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 Gangrene disease is one of the deadliest diseases on the globe which is 

caused by lack of blood supply to the body parts or any kind of infection. 

The gangrene disease often affects the human body parts such as fingers, 

limbs, toes but there are many cases of on muscles and organs. In this paper, 

the gangrene disease classification is being done from the given images of 

high resolution. The convolutional neural network (CNN) is used for feature 

extraction on disease images. The first layer of the convolutional neural 

network was used to capture the elementary image features such as dots, 

edges and blobs. The intermediate layers or the hidden layers of  

the convolutional neural network extracts detailed image features such as 

shapes, brightness, and contrast as well as color. Finally, the CNN extracted 

features are given to the Support Vector Machine to classify the gangrene 

disease. The experiment results show the approach adopted in this study 

performs better and acceptable. 
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1. INTRODUCTION 

Gangrene is a disease that results in the deterioration or loss of an organ or tissue usually caused by 

a deficiency of blood supply in the body. This may be caused by infectious or inflammatory processes 

because of injury or wounds on body parts, or progressive changes arising from chronic diseases,  

like diabetes mellitus. Gangrene disease could also result in damage of the tissue caused deficiency of blood 

supply. The blood supply may cut off to the affected part of the body as a result of it may leads to various 

problems, including infection, vascular disease or trauma. If this disease is widespread over the body parts, 

then shock may occur, can even cause death. 

Currently, Orthopedists base the symptoms for the diagnosis and classification of Gangrene disease 

on the visual assessment of the affected part. The expert inspire to detect the disease features or symptoms as 

the early signs are a numb sensation and coldness in the affected parts, starts to change the color of the body 

part, usually changing from reddish to brown and then finally changes into black color, the affected part 

shrivels and becomes dry, swollen and then decays, the wound is infected and contains discharge, resulting in 

black skin color, kills blood vessels. This fact shows that right diagnosis to gangrene disease highly depends 

on the experts’ experience and on his or her visual insight. In addition to this, the human vision system lacks 

precision, and quantification in the way gathers information from an image. Recently, most clinical centers in 

both the developing and developed countries have at least magnetic resonance imaging (MRI), computed 

tomography (CT) scan and some other expensive clinical laboratory equipments, so it is difficult to 

serve the community especially in developing countries with the help of MRI and CT scan machines. 

These machines are not smart enough in identification and classification of Gangrene disease types, 

this research motivated to automate the human vision system for classification of the disease. To minimize 

mailto:pramodsnair@yahoo.com


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 :  6001 - 6007 

6002 

the errors made by the physicians during manual diagnosis and classification, there is a need of developing 

such a prototype for diagnosis and classification of gangrene disease to reduce man made errors during 

diagnosis of the disease. This research simplifies the classification of the disease and provides consistent and 

satisfactory way to correctly classify different types of Gangrene diseases. Therefore, our effort is expected 

to fill existing gaps by developing an image-based hybrid approach for classification of the disease using 

convolutional neural network (CNN) and support vector machine (SVM). Based on the literature survey, 

we have identified the following problems in gangrene disease diagnosis: Man made errors are common in 

diagnosis and classification of gangrene disease when carried out manually. The unavailability of faster 

diagnosis and classification approach to help the doctor. 

 

 

2. LITREATURE REVIEW 

In this section, the works related to gangrene disease diagnosis and classification will be reviewed. 

There are three types of gangrene disease [1, 2] these are: 

a. Dry Gangrene disease: This type of gangrene disease is common in people suffering from blood vessel 

disease or diabetes and autoimmune disease. Usually affects hands, feet and tissue. Infection is typically 

not present in dry Gangrene. Some of the symptoms are:  

- dry and shriveled skin that changes color from blue to black and eventually sloughs off  

- clear line of demarcation is seen 

- limited to the demarcation 

- slow gradual loss of blood supply 

- cold and numb skin and 

- pain may or may not be present 

b. Wet Gangrene [1, 2]: Common in people with wounds or having body part wrinkled or squeezed. In this 

type of gangrene disease, the affected tissue swells and is called “wet” because of presence of discharge 

of fluid as a result of the disease. By infection the wet Gangrene spreads rapidly through the body, 

making wet Gangrene a very serious and potentially life intimidating condition. So, immediate treatment 

advised. Some of the symptoms are: 

- swelling and pain at the site of infection 

- change in skin color from red to brown to black 

- blisters or sore that produce a bad smelling discharge or pus 

- line of demarcation is vague and 

- sudden loss of blood supply 

c. Gas Gangrene [2]: This type of gangrene disease is rare but more dangerous. The disease occurs when 

infection progresses deep inside the body parts, like muscles or organs usually as a result of trauma.  

The bacterium that causes gas Gangrene disease is called clostridia, which releases toxins or poisons that 

cause damage to all parts of the body along with gas is trapped within the body tissue. As the condition 

progresses the skin becomes pale and gray and this results in cracking sound when pressed due to the gas 

accumulation within the tissue. Gas Gangrene disease needs immediate medical treatment because 

without treatment death may occur within 48 hours.  

