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 Online social networks have practically a go-to source for information 

divulging, social exchanges and finding new friends. The popularity of such 

sites is so profound that they are widely used by people belonging to 

different age groups and various regions. Widespread use of such sites has 

given rise to privacy and security issues. This paper proposes a set of  

rules to be incorporated to safeguard the privacy policies of related users 

while sharing information and other forms of media online. The proposed 

access control network takes into account the content sensitivity and 

confidence level of the accessor to resolve the conflicting privacy policies of 

the co-owners. 
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1. INTRODUCTION 

Online Social Networks (OSNs) have become one of the most popular means of communication and 

information sharing in the modern era. Platforms such as Facebook, Instagram, Twitter, etc. encourage users 

to spend time on the respective platform through engaging content, advertisements, etc. However, as time 

passed by, the leakage of confidential information to the unintended audience became prevalent and a cause 

for concern for the users. Every social media platform has its own set of policies which they implement to 

protect the privacy of their users, but the goal of absolute privacy has still not yet been achieved [1].  

The evolution, accessibility and improved usability of OSNs this past decade has resulted in the sharing and 

upload of vast amount of data and media. Consequently, it has become physically impossible to keep track of 

the data being stored and retrieved through these social platforms [2]. In addition, there has been an increase 

in the number of attacks which affect users in OSNs ranging from privacy breaches to network structural  

attacks [3] and even viral marketing [4]. Privacy related attacks have been further compounded due to  

the increased visibility of user’s contents promoted through likes, shares, comments and other forms of user 

interactions. The paper will briefly explain the disadvantages of the current system in place and illustrates  

the implementation of a security model to safeguard user’s privacy preferences and resolve conflicts between 

different parties.  

Privacy preferences of users in OSNs can be violated in different ways. In a hypothetical example 

on Facebook, if Alice shares a post and tags Bob, Bob can lower the visibility of the post to audiences 

belonging to his friend’s list but has no control over those belonging to Alice’s friend’s list. Even though Bob 

can remove the associated tag himself, the post can still be visible on other parts of Facebook. This scenario 

does not account for those cases where the related users are not tagged but the content is shared nonetheless. 

To tackle issues related to privacy, policies have been enforced by OSNs giving the users flexibility 

to control who can view, react, comment or share the content they post on their profiles. Although these steps 

have lowered the visibility of users’ contents to the unintended audience, users have limited flexibility in 
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controlling what other users post on their respective profiles. In such scenarios, the privacy policies of  

the owner of the data item may get enforced but it can lead to a conflict of interest or violate privacy 

preferences of users who may get affected by the respective data item related to them. Putting these 

challenges into perspective, it has become necessary to design a model or workflow which considers  

the preferences of every user and resolve any privacy conflicts which may arise due to the differing user 

opinion with respect to a shared data item.  

Many authors have conducted research work and proposed models in order to achieve collaborative 

privacy management of shared data items in OSNs. Sindhu and Bhuvaneswari summarizes a survey they 

have conducted on various techniques and algorithms proposed by different researchers and concluded that 

there is a lack of multiparty privacy management support offered by the OSNs due to which users are unable 

to control which data items should be visible or shared to the targeted audience [5]. Rathore and Somanath 

proposes a collaborative access control for OSN (CACO) model that uses the degree of intimacy between  

the related parties viz. the stakeholders and the requesting users to determine the access decision [6]. Hu, Ahn 

and Jorgensan formulated a multiparty access control (MPAC) model as well as a multiparty policy 

specification scheme. They also implemented a proof-of-concept prototype called ‘MController’ which took 

into consideration the content sensitivity level assigned by the co-owners of the shared data item and  

the weights assigned to the multiple parties by the owner of the shared data item [7]. Such and Criado discuss 

the limited support for multiparty privacy offered by various OSNs and the strategies that users follow to 

overcome the limitations. As a result of their study, they outline a set of requirements to design and develop 

multiparty privacy management tools [8]. In another paper, they present a mechanism to detect privacy 

conflicts in OSNs and resolve them using a mediator. The mediator determines if a conflict exists based  

on the privacy policies associated with a shared data item and attempt to provide a solution if a conflict  

exists [9]. Ali et.al. proposes a framework which introduces an access management server. The server  

acts as a middleware between the users and the OSN server. Their framework emphasizes the protection of 

user privacy from unauthorized users as well as the OSN service provider using cryptographic based 

techniques [10].  

