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ABSTRACT

Notwithstanding the recent technological advancement, the identification of facial and
emotional expressions is still one of the greatest challenges scientists have ever faced.
Generally, the human face is identified as a composition made up of textures arranged
in micro-patterns. Currently, there has been a tremendous increase in the use of Lo-
cal Binary Pattern based texture algorithms which have invariably been identified to
being essential in the completion of a variety of tasks and in the extraction of essen-
tial attributes from an image. Over the years, lots of LBP variants have been literally
reviewed. However, what is left is a thorough and comprehensive analysis of their
independent performance. This research work aims at filling this gap by performing a
large-scale performance evaluation of 46 recent state-of-the-art LBP variants for facial
expression recognition. Extensive experimental results on the well-known challenging
and benchmark KDEF, JAFFE, CK and MUG databases taken under different facial
expression conditions, indicate that a number of evaluated state-of-the-art LBP-like
methods achieve promising results, which are better or competitive than several re-
cent state-of-the-art facial recognition systems. Recognition rates of 100%, 98.57%,
95.92% and 100% have been reached for CK, JAFFE, KDEF and MUG databases,
respectively.
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1. INTRODUCTION
With the development of artificial intelligence and pattern recognition, computer based facial expres-

sion recognition has attracted many researchers in the domain of computer vision. Several studies have shown
that the facial expression contributes to better understand the conversations [1, 2], and it helps to express the
individual’s internal emotions, also, it is considered as the main modality for human communication.
Recent progresses in psychology and neuroscience fields give a more positive interpretation of the emotions
role in human behavior [3]. The facial emotion recognition system resides of three important steps; face de-
tection, feature extraction and classification. By taking image or series of images as input, the most important
step is feature extraction that allows to describe the input images and calculate their characteristic vector using
a given operator. Indeed, extracting poor features involves producing poor recognition quality even with the
use of best classifiers. Because of the exceptional exhibition of LBP based techniques, they have developed as
one of the most unmistakable local image descriptors. Although initially intended for texture analysis [4], the
LBP descriptor has given excellent outcomes in different applications because of its invariance to monotonic
global graylevel changes, furthermore, its better resistance against brightening changes property in real-world
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applications including face recognition. Another equally important property is its computational effortlessness
and the low length of its histogram vector, which make it ready to examine images in challenging real-time
settings. The achievement of the LBP in numerous applications conceived an offspring of an immense number
of LBP variations, which have been proposed and keep on being proposed. Without a doubt, since Ojala’s work
[4] and because of its adaptability and effectiveness, the general LBP-like way of thinking has demonstrated
extremely well known, and an extraordinary assortment of LBP variations have been proposed in the writing to
improve discriminative power, robustness, and appropriateness of LBP. The main objective of this study is to
perform a large scale performance evaluation for facial emotion recognition, assessing 46 recent state-of-the-
art texture features, on four widely-used benchmark databases. Performance of the adopted facial expression
recognition system coupled with the best evaluated texture descriptor on each dataset is compared against those
of state-of-the-art approaches. We disclose in the experimental section the fact that some descriptors originally
proposed for applications other than facial emotional recognition allow outperforming several recent state-of-
the-art systems. The remaining sections of this research work are arranged in the following way: Section 2.
reviews the traditional LBP operator as well as some of its recent and popular variants. Section 3. reviews the
few existing surveys on texture descriptor based classification and recognition as well as the evaluated state-
of-the art LBP-like methods. Section 4. provides detailed explanation on the results of the experiments while
comparing the performances of the best performing descriptors on each tested datasets with those of recent
state-of-the-art facial emotional recognition systems. Finally, section 5. draw this paper to a close by proposing
some future research perspectives.

2. BRIEF REVIEW OF EXISTING METHODS
The original Local Binary Pattern (LBP) operator proposed by Ojala et al [4] , which consists in

coding the pixel-wise information in an image, is a powerful texture analysis descriptor. It aims to search
micro-textons in local regions. The value Ip of the pixels in a 3×3 grayscale image patch around the central
pixel Ic are turned into binary values (0 or 1) by comparing them with Ic (value of the central pixel). The
obtained binary numbers are encoded to characterize a local structure pattern and then the code is transformed
into decimal number. Once a LBP code of each pixel is obtained, a histogram is built to represent the texture
image. For a 3×3 neighborhood, the definition of the kernel function of LBP operator is given in (cf. Eq (1)),
where Ip (p ∈ {1, 2, ..., P}) signifies the gray levels of the peripheral pixels, P corresponds to the number of
neighboring pixels (P=8) and ϕ(·) is the Heaviside step function (cf. Eq (1)).