The Support vector machine [3] is used in this work to do the classification of digital images into 

either of the categories of gangrene diseases. Support vector machines represent an extension to nonlinear 

models of the generalized model for classification. The SVM algorithm is based on the statistical machine 

learning theory [4]. And furthermore, the SVM is based on the concept of decision planes used to define 

decision boundaries. A decision plane separates between a set of objects having different class memberships. 

SVM is a set of related supervised learning methods used in classification problems [5] and regression [6]. 

Classification task is based on drawing separating lines to distinguish between objects of different class 

memberships known as hyperplane classifiers. Support vector machines are particularly suited to handle 

such tasks.  

SVM is a binary classifier that assumes only two values as labels which are negative and positive. 

Multiclass SVM is used to classify objects with more than two classes [7]. In our work the multiclass SVM is 

used for classify different types of gangrene diseases. In one of the works [8], for classifying both 

melanocytic skin lesions and non-melanocytic skin lesions a new computer-aided method was implemented. 

As by the author, the method used as four texture features for extraction: Contrast, Correlation, Homogeneity 

and Energy. The SVM and K-nearest neighbor (K-NN) classification techniques are selected to compare 

the performance and analyze the accuracy of both classifiers.  

Automated classification of liver disorders using ultrasound images [9] was proposed, which shows 

an innovative method used in recognition of fatty liver disease and heterogeneous liver using textural 

analysis of liver ultrasound images. The wavelet packet transform was used in the study to extract 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

An image-based gangrene disease classification (Pramod Sekharan Nair) 

6003 

the features such as mean, median and standard deviation, the classification technique used is the multiclass 

SVM, and an accuracy of 95% was achieved using the multiclass SVM for classification. 

Another study showcased that image processing techniques can be applied to Lung cancer 

detection [10]. This study was based on the image processing techniques. Furthermore, study shows that, 

image preprocessing in the early stages of disease diagnosis process, improved the accuracy and the result.  

In the study, three stage image processing were used: enhancement, segmentation using marker-controlled 

watershed, feature extraction Gabor filter stage. The watershed segmentation technique had better accuracy 

(84.55%) compared to other approaches [11, 12]. 

The accuracy of computer vision applications is improved [13] with the surge in the usage of 

convolutional networks and its techniques. A technique based on machine learning and computer vision [14] 

was used in plant leaf disease classification using CNN [15], which has been utilized for the detection and 

classification of plant leaf disease. The paper was focused on the early classification and detection of 

the plant leaf diseases. The authors used a convolutional neural network for feature extraction and 

classification. The authors did not train the entire deep convolutional neural network (DCNN) from 

the scratch with a random initialization, instead, pre-train a DCNN on a very large dataset was used and they 

trained DCNN weights to classify the plant leaf disease for four types of leaves such us Apple, Grape, Corn, 

and Strawberry.  One another work on plant disease classification was proposed [16] by using CNN. 

This study has used the soybean leaf images to identify three different diseases on soybean. The authors have 

used the pre trained CNN for feature extraction and classification of the diseases.   

There is another work [17] uses the Siamese CNN, multiple instances of the same model, for classify 

the x-ray image of the chest to classify the pneumonia disease. This paper was focused on the classification of 

the x-ray image in to any of the three classes. Two classes were the two different causes of pneumonia and 

the other one is noninfected x-ray image. The CNN is widely used in feature extraction from the images. One of 

the recent works [18] proposes the feature extraction of face images to do the age-invariant face recognition. 

In most of the research works [19, 20] related to disease classification, image processing was in  

the crucial part of disease diagnosis process using machine learning algorithms. Image pre-processing is  

the first step in image processing and pre-processing helps to improve the quality of the image [21] so that 

the image is suitable to extract the features. Due to different factors, the image captured by the digital camera 

may not be clear and in acceptable resolution. Therefore, different pre-processing techniques are applied to 

images to improve the image quality. This includes removal of noises, adjustment of intensity or brightness 

and addition of edge detectors based on the preferred features for the classification. 

The edge-based segmentation [21] method changes rapidly based on a change in image intensity 

value and the change in a single intensity value does not deliver better result of edges. Edge detection method 

is used to locating the edges where either the first derivative of intensity is greater than a particular threshold 

or the second derivative has zero crossings.  The first step in edge-based segmentation is detecting the edges 

and then connecting them together to make the object boundaries and segment the necessary areas.  

In conclusion segmentation is the common image processing method, where an image is divided or 

partitioned into different constituent parts with similar features like, pixel intensity value, color and texture [22]. 

The simplest method divides the image pixels with respect to their intensity level. These methods are used on 

images with brighter objects than their background. The selection of the methods is either manual or automatic 

based on prior knowledge or information of image features [23, 24]. 