Cheng, Park and Sandhu integrates attribute-based policies into relationship-based access control 

(ReBAC) in order to enhance access control capability and allow finer-grained control which are not 

available by simple using ReBAC [11]. The research by Shan et. al. proposes an attribute and relationship-

based hybrid access control (HAC) model for OSNs based on policy language and path checking [12]. 

Carminati, Ferrari and Perego presented an access control model for web based social networks. In their 

model, the policies are formed as a result of constraints on the type of relationship which exist between users 

as well as the depth of the relationship [13]. In another paper, Carminati and Ferrari propose a solution which 

uses cryptographic and digital signature techniques to ensure that the privacy of the users is guaranteed 

during the collaboration process [14]. Nithya S. Joseph discusses a method for collaborative data sharing as 

well as a method to resolve privacy conflicts to ensure better protection against collusion attacks [15]. In their 

paper, Rathore and Tripathy propose a trust-based access control technique to allow or disallow the sharing 

of the resource taking into consideration the authorization requirements of all the multiple parties and 

analyzes the privacy risk of the model [16]. Wishart et.al. proposes a privacy-aware social networking service 

and then introduce a collaborative approach to authoring privacy policies for the service. Their approach 

considers the needs of all parties affected by content and information disclosed [17]. Xu et.al. proposes  

a trust-based mechanism to realize collaborative privacy management. In their model, the user makes  

the decision of whether or not to post a data item based on the aggregated responses of the users related to  

the data item. The weight factor which has been considered is the trust value between the users, and  

the values are updated according to users’ privacy loss [18]. Akkuzu, Aziz and Adda uses fuzzy logic rules to 

determine access to a shared data item based on the content sensitivity of the data item and the confidence 

that the co-owners have on the owner of the data item [19].  

In this paper, a collaborative model is proposed in which the fuzzy logic rules will be based on  

the mean content sensitivity level of the shared data item and the mean confidence that the co-owners have 

on the accessor of the data item. The model thus removes complete preference given to the owner of  

the shared data item [20] and allows co-owners a fair chance to enforce their privacy policies in spaces which 

in the present scenario, are out of their control. The privacy policies which have been taken into 

consideration are ‘View Policy’, ‘React Policy’, ‘Comment Policy’ and ‘Sharing Policy’ for a shared data 

item on Facebook. The model assumes that the users are notified of the shared data item either by ‘tags’ 

which were added by the owner or by Facebook’s user identification system achieved through facial 

recognition techniques. 
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2. PROPOSED MODEL 
This section describes the proposed model which has been based on the principles of fuzzy logic 

rules. The model will show how the privacy policies of a shared data item will be managed based on  

two aspects viz. content sensitivity level of the shared data item and the confidence level (or trust) that  

the co-owners have on the user trying to access the resource. 

 

2.1.  Definitions and assumptions 

The following terms, definitions and assumptions [21, 22] will be used to describe the proposed 

model of the system.  

a. Shared Data Item (D). A shared data item D can be a post, image, video or any content which is related to 

more than one user and which is jointly owned by the related users.  

b. Co-owner (Ci). A co-owner of a shared data item D is a user who jointly owns D along with other users or 

has some authority to control the privacy policies concerning D. For a shared data item D, there can be  

n number of co-owners and Ci is the ith co-owner of D where i ∈ [1, 2, …, n]. C1 is the owner of D i.e.  

the user who originally shares D.  

c. Accessor (A). An accessor is any user who wishes to access the shared data item D or perform any action 

on D. An accessor can be friends, friends of friends, family members or anyone from the general public.  

d. Mean Content Sensitivity Level (CSLmean(D)): The mean content sensitivity level of a shared data item D 

is the average of the sensitivity level attributed to D by the related co-owners.  