LBP(Ic) =

P=8∑
p=1

ϕ (Ip − Ic)× 2p−1, ϕ (z) =

{
1 , z ≥ 0
0 , z < 0

(1)

Local binary patterns by neighborhoods (nLBPd) operator [5] consists in encoding the relationship
between each pair of the peripheral pixels I0 , I1 , I2 , ...,I7 around the central pixel Ic in a 3×3 square
neighborhood. The pairs of pixels are compared with sequential neighbors or within neighbors possesing a
distance length d. The kernel function of nLBPd code is defined by (cf. Eq. (2)). When d=1, the binary code
of the central pixel Ic is gotten as below (Eq. (3)):

nLBPd(Ic) =

P−1∑
p=0

ϕ(Ip, I(p+d mod P))× 2p (2)

Ic = ϕ(I0 > I1), ϕ(I1 > I2), ϕ(I2 > I3), ϕ(I3 > I4), ϕ(I4 > I5), ϕ(I5 > I6), ϕ(I6 > I7), ϕ(I7 > I8) (3)

The procedure of Local Graph Structure (LGS) descriptor introduced by Abusham et al. [6] is to
exploit the dominant graph process in order to encode the spatial data for any pixel in the image. LGS is based
on local graph structures in local graph neighborhood. The graph structure of LGS represents more left-handed
neighbor pixels than right-handed ones. To overcome this defect, Extended Local Graph Structure (ELGS)
operator is proposed [7]. The procedure for ELGS is based on using the LGS texture descriptor to build two
descriptions (horizontally and vertically) and then combine them into a global description.
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3. EVALUATED STATE-OF-THE-ART LBP VARIANTS
The pioneering LBP work [4] and its success in numerous computer vision problems and applications

has inspired the development of great number of new powerful LBP variants. LBP descriptor is adaptable to
suit in many different applications requirements. Indeed, after Ojala’s work, e.g., Heikkila et al [8], several
modifications and extensions of LBP have been developed with the aim to increase its robustness and discrimi-
native power. These extensions and modifications of LBP, developed usually in conjunction with their intended
applications (see Table 1), focus on several aspects of the LBP method such as, Quantization to multiple level
via thresholding; sampeling local feature vectors and pixel patterns with some neighborhood topology; com-
bining multiple complementary features within LBP-like and with non-LBP descriptors for both images and
videos and finally, regrouping and merging patterns to increase distinctiveness.

Table 1. Summary of texture descriptors tested.

