n) ≌ O(n) O(log2(n+1)+√n+5n) ≌ O(n)

Zhu O(log2(2n+1)+√n+4n) ≌ O(n) O(log2(2n+1)+√n +4n)≌ O(n)

THCA O(log(n2)+ log(n)+3n) ≌O(n) O(log(n)+log(2n3)+2n) ≌ O(n)

SCBRP O(2n+1) ≌ O(n) O(2n+1) ≌ O(n)

TCS_DD O(n/2) ≌ O(n) O(n/2) ≌ O(n)

5. CONCLUSION

In this paper, an efficient two-stage encryption scheme is proposed. The scheme enables the users to

encrypt files before safely storing them into the cloud. First, a two-factor authentication scheme is proposed

to authenticate users in the cloud. Second, the file is split into two parts each one is saved in a different cloud

server to achieve distributed storage. Each character is encrypted by a unique key generated using logistic

chaos model theory which uses initial parameters entered by the user. Therefore, it is very difficult for an

attacker to know these values and decrypt the plaintext. Simulation results show that this scheme presents

better security and achieves lower processing overhead. It also achieves less encryption and decryption time

comparing with related cryptography algorithms because of splitting the original file into two parts which can

be encrypted simultaneously.

REFERENCES
[1] B. Carpentieri, "Efficient Compression and Encryption for Digital Data Transmission," Security and

Communication Networks, vol. 2018, ID. 9591768, pp. 1-9, 2018.

[2] A. Bhardwaj, et al., “Security algorithm for cloud computing,” Proc. of Comp. Sci., vol. 85, pp. 535-542, 2016.

[3] J. Xiong, Y. Zhang, S. Tang, X. Liu, and Z. Yao, "Secure encrypted data with authorized deduplication in cloud,"

IEEE Access, vol. 7, pp. 75090–75104, 2019.

[4] I. M. Mahmoud, S.H. Nour El-Din, R. Elgohary, and H. Faheem, "A robust cryptographic-based system for secure

data sharing in cloud environments," Security and Communication Networks, vol. 9, no. 18, pp. 6248-6265, 2016.

[5] M. Gamal, R. Rizk, H. Mahdi, and B. E. Elnaghi, "Osmotic bio-inspired load balancing algorithm in cloud

computing," IEEE Access, vol. 7, no. 1, pp. 42735-42744, 2019.

[6] H. Nashaat, N. Ashry, and R. Rizk, "Smart elastic scheduling algorithm for virtual machine migration in cloud

computing," Journal of Supercomputing, Springer, vol. 75, no. 7, pp. 3842-3865, 2019.

[7] Y. Alkady, F. Farouk, and R. Rizk, “Fully homomorphic encryption with AES in cloud computing security,” Proc.

of the International Conference on Advanced Intelligent Systems and Informatics, vol. 845, pp. 370-382, 2018.

[8] S. Ganapathy, “A secured storage and privacy-preserving model using CRT for providing security on cloud and

IoT-based applications,” Comput. Netw., vol. 151, pp. 181–190, 2019.

[9] Y. Alkady, M. I. Habib, and R. Rizk, “A new security protocol using hybrid cryptography algorithms,” Proc.

of 9th International Computer Engineering Conference (ICENCO), Egypt, pp. 109-115, 2013.

[10] D. Yuan, X. Song, Q. Xu, M. Zhao, X. Wei, H. Wang, and H. Jiang, “An ORAM-based privacy preserving data

sharing scheme for cloud storage,” J. Inf. Secur. Appl., vol. 39, no. C, pp. 1-9, 2018.

[11] S. H. El-sherif, et al., “Two-factor authentication scheme using one time password in cloud computing,” Proc. of

the International Conference on Advanced Intelligent Systems and Informatics, Egypt, vol. 845, pp. 425-434, 2018.

[12] Subasree and N. K. Sakthivel, “Design of a new security protocol using hybrid cryptography algorithms,”

International Journal of Research and Reviews in Applied Science, vol. 2, no. 2, pp. 95-103, 2010.

[13] S. K. Namini, “A secure communication wireless sensor networks through hybrid (AES+ECC) algorithm,” LAP

Lambert Academic Publishing, 2012.

[14] S. Zhu, “Research of hybrid cipher algorithm application to hydraulic information transmission,” International

Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 2011.

[15] R. Rizk, and Y. Alkady, “Two-phase hybrid cryptography algorithm for wireless sensor networks,” Journal of

Electrical Systems and Information Technology, vol. 2, no. 3, pp. 296-313, 2015.