 

CSLmean(D) = 𝛴CSLi(D) / n ; i ∈ [1, 2, …, n] , CSLi(D) ∈ [0, 2, …, 10] 

 

The CSLi(D) values ranges from 0 (very low sensitivity) to 10 (very high sensitivity) which will be 

determined by the ith co-owner for the shared data item D. These values will be normalized between 0 to 1 

when the model will apply the fuzzification process.  

e. Mean Confidence Level (CONFmean(D, A)). The mean confidence level for an accessor A is the average 

of the quantifiable measure of trust attributed by the co-owners for accessor A for a given shared data  

item D.  

 

CONFmean(D, A) = 𝛴CONFi(D, A) / n ; i ∈ [1, 2, …, n] , CONFi(D, A) ∈ [0, 0.05, 0.1 …, 1] 

 

The CONFi(D, A) values ranges from 0 (no confidence) to 10 (full confidence) which will be determined 

by the ith co-owner for the shared data item D. These values will be normalized between 0 to 1 when  

the model will apply the fuzzification process.  

f. Privacy Policies (PP(D, A)). The privacy policies for a shared data item D is a set of policies which 

determines the privilege granted to an accessor A. The model assumes these policies to be the ‘View 

Policy’, ‘React Policy’, ‘Comment Policy’ and ‘Sharing Policy’. These policies are attributed Boolean 

values of 0 and 1 determined after applying the fuzzy logic rules. If a policy is attributed with the value of 

0, the accessor A will be denied access or perform the privilege predetermined by the policy with respect 

to the data item D, otherwise the accessor A is given the required access. The model assumes that each 

privacy policy is a function of the mean content sensitivity level (CSLmean(D)) and mean confidence level 

(CONFmean(D, A)). As each policy is different in its own respect, it is assumed that the fuzzy logic rules 

for each privacy policy will be different, thereby granting the system flexibility in determining the rules 

for the respective policies.  

 

2.2.  Fuzzy model overview 

The decision-making model that was chosen is based on the principles of fuzzy logic i.e. decisions 

cannot entirely be Boolean in nature. The model assumes that each co-owner of the shared data item has 

varying levels of confidence (or trust) on the different accessors. The decision being made will be based on 

the content sensitivity of the data item and the confidence that the co-owners have on the different accessors.  

In general, a fuzzy logic decision-based system follows a broad procedure which includes 

fuzzification, inference and defuzzification. Fuzzification is the process where crisp values are taken as input 

to obtain membership degree values. Inference involves determining a predetermined fuzzy decision by 

aggregating the fuzzy inputs obtained from fuzzification to obtain the overall membership degree. 

Defuzzification is the process where the overall membership degree of the fuzzy decision is mapped to a crisp 

value. The general fuzzification model can be observed in Figure 1. For the purpose of inference and 

defuzzification, the model adopts the Mamdani-style inference. Based on the crisp value obtained after  

the defuzzification process, the model will determine if the accessor is permitted to access or perform  

an action on a shared data item.  
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Figure 1. General fuzzification model 

 

 

2.2.1. Membership functions and fuzzification 

For the process of fuzzification, the linguistic variable inputs need to be identified first.  

In the proposed model, these variables are the mean content sensitivity level of the shared data item and 

mean confidence level attributed to the accessor by the co-owners. Figures 2 and 3 represent the membership 

functions of the linguistic variables of mean content sensitivity level and mean confidence level respectively 

which are attributed by the co-owners of the shared data item. Figure 4 shows the output membership 

functions of the ‘Comment Policy’. 