Ref Year Complete name Abbreviation Application

[4] 2002 Local Binary Pattern LBP Texture classification
[9] 2003 Simplified Texture Unit + STU+ Texture classification
[10] 2004 Gradient texture unit coding GTUC Texture classification
[11] 2005 Difference Symmetric Local Graph Structure DSLGS Finger vein recognition
[8] 2006 Center-Symmetric Local Binary Patterns CSLBP Texture classification
[12] 2008 Centralized Binary Pattern CBP Facial expression recognition
[13] 2010 Local Ternary Patterns LTP Face recognition
[14] 2010 Directional Binary Code DBC Face recognition
[15] 2010 Improved Local Ternary Patterns ILTP Medical image analysis
[16] 2010 Local Directional Pattern LDP Face recognition
[17] 2011 Binary Gradient Contours (1) BGC1 Texture classification
[17] 2011 Binary Gradient Contours (2) BGC2 Texture classification
[17] 2011 Binary Gradient Contours (3) BGC3 Texture classification
[18] 2011 Center-Symmetric Local Ternary Patterns CSLTP Feature description
[18] 2011 Extended Center-Symmetric Local Ternary Patterns eCSLTP Image retrieval
[19] 2011 Improved Local Binary Patterns ILBP Face detection
[6] 2011 Local Graph Structure LGS Face recognition
[20] 2012 Local Maximum Edge Binary Patterns LMEBP Image retrieval
[16] 2013 Improved binary gradient contours (1) IBGC1 Texture classification
[21] 2013 Local Directional Number Pattern LDN Face expression analysis
[22] 2013 Local Gray Code Pattern LGCP Face expression analysis
[23] 2013 Rotated Local Binary Pattern RLBP Texture classification
[24] 2015 Adaptive Extended Local Ternary Pattern AELTP Texture classification
[5] 2015 Directional Local Binary Patterns dLBPα Texture classification
[5] 2015 Local Binary Patterns by neighborhoods nLBPd Texture classification
[25] 2015 Maximum Edge Position Octal Pattern MMEPOP Image retrieval
[26] 2015 Multi-Orientation Weighted Symmetric Local Graph Structure MOW-SLGS Finger vein recognition
[27] 2015 Orthogonal Symmetric Local Ternary Pattern OSLTP Image region description
[26] 2015 Symmetric Local Graph Structure SLGS Finger vein recognition
[28] 2015 eXtended Center-Symmetric Local Binary Pattern XCS LBP Texture classification
[29] 2016 Adaptive Local Ternary Patterns ALTP Face recognition
[29] 2016 Center-Symmetric ALTP CSALTP Face recognition
[30] 2016 Diagonal Direction Binary Pattern DDBP Face recognition
[7] 2016 Extended Local Graph Structure ELGS Texture classification
[31] 2016 Local Extreme Sign Trio Patterns LESTP Image retrieval
[32] 2016 Quad Binary Pattern QBP Target tracking
[31] 2016 Sign Maximum Edge Position Octal Pattern SMEPOP Image retrieval
[33] 2016 Complete Eight Local Directional Patterns CELDP Face recognition
[34] 2017 Centre Symmetric Quadruple Pattern CSQP Facial image recognition and retrieval
[35] 2017 Local Directional Binary Patterns LDBP Texture classification
[36] 2017 Local neighborhood difference pattern LNDP Natural and texture image retrieval
[37] 2017 Local Quadruple Pattern LQPAT Facial image recognition and retrieval
[38] 2018 Local Diagonal Extrema Number Pattern LDENP Face recognition
[39] 2018 Local Concave-and-Convex Micro-Structure Patterns LCCMSP Texture classification
[40] 2018 Local Directional Ternary Pattern LDTP Texture classification
[41] 2018 Repulsive-and-Attractive Local Binary Gradient Contours RALBGC Texture classification
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There are several researches reported in the literature that are devoted to surveying LBP and its vari-
ants. One can cite:
(a) Hadid et al. [42] reviewed 13 LBP variants and provided a comparative analysis on two different problems

which are gender and texture classification.
(b) The work of Fernandez et al. [43] attempted to build a general framework for texture examination that

the authors refer to as histograms of equivalent patterns (HEP). A set of 38 LBP variants and non LBP
strategies are executed and experimentally assessed on eleven texture datasets.

(c) Huang et al. [44] displayed a survey of LBP variants in the application region of facial image processing.
However, there is no experimental study of the LBP strategies themselves.

(d) Nanni et al. [45] examined the performance of LBP based texture descriptors in a fairly specific and
narrow application, which consists in classifying cell and tissue images of five datasets.

(e) Michael Bereta et al. [46] highlighted many types of local descriptors including local binary patterns and
their combination with Gabor filters. They examined only 14 LBP variants on FERET database.

(f) Lumini et al. [47] evaluated the effectiveness of LBP, HOG, POEM, MBC, HASC, GOLD, RICLBP, and
CLBP descriptors. Each of these feature extraction methods is carried out only on two datasets: FERET
and the Labeled Faces in the Wild (LFW).

(g) Liu et al. [48] provided a systematic review of LBP variants while regrouping them into different cat-
egories. 40 texture features including thirty two LBP-like descriptors and eight non-LBP methods are
evaluated and compared on thirteen texture datasets.

(h) Slimani et al. [49] reviewed the performance of 22 state-of-the-art LBP-like descriptors and some of its
recent variations and provides a comparative analysis on facial expression recognition problem using two
benchmark databases.