[16] M. Pavani, and P. T. Rao, “Adaptive PSO with optimised firefly algorithms for secure cluster-based routing in

wireless sensor networks,” IET Wireless Sensor Systems, vol. 9, no. 5, pp. 274-283, 2019.

[17] A. Bansal and A. Agrawal, “Providing security, integrity and authentication using ECC algorithm in cloud storage,”

International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, pp. 1-5, 2017.

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Mahmoud%2C+Ibrahim+M
https://ieeexplore.ieee.org/xpl/conhome/6723860/proceeding
https://link.springer.com/book/10.1007/978-3-319-99010-1
https://link.springer.com/book/10.1007/978-3-319-99010-1
https://ieeexplore.ieee.org/xpl/conhome/6036130/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6036130/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8106917/proceeding

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 : 3295 - 3306

3306

[18] D. P. Timothy, and A. K. Santra, “A hybrid cryptography algorithm for cloud computing security,” International

conference on Microelectronic Devices, Circuits and Systems (ICMDCS), Vellore, India, pp. 1-5, 2017.

[19] J. Chueh, and M. Sun, “Design and implementation of security system for cloud storage,” 19th Asia-Pacific

Network Operations and Management Symposium (APNOMS), Seoul, South Korea, pp. 129-134, 2017.

[20] K. Han, Q. Li, and Z. Deng, “Security and efficiency data sharing scheme for cloud storage,” Journal of Chaos,

Solution and Fractals, vol. 86, pp. 107-116, 2016.

[21] Y. Li, K. Gai, L. Qiu, M. Qiu, and H. Zhao, “Intelligent cryptography approach for secure distributed big data

storage in cloud computing,” Journal of Information Science, vol. 9, pp. 1-13, 2016.

[22] M.R. Rahardjo and G.F. Shidik, “Design and implementation of the self-encryption method on file security,”

International Seminar on Application for Technology of Information and Communication (iSemantic), Semarang,

Indonesia, pp. 181-186, 2017.

[23] R. Ye and W. Guo, “A chaos-based image encryption scheme using multimodal skew tent maps,” CIS, vol. 4,

no. 10, pp. 800-810, 2013.

[24] M. Aledhari, A. Marhoon, A. Hamad, and F. Saeed, “A new cryptography algorithm to protect cloud-based

healthcare services,” IEEE/ACM International Conference on Connected Health: Applications, Systems and

Engineering Technologies (CHASE), Philadelphia, PA, USA, pp. 37-43, 2017.

[25] B. En-Jian, Z. Jun-Jie, and W. Liang-Cheng, “WSN message authentication code based on chaos and

XOR-encryption, IFSA,” Sensors and Transducers, vol. 156, no. 9, pp. 161-167, 2013.

BIOGRAPHIES OF AUTHORS

Rabab Farouk Abdel-Kader received her B.Sc. from the Electrical Engineering Department

Suez Canal University in 1998. She received her Ph.D. degree from the department of Computer

Science and Software Engineering at Auburn University, Auburn, AL in 2007 and the MS degree

in Electrical Engineering from Tuskegee University with high honors in 2002. Since 2008 she is

working as an Assistant Professor in the Electrical Engineering department, Faculty of

Engineering, Port-Said University, Egypt. Her main research interests include image processing,

parallel computing, network security, and software Engineering.

Samar H. El-Sherif received her B.Sc. from Electrical Engineering department, Computer and

Control Section, Faculty of Engineering, Port-Said University in 2010 and her Master of Science

in Electrical Engineering, Computer and Control Section, Faculty of Engineering, Port-Said

University in (2019). Now she is working as an Assistant Lecturer, Technology and Information

System Department, Faculty of Management Technology and Information System, Port-Said

University.

Rawya Y. Rizk is a Professor of Computers and Control in Electrical Engineering Department,

Port Said University, Egypt. She is the Head of Electrical Engineering Department, Port Said

University, 2017 till now. She is the Chief Information Officer (CIO) of Port Said University

(PSU), 2014 till now. She received her BSc, MSc and PhD in Computers and Control Engineering

from Suez Canal University in 1991, 1996 and 2001, respectively. Her research interest is in

computer networking, including mobile networking, wireless, ATM, Sensor Networks, Ad Hoc

Networks, QoS, traffic and congestion control, handoffs and cloud computing. She is a reviewer in

many of international communication and computer journals such as IEEE Access, IET

communications, IET sensors, IET Networks, Journal of Supercomputing, Journal of Network and

Computer Applications, Computers & Electrical Engineering, Mathematical Problems in

Engineering, and IJACSA.

https://ieeexplore.ieee.org/xpl/conhome/8169966/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8169966/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8082389/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8082389/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8241148/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8010607/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8010607/proceeding