For mean content sensitivity level, the model has assumed the membership functions to be ‘Very 

Low’, ‘Low’, ‘Medium’, ‘High’ and ‘Very High’. Similarly, for mean confidence level, the model assumes  

the membership functions to be ‘Very Low’, ‘Low’, ‘Medium’, ‘High’ and ‘Very High’. The output 

membership functions are ‘Deny’, ‘Maybe’ and ‘Permit’ which will determine the respective privacy policy 

for a particular accessor.  

 

 

 
 

Figure 2. Membership functions of mean content sensitivity level 
 

 

 
 

Figure 3. Membership functions of mean confidence level 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Policy resolution of shared data in online social networks (Nisha P. Shetty) 

3771 

 
 

Figure 4. Output membership functions of the comment policy 
 

 

2.2.2. Fuzzy rules and inference [23, 24] 

Based on the fuzzy rules, a fuzzy inference viz. an output that is not entirely Boolean is obtained. 

Fuzzy logic rules are defined in the following format: 

 

IF x is A AND y is B THEN z is C  

 

where x, y and z are linguistic variables; A, B and C are fuzzy sets belonging to their respective fuzzy inputs 

X, Y and Z. These rules are made in order to infer the fuzzy outputs. 

The model assumes that for each privacy policies, different sets of rules need to be applied. Table 1 

shows a set of rules which have been defined for the ‘Comment Policy’ and Table 2 summarizes the contents 

of Table 1 in the form of fuzzy matrix. Additional sets of rules can be made similarly for the ‘View Policy’, 

‘React Policy’ and ‘Share Policy’. 

 

 

Table 1. Definition of fuzzy logic rules for the comment policy 
S.N. Antecedent (IF) Consequent (THEN) 

1. IF CSLnean(D) is ‘Very Low’ and CONFmean(D,A) is ‘Very Low’ THEN PPcomment(D,A) is ‘Maybe’ 
2. IF CSLnean(D) is ‘Very Low’ and CONFmean(D,A) is ‘Low’ THEN PPcomment(D,A) is ‘Permit’ 
3. IF CSLnean(D) is ‘Very Low’ and CONFmean(D,A) is ‘Medium’ THEN PPcomment(D,A) is ‘Permit’ 
4. IF CSLnean(D) is ‘Very Low’ and CONFmean(D,A) is ‘High’ THEN PPcomment(D,A) is ‘Permit’ 
5. IF CSLnean(D) is ‘Very Low’ and CONFmean(D,A) is ‘Very High’ THEN PPcomment(D,A) is ‘Permit’ 
6. IF CSLnean(D) is ‘Low’ and CONFmean(D,A) is ‘Very Low’ THEN PPcomment(D,A) is ‘Deny’ 
7. IF CSLnean(D) is ‘Low’ and CONFmean(D,A) is ‘Low’ THEN PPcomment(D,A) is ‘Maybe’ 
8. IF CSLnean(D) is ‘Low’ and CONFmean(D,A) is ‘Medium’ THEN PPcomment(D,A) is ‘Permit’ 
9. IF CSLnean(D) is ‘Low’ and CONFmean(D,A) is ‘High’ THEN PPcomment(D,A) is ‘Permit’ 
10. IF CSLnean(D) is ‘Low’ and CONFmean(D,A) is ‘Very High’ THEN PPcomment(D,A) is ‘Permit’ 
11. IF CSLnean(D) is ‘Medium’ and CONFmean(D,A) is ‘Very Low’ THEN PPcomment(D,A) is ‘Deny’ 
12. IF CSLnean(D) is ‘Medium’ and CONFmean(D,A) is ‘Low’ THEN PPcomment(D,A) is ‘Deny’ 
13. IF CSLnean(D) is ‘Medium’ and CONFmean(D,A) is ‘Medium’ THEN PPcomment(D,A) is ‘Maybe’ 
14. IF CSLnean(D) is ‘Medium’ and CONFmean(D,A) is ‘High’ THEN PPcomment(D,A) is ‘Permit’ 
15. IF CSLnean(D) is ‘Medium’ and CONFmean(D,A) is ‘Very High’ THEN PPcomment(D,A) is ‘Permit’ 
16. IF CSLnean(D) is ‘High’ and CONFmean(D,A) is ‘Very Low’ THEN PPcomment(D,A) is ‘Deny’ 
17. IF CSLnean(D) is ‘High’ and CONFmean(D,A) is ‘Low’ THEN PPcomment(D,A) is ‘Deny’ 
18. IF CSLnean(D) is ‘High’ and CONFmean(D,A) is ‘Medium’ THEN PPcomment(D,A) is ‘Deny’ 
19. IF CSLnean(D) is ‘High’ and CONFmean(D,A) is ‘High’ THEN PPcomment(D,A) is ‘Maybe’ 
20. IF CSLnean(D) is ‘High’ and CONFmean(D,A) is ‘Very High’ THEN PPcomment(D,A) is ‘Permit’ 
21. IF CSLnean(D) is ‘Very High’ and CONFmean(D,A) is ‘Very Low’ THEN PPcomment(D,A) is ‘Deny’ 
22. IF CSLnean(D) is ‘Very High’ and CONFmean(D,A) is ‘Low’ THEN PPcomment(D,A) is ‘Deny’ 
23. IF CSLnean(D) is ‘Very High’ and CONFmean(D,A) is ‘Medium’ THEN PPcomment(D,A) is ‘Deny’ 
24. IF CSLnean(D) is ‘Very High’ and CONFmean(D,A) is ‘High’ THEN PPcomment(D,A) is ‘Deny’ 
25. IF CSLnean(D) is ‘Very High’ and CONFmean(D,A) is ‘Very High’ THEN PPcomment(D,A) is ‘Maybe’ 