It can be inferred that there is a limited number of state-of-the-art published works which are devoted
to survey LBP-like methods in texture and face recognition and in particular facial emotion recognition which
is practically nonexistent. Note that, most of these works remain limited in terms of number of LBP-like de-
scriptors reviewed and tested datasets, suffer from lack of recent LBP variants and some of them do not include
experimental evaluation. Since no broad assessment has been performed on an incredible number of LBP vari-
ations, and considering recent rapid increase in the number of publications on LBP-like descriptors, this paper
aims to provide such a comparative study in facial emotion recognition problem and offers a more up-to-date
introduction to the area. For that, 46 recent state-of-the-art LBP variants are evaluated and compared over four
challenging representative widely-used facial expression databases. The performance of the best texture de-
scriptor on each dataset is also composed to those of state-of-the-art facial emotion recognition systems. Note
that for the descriptors, we utilized the original source code if it is freely accessible; otherwise we have built
up our own implementation. The evaluated state-of-the-art texture descriptors and their intended applications
are summarized in Table 1.

4. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, the state-of-the-art LBP variants summarized in Table 1 are extensively evaluated and

compared over four publicly available facial expression datasets (see section 4.2.). In addition, performance
of the best performing method on each dataset has been compared against those of recent state-of-the-art
facial emotion recognition systems. The following subsections describe: 1) the experimental configuration;
2) the datasets considered in the experiments, 3) the obtained results and 4) comparisons with other existing
approaches.

4.1. Experimental configuration
In order to systematically evaluate the performance of the tested methods, we setup a comparative

analysis through a supervised image classification task. Similar to most state-of-the-art facial expression recog-
nition systems, the adopted system, shown in Figure 1, involves several steps including 1) image processing
to alter and resize faces to have a common resolution; 2) feature extraction using the evaluated LBP vari-
ants; 3) histogram vector calculation. In this step, in order to incorporate more spatial information into the
final feature vectors, the obtained feature images were spatially divided into multiple non-overlapping regions
and histograms were extracted from each region. For example, the LBP code map is divided into m×n non-
overlapping sub-regions, from each of which a sub-histogram feature is extracted and is normalized to sum
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one. By concatenating these regional sub-histograms into a single vector, a final LBP based facial emotion
representation is obtained; and 4) image classification using the SVM classifier. In this step, the images of
each dataset are preliminarily divided into a random split containing two sub-sets, one for the training and the
other for testing. In the experiments, we tackled the 7-expression classification problems and overall results are
computed as the average of the per-class accuracies and not the average accuracy of all samples, which avoids
biasing toward expressions with more samples in the databases.

Figure 1. Outline of the adopted facial emotion recognition system.

4.2. Tested datasets
In our experiments, we used four benchmark databases; the Cohn Kanade (CK), the Japanese Female

Facial Expression (JAFFE), the Karolinska Directed Emotional Faces (KDEF) and the Multimedia Understand-
ing Group (MUG) databases. The main characteristics of each database are described herein below. The four
datasets include facial expressions of six basic emotions; Anger, Disgust, Fear, Happiness, Sadness, Surprise
and the neutral facial expression.
(a) The JAFFE database [50] contains 213 facial expression images from 10 Japanese females where every

subject expresses three times the seven facial expressions. The images have a resolution of 256x256 pixels.
(b) The CK database [51] includes 2105 digitized image sequences (video) from 182 adults ranging from 18

to 30 years old. Each image has a resolution of 640x490 pixels with eight-bit accuracy for gray scale
values.

(c) The KDEF dataset [52] contains two sessions of multi-view posed facial expression images from 70 am-
ateur actors, with age ranging from 20 to 30 years old. The database has totally 4900 2D images of seven
human facial expressions of emotions. The images have a resolution of 562x762 pixels, and each of the
seven facial expressions is acquired from five different angles -90◦, -45◦, 0◦, 45◦, 90◦.

(d) The MUG Database [53] contains 86 subjects, where 51 are males and 35 are females. All subjects are
between 20 and 35 years old. Only 52 subject images are available for usage with this database. For each
expression, a total of 50 to 160 images are existing. The images have a resolution of 896x896 pixels.

4.3. Results and analysis
Tables 2 and 3 report the average accuracy of each tested descriptor obtained on CK, JAFFE, KDEF

and MUG Databases. The first column consists of the name of the descriptor along with the parameter used if
that concerns a parametric descriptor. The other columns concern the abbreviation of emotion categories that
we tested and the accuracy obtained; NE: NEUTRAL, HA : HAPPY, FE : FEAR, SA: SAD, AN: ANGRY, DI:
DISGUST, SU: SURPRISE, Acc: Accuracy.