 
 

3. RESEARCH METHOD 

Interviews were used for data gathering and data collection. Physicians and nurses are interviewed 

on gangrene disease. The medical images collected for Gangrene disease were classified into three categories 

of gangrene disease, namely wet Gangrene, dry Gangrene, gas Gangrene. The different types of gangrene 

disease images are shown in Figure 1. The use of machine learning algorithms to classify medical images 

into separate categories [25] is nowadays a common computing and data science task. Machine learning 

algorithms need a special feature extraction tool and a properly prepared dataset. The medical images used in 

this work which are collected from different image sources were cropped out in uniform resolution of  

224-by-224-by-3 to make the dataset to be similar in size and resolution. Preparing a properly labeled dataset 

with medical images for different types of Gangrene disease is an important step in the classification process. 

We have conducted interviews with medical experts such as, orthopedists (physicians) to correctly select  

the medical images for Gangrene disease from specialized hospitals.  

The Gangrene classification problem can be solved through a supervised machine learning method. 

In this work the CNN was used to extract the features from the image dataset. SVM was used to classify  

the extracted image features into different gangrene disease categories. The architecture of the image-based 
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hybrid approach for gangrene disease classification system is shown in Figure 2. MATLAB is used to 

implement the proposed system. 

 

 

 
 

Figure 1. Three types of gangrene disease and their labels 

 

 

Training/Test 

 
 

Figure 2. Architecture for gangrene disease classification  

 

 

4. RESULTS AND DISCUSSIONS 

 In this section, the experimental results on performance of SVM classifier with the confusion matrix 

is discussed. 

 

4.1.   Confusion matrix of SVM classifier 

The confusion matrix shows in Table 1 is used to showcase the accuracy of SVM classifier on a set 

of test data set for which the observed values of gangrene disease images are known. The outputs from  

the confusion matrixs are shown in Tables 1(a) and 1(b). The Figure 2 shows the graphical explanation of  

the tables. 
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Since there are three classes of Gangrene diseases and the fourth one that for not a gangrene disease, 

confusion matrix for the classes were generated. But, to measure the overall performance and accuracy of  

the SVM classifier the aggregate of the precision and recall from the SVM were considered. The implemented 

classifier only generates the final confusion matrix and the corresponding average accuracy as shown in 

Tables 1(a) and 1(b). 

 

 

Table 1. (a) Confusion matrix tabulated according to 

the true positive 
Number Wet Dry Gas Other 

Wet 8 0 0 2 

Dry 2 7.3 0 0.6 
Gas 0 0 10 0 

Other 1.3 0 0 8.6 
 

Table 1. (b) Confusion matrix tabulated according to 

the true negative 
Number Wet Dry Gas Other 

Wet 0.8000 0 0 0.2000 

Dry 0.2000 0.7333 0 0.0667 
Gas 0 0 1.000 0 

Other 0.1333 0 0 0.8667 
 

 

 

 
 

Figure 2. Confusion matrix, true positive vs true negative 

 

 

4.2.   Comparative study  

In this section, related works on disease classification are compared. Table 2 shows the related 

works with our work and the accuracy of classification. The result of our comparative study in Table 2 shows 

that, the overall accuracy for different disease classification algorithms were between 68.30 and 95 percent. 

The accuracy of our proposed image-based hybrid approach using CNN and SVM is 85%. The accuracy of 

the proposed system is illustrated in Figure 3. As shown in Figure 3, the accuracy of the SVM on classifying 

gangrene disease is between 82 and 88 percentage. This shows that, the CNN and SVM hybrid approach has 

better acceptable accuracy compared with other classification approaches. 

 

 

Table 2. Comparative study on related proposed work 
Related and proposed work Methodology Accuracy 

Classification of various skin lesion using SVM and 

KNN classifier [8] 
SVM, KNN both for classification 

SVM 75.95% 

KNN 68.30% 

Automated classification of liver disorders using 
ultrasound images [9] 

Wavelet Packet Transform for segmentation, SVM 
for Classification 

95%, 

Lung cancer detection using image processing toolbox 

[10] 

For feature Extraction Gabor filter stage, Marker-

Controlled Watershed for Segmentation  
84.55% 

Detection and classification of cancerous tissues in 

digital mammograms [11] 

Gray Level Co-Occurrence Matrices (GLCMs) 

For feature Extraction, SVM for Classification 
95% 

Skin lesion classification from dermoscopic images 
using deep learning techniques [20] 

CNN for feature extraction and Classification 78.66% 

An image-based gangrene disease classification 
CNN for Feature Extraction, SVM for 

Classification 
85% 
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Figure 3. Accuracy of SVM gangrene disease classification 

 

 

5. CONCLUSION  

In this paper, the CNN was used for classification and feature extraction of gangrene disease 

images. And a multiclass support vector machine was used for the classification of images. The classification 

algorithm was trained with the features extracted from different images using convolutional neural network. 

We have applied the standard multiclass classifier using the features to classify the images into different type 

of Gangrene diseases. The multiclass SVM classifier was applied to achieve effective classification with 

multiple classes. To the greatest extent, Gangrene disease classification was automated using an image 

analysis technique. Using the test data, the three classes of Gangrene diseases, dry, wet, gas were classified 

using the SVM classifier and result analysis shown an average of 85 percent accuracy. The proposed system 

accuracy can be improved as we add more gangrene disease images in the training set. 
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