 

 

 

Table 2. Fuzzy matrix 
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Parameters CSLnean(D) 
Very Low Low Medium High Very High 

CONFmean(D,

A) 

Very Low Maybe Deny Deny Deny Deny 
Low Permit Maybe Deny Deny Deny 

Medium Permit Permit Maybe Deny Deny 
High Permit Permit Permit Maybe Deny 

Very High Permit Permit Permit Permit Maybe 
 

 

2.2.3. Defuzzification 
This object of the defuzzification process is to obtain a crisp output value based on the rule 

inference obtained in the inference process. Using the crisp value, an algorithm can be formulated in order to 

make the final decision to determine a privacy policy for a data item to be accessed by an accessor. There are 

many ways to perform defuzzification. The fuzzy model designed will obtain the crisp value by following  

the centroid technique. This is achieved by:  

− Computing the centroid of the output membership functions. 

− Limiting the height of each membership function by obtaining the degree of membership of the respective 

outputs and computing the resulting area. 

− Computing the weighted average of the centroids using the computed areas. 

 

 

3. RESEARCH METHOD 
The following algorithm 1 gives an overview of the steps which will be followed by the model to 

determine the resolution of the privacy policies of the co-owners of the given shared data item. The process 

first begins when the co-owners of the shared data item D determines its content sensitivity from a range of 0 

to 10, 0 denoting extremely low content sensitivity and 10 denoting extremely high content sensitivity. After 

setting the content sensitivity of D, co-owners will proceed to determine the confidence level of an accessor 

based on the type of relationship between the accessor and the respective co-owner; for example, ‘friends’, 

‘friends of friends’, ‘family’, ‘close friends’, etc. The values of the confidence level will range between 0% 

and 100%; 0% denoting no confidence and 100% denoting full confidence. The co-owners will assign each 

group of accessors a value which denotes how much he or she considers a particular group of accessors 

trustworthy to access or perform actions on D. The algorithm will thus calculate the mean content sensitivity 

and mean confidence level which will be used as crisp inputs to the fuzzy model. On the basis of the crisp 

inputs, pre-defined rules and the relevant membership functions, the fuzzy model will make an inference.  