4.3.1. Performance analysis on Cohn-Kanade (CK) Database
For this database, we used a subset of 10 sequences that reflect only the samples expressing the seven

categories of emotions, and then we selected the four latest frames of each sequence that have the highest
expression intensity. The optimal number of non-overlapping sub-regions to compute the histogram features
is 14x14 for all the tested descriptors. For each emotion expression, two images are used as training set and
the two others are used as test set. Table 2 illustrates the obtained experimental results for the basic emotion
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recognition recorded on CK dataset using the 46 evaluated state-of-the-art texture descriptors. It can be inferred
that almost all the tested descriptors produce good results on CK dataset where their average accuracy is above
96%. Tweenty-seven LBP-methods like RALBGC, BGC1, BGC2, BGC3, dLBPα, ELGS manage successfully
to differentiate all classes perfectly (average accuracy equal to 100%), leaving then, essentially, no room for
improvement. Note that, all the evaluated descriptors reached a score of 100% for ”Happy” and ”Surprise”
classes.

4.3.2. Performance analysis on JAFFE Database
In this second experiment, each emotion in JAFFE database is designated into 10 females with three

samples. One image is taken for each person and for each emotion expression in the test, making a total of 70
samples in the testing phase while the remaining 140 samples depict the training set. All faces are preprocessed
to align them into a canonical images with a resolution of 128x128. The histograms are produced on the feature
images spatially divided into 12x12 non-overlapping sub-regions. It is apparent from Table 2 that DSLGS,
ELGS and SLGS operators yield the highest average rate as they reached a score of 98.57%. Then, come
the eight descriptors: BGC2, CSLBP, dLBPα, ILBP, LCCMSP, LDENP, LGCP and OS LTP which reached a
recognition rate of 97.14%. It can be noticed that several tested LBP-like descriptors have perfectly recognized
some classes by getting the accuracy of 100%.
Note that there is a significant performance drop for all the tested descriptors on the class of ”sadness” where
the reached accuracy is in the range [50%, 90%]. It also emerges from Table 2 that some methods like CSALTP,
GTUC and LMEBP produce the worst performance on almost all the classes where their accuracy is sometime
below 70%. We would also point out that although parametric methods like eCS LTP, ILTP, GTUC, AELTP
are regarded as ”optimized” since their parameter values are tuned during the experiment, their performance is
markedly weaker than the non-parametric ones.

4.3.3. Performance analysis on KDEF database
We choose the images of both sessions for each subject and only the view angle 0◦ is considered. The

subset contains 70 subjects, each one expresses two times the seven emotion categories. Thus, in total we use
980 images. We altered the sizes of all the faces of KDEF database into a steady sized template, which have the
same resolution of 256x256 and the faces were then split into 14x14 blocks for region-based feature extraction.
Each subject express two times the seven categories, so we selected one facial image per subject for training
phase and the other one for test phase.

It is apparent from Table 3 that the LGS operator is ranked as the top 1 descriptor in KDEF database
as it achieves a recognition rate of 95.92%, with perfect recognition (100%) of happy and neutral categories,
followed by DSLGS, SLGS and LBP descriptors which reached a score of 95.31%. Then, come seven de-
scriptors like BGC2, BGC3, CSLBP, dLBPα, ELGS, ILBP and LQPAT which allowed to achieve accuracies
between [94.08% - 94.90%]. Then tweenty-six LBP-methods attained accuracies between [90.20% - 93.88%]
where three descriptors RLBP, BGC1 and SMEPOP reached 93.88% and two descriptors MMEPOP and DBC
attained 90.20% and 90.41%, respectively. Accuracies between [80.61% - 86.53%] were achieved by eight
LBP-like methods in which 80.61% was achieved by ALTP and 86.53% by XCS LBP. We can observe from
Table 3 that the worst performance of 59.39% was attained by CSALTP descriptor.

4.3.4. Performance analysis on Multimedia Understanding Group (MUG) Database
We have used 924 facial expression images, i.e., 132 images for each facial expression. All faces

were altered and resized to have a common resolution of 256x256. Then, they were split into 18x18 blocks
for region-based feature extraction. For this experiment, in each emotion category, we used four images per
subject, two for training phase and two for test phase.