If the inference is ‘DENY’ or ‘PERMIT’, access to the respective privacy policy will denied or permitted 

respectively. However, if the inference is ‘MAYBE’, the model will proceed to apply defuzzification and 

find a crisp output. If the crisp output is less than the mean centroid value of ‘MAYBE’ and ‘PERMIT’ 

output membership functions, then the final decision for the respective privacy policy will be ‘DENY’, or 

else the final decision will be ‘PERMIT’. Figure 5 shows a 3-dimensional plot of the fuzzy model proposed.  

 

Algorithm 1. Model workflow 

Let  

D : Shared Data Item  

A : Accessor of Shared Data Item D 

CSLi(D) : Content Sensitivity Level set by the ith Co-owner of D 

CONFi(D) : Confidence Level set by the ith Co-owner of D 

PP(D,A) : Privacy Policies on D for a given Accessor A 

 = [view_policy(D,A), react_policy(D,A), comment_policy(D,A), share_policy(D,A)] 

n : Number of Co-owners  

CSLmean(D) : Mean Content Sensitivity Level for D  

  = ΣCSLi(D) / n  

CONFmean(D, A) : Mean Confidence Level on Accessor A for D 

  = ΣCONFi(D, A) / n  

 

FOREACH(PP(D,A) as p) 

 fuzzyOutputs[] = applyFuzzyRules(p, CSLmean(D), CONFmean(D, A)); 

 fuzzyInference = aggregrateOutputs(fuzzyOutputs);  

 IF(fuzzyInference == ‘DENY’) THEN 

  p = ‘DENY’; 
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 ELSE IF (fuzzyInference == ‘MAYBE’) 

  crispResult == applyDefuzzification(p, fuzzyOutputs); 

  meanCentroidValue = getMeanCentroidValue(‘MAYBE’, ‘PERMIT’); 

  IF(crispResult < meanCentroidValue)  

   p = ‘DENY’;  

  ELSE 

   p = ‘PERMIT’; 

  ENDIF 

 ELSE  

  p = ‘PERMIT’; 

 ENDIF 

ENDFOREACH 

 

 

 
 

Figure 5. 3 Dimensional plot of the fuzzy model proposed 
 

 

4. RESULT AND DISCUSSIONS 
This section will explain the usability and evaluation of the model with a case scenario which is 

followed by the analysis of the model and related discussions. 

 

4.1.  Model evaluation 

In this scenario, Bob, Mary, Alice and John are four friends. Bob shares a picture of all of them 

hanging out on his profile and tags them. All four of them are co-owners of the picture shared by Bob. Even 

though Bob has no concerns of making the picture public, Alice, Mary and John have their own set of 

privacy preferences and want to limit the visibility of the picture. Each of them assigns a content sensitivity 

level to the picture (from 0 to 10) and depending on the type of relationships they have with different users or 

accessors, they set their confidence level accordingly for different groups of accessors. Table 3 shows  

a sample set of possible inputs from Bob, Mary, Alice and John and the mean output. Table 4 shows a sample 

set of confidence level inputs by the four co-owners for different groups of accessors. During the retrieval of 

shared data content in an accessors’ feed, the model will evaluate the privacy policies of the shared picture 

and accordingly determine the appropriate access. Table 5 shows the mean confidence level for a user named 

Jack who is an accessor.  

Table 6 summarizes the different outputs obtained after the rule evaluation process (refer to the rules 

for the ‘Comment Policy’ in Table 1). Based on the outputs obtained, the model will aggregate them to make 

an inference. Aggregation can be achieved in different ways, but the most common method is to choose  

the fuzzy set which has the highest confidence value. In this scenario, the model makes an inference of 

‘DENY’ as it has the highest confidence value from the other output membership functions. For comparison 

purposes, the crisp output obtained after performing defuzzification of the inference using the weighted 

centroid technique was computed as 41.4 based on the crisp inputs. However, the inference was ‘DENY’,  

the algorithm would have determined that the ‘Comment Policy’ for the accessor named Jack for the shared 

data item D co-owned by Bob, Mary, John and Alice is ‘DENY’. As a result, Jack would be unable  

to comment on the shared data item D. Similarly, different rules can be applied for the ‘View Policy’,  
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‘React Policy’, ‘Share Policy’ or other relevant policies and an inference can be made to resolve 

the respective privacy policy for a shared data item for any accessor requesting access.  