Table 3 gathers the obtained experimental results. Clearly, it can be observed that eight of the tested
descriptors ELGS, LDTP, LDENP, LGCP, LNDP, LTP, LQPAT and SMEPOP manage to differentiate all classes
perfectly 100% in accuracy leaving then, no room for improvement. In addition, thirty-one LBP-like methods
give accuracies between [99.03% - 99.68%], LBP attained 98.73%, DBC reached 98.05%, XCS LBP got
97.40% and finally, GTUC attained an accuracy of 97.08%.

As we can observe, all tested methods obtain very promising results on the MUG dataset, excpect
three state-of-the-art methods AELTP, LMEBP and CSALTP attained the lowest accuracies comparing with
the other methods tested. The undermost accuracy of 71.43% was achieved by CSALTP. Then an accuracy of
84.09% was attained by AELTP and finally 89.94% was obtained when testing LMEBP method.
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Table 2. Experiments Results on CK and JAFFE Databases
Cohn Canade Database JAFFE Database

NE HA FE DI AN SA SU Acc NE HA FE DI AN SA SU Acc
LDTP 100 100 100 95 95 100 100 98.57 90 90 80 90 60 70 100 82.86
RALBGC 100 100 100 100 100 100 100 100 90 100 80 90 80 80 100 88.57
RLBP 100 100 100 100 100 100 100 100 90 90 90 80 90 80 100 88.57
CELDP 100 100 100 100 100 100 100 100 90 80 80 80 100 80 100 87.14
AELTP{1} 95 100 100 100 95 95 100 97.86 80 80 90 80 90 80 100 85.71
ALTP{0.006} 90 100 100 100 95 95 100 97.14 100 100 90 90 100 80 100 94.29
BGC1 100 100 100 100 100 100 100 100 90 90 80 100 100 80 100 91.43
BGC2 100 100 100 100 100 100 100 100 100 100 100 100 100 80 100 97.14
BGC3 100 100 100 100 100 100 100 100 100 90 90 100 100 80 100 94.29
CBP 1 100 100 100 90 100 90 100 97.14 100 90 90 100 100 90 100 95.71
CSALTP{0.006} 100 100 100 100 100 95 100 99.29 70 90 80 80 50 60 100 75.71
CSLBP {1} 100 100 100 100 100 100 100 100 100 100 100 100 100 80 100 97.14
CSLTP {1} 100 100 100 100 100 100 100 100 100 100 90 100 90 80 100 94.29
CSQP 100 100 100 100 100 100 100 100 100 90 100 90 100 80 100 94.29
DBC {45} 100 100 100 95 95 100 100 98.57 100 100 90 90 90 90 100 94.29
DDBP 100 100 100 100 95 100 100 99.29 90 90 100 100 100 80 100 94.29
dLBPα {45} 100 100 100 100 100 100 100 100 100 100 100 90 100 90 100 97.14
DSLGS 100 100 100 100 100 100 100 100 100 100 100 100 100 90 100 98.57
eCS LTP{1} 100 100 100 90 95 100 100 97.86 100 100 80 90 90 90 100 92.86
ELGS 100 100 100 100 100 100 100 100 100 100 100 100 100 90 100 98.57
GTUC {2} 100 100 95 95 100 100 100 98.57 100 90 60 70 80 50 80 75.71
IBGC1 100 100 100 100 100 100 100 100 90 90 70 90 90 70 100 85.71
ILBP {1} 100 100 100 100 100 100 100 100 100 90 100 100 100 90 100 97.14
ILTP {1} 95 100 100 100 95 95 100 97.86 90 100 80 90 80 80 100 88.57
LBP 100 100 100 100 95 100 100 99.29 100 100 100 90 90 80 100 94.29
nLBPd {1} 100 100 100 100 100 100 100 100 100 90 80 100 100 80 100 92.86
LCCMSP 100 100 95 90 95 95 100 96.43 100 90 100 100 100 90 100 97.14
LDBP 100 100 100 100 100 100 100 100 100 90 80 100 100 80 100 92.86
LDENP 100 100 100 100 100 100 100 100 100 100 100 100 100 80 100 97.14
LDN 100 100 100 100 100 100 100 100 100 100 90 100 100 80 100 95.71
LDP {1} 100 100 100 100 100 100 100 100 100 100 90 100 100 70 100 94.29
LESTP 10 100 100 100 100 95 100 100 99.29 90 100 90 90 100 80 100 92.86
LGCP 100 100 100 100 100 100 100 100 100 100 100 100 100 80 100 97.14
LGS 100 100 100 100 100 100 100 100 100 100 90 100 100 80 100 95.71
LMEBP 100 100 100 90 95 100 100 97.86 60 90 70 90 50 60 80 71.43
LNDP 100 100 100 100 95 100 100 99.29 90 100 100 100 100 80 100 95.71
LTP{1} 90 100 100 100 95 95 100 97.14 90 100 90 90 100 80 100 92.86
LQPAT 100 100 100 100 100 100 100 100 90 100 100 100 100 80 100 95.71
MMEPOP 100 100 100 100 100 100 100 100 100 100 90 90 100 80 100 94.29
MOW SLGS 100 100 100 100 100 100 100 100 100 90 90 100 100 80 100 94.29
OS LTP {1} 100 100 100 100 100 100 100 100 100 100 100 100 100 80 100 97.14
QBP {1} 100 100 100 95 100 100 100 99.29 100 100 90 100 100 70 100 94.29
SLGS 100 100 100 100 100 100 100 100 100 100 100 100 100 90 100 98.57
SMEPOP 100 100 100 100 100 100 100 100 90 100 100 90 100 80 100 94.29
STU+ {1} 100 100 100 95 100 100 100 99.29 100 100 80 100 100 70 100 92.86
XCS LBP 100 100 100 100 95 100 100 99.29 90 100 90 70 90 80 100 88.57
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Table 3. Experiments Results on KDEF and MUG Databases
KDEF Database MUG Database