 
 

Table 3. Sample inputs 
S.N. Name of Co-owner Sensitivity level (0 - 10) Mean content sensitivity of shared data item D 

1. Bob 3.0 

6.0 2. Mary 7.0 
3. John 6.0 
4. Alice 8.0 

 

 

Table 4. Sample confidence level inputs 
S.N. Name of Co-owner Relationship with accessor Confidence / trust level (0 - 100%) 

1. 

Bob 

No relation (public) 40% 

2. Friends of friends 65% 

3. Friends 90% 

4. Close friends 100% 
5. 

Mary 

No relation (public) 20% 

6. Friends of friends 40% 

7. Friends 50% 
8. Close friends 70% 

9. 

Jhon 

No relation (public) 30% 
10. Friends of friends 55% 

11. Friends 60% 

12. Close friends 70% 
13. 

Alice 

No relation (public) 10% 

14. Friends of friends 20% 

15. Friends 45% 
16. Close friends 55% 

 

 

Table 5. Mean confidence level calculation for accessor jack 
S.N. Name of Co-owner Relationship with Jack Confidence / trust level Mean confidence level 

1. Bob Close friends 100% 

55% 
2. Mary Friend of friend 40% 

3. John Friends 60% 

4. Alice Friend of friend 20% 

 

 

Table 6. Rule evaluation output for comment policy 
S.N. Input 1 (mean content sensitivity) Input 2 (mean confidence level) Output (comment policy) 

1. Medium0.33 Medium0.66 Maybe0.33 

2. Medium0.33 High0.33 Permit0.33 
3. High0.66 Medium0.66 Deny0.66 

4. High0.66 High0.33 Maybe0.33 

 

 

4.2.  Analysis and discussions 

Given the amount of variance in users’ opinions with regards to determining the sensitivity of  

the content and the trustworthiness of the accessors, the implementation of the model offers several 

advantages. The model firstly, takes into consideration every user or stakeholder who is concerned with  

the shared data and not just that of the owner. This solves the current problem in OSNs where the owner  

of the data can share content to a wide audience with limited restrictions. Another notable difference in  

this model from other implementations is that instead of evaluating the trustworthiness of the data owner  

(e.g. in [18]), it determines the trustworthiness of the users who are trying to access the shared data item.  

As a result of this, co-owners of the shared data are provided a safeguard to limit the visibility of the shared 

content from the unintended audience in case they find it sensitive in nature. In terms of usability,  

the implementation of this model eliminates the review of the data owner’s privacy settings every time he or 

she disseminates a shared data item. By attributing the confidence level to the accessor instead of the data 

owner, it is easier for the users to set up default privacy configurations for every accessor based on  

their relationship with the respective user. The model can further be enhanced by enforcing fine-grained  

controls [25] to improve the performance. The model could also potentially be integrated with advanced 

facial recognition algorithms [26, 27] wherein the results of the model could determine whether tags should 

be generated automatically or not for the respective user based on his or her privacy policy preferences.  
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5. CONCLUSION AND FUTURE SCOPE 
Social media, if used unwisely or in a carefree manner, can inadvertently lead to the dissemination 

of critical information. This paper proposes a multi-party access mechanism for shared data belonging to 

multiple concerned users, so that its access by malevolent users can be avoided or minimized to a great 

extent. The proposed method aims to resolve the conflicts which occur when the owner and other 

stakeholders have different views on the access rights of the shared data. The aim of this work is to automate 

the resolution process to ensure the impartial settlement of such conflicts. Future works involve introducing 

fine-grained negotiation between the various stakeholders to improve the efficiency of the resolution. Facial 

recognition algorithms are generating tags nowadays automatically, so new approaches must be put forth to 

provide added security in such cases. 
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