AN DI FE HA NE SA SU Acc AN DI FE HA NE SA SU Acc
LDTP 82.86 91.43 90 95.71 95.71 91.43 95.71 91.84 100 100 100 100 100 100 100 100
RALBGC 84.29 87.14 91.43 100 97.14 91.43 98.57 92.86 100 100 100 100 100 100 97.73 99.68
RLBP 88.57 92.86 91.43 97.14 98.57 92.86 95.71 93.88 100 100 100 100 97.73 100 100 99.68
CELDP 87.14 87.14 87.14 97.14 94.29 92.86 95.71 91.63 100 100 100 100 97.73 100 100 99.68

AELTP {10} 68.57 80 80 95.71 94.29 82.86 87.14 84.08 93.18 65.91 68.18 68.18 100 93.18 100 84.09

ALTP {0.006} 60 74.29 74.29 97.14 91.43 75.71 91.43 80.61 100 100 97.73 100 100 100 100 99.68

BGC1 85.71 92.86 90 100 98.57 92.86 97.14 93.88 100 97.73 100 100 100 100 97.73 99.35
BGC2 90 91.43 90 100 100 94.29 95.71 94.49 100 95.45 100 100 97.73 100 100 99.03
BGC3 94.29 92.86 90 98.57 97.14 91.43 94.29 94.08 100 100 97.73 100 100 100 100 99.68

CBP {10} 87.14 88.57 88.57 97.14 95.71 88.57 92.86 91.22 100 97.73 97.73 97.73 100 100 100 99.03

CSALTP {5} 40 41.43 34.29 65.71 82.86 55.71 95.71 59.39 65.91 68.18 68.18 63.64 65.91 68.18 100 71.43

CSLBP {1} 92.86 91.43 88.57 100 98.57 92.86 94.29 94.08 100 97.73 100 100 100 100 100 99.68

CSLTP {1} 91.43 88.57 87.14 100 98.57 92.86 94.29 93.27 100 95.45 100 100 100 100 100 99.35

CSQP 90 91.43 88.57 98.57 95.71 92.86 94.29 93.06 100 100 97.73 100 97.73 100 100 99.35

DBC {45} 85.71 87.14 87.14 100 94.29 87.14 91.43 90.41 100 95.45 97.73 97.73 97.73 100 97.73 98.05

DDBP 85.71 90 91.43 98.57 97.14 91.43 95.71 92.86 100 95.45 100 100 97.73 100 100 99.03

dLBPα {135} 87.14 90 91.43 98.57 98.57 95.71 97.14 94.08 100 100 100 100 100 100 97.73 99.68

DSLGS 87.14 94.29 92.86 100 98.57 95.71 98.57 95.31 100 97.73 97.73 100 97.73 100 100 99.03

eCS LTP {1} 91.43 91.43 91.43 94.29 97.14 88.57 92.86 92.45 100 97.73 100 97.73 100 100 100 99.35

ELGS 85.71 94.29 92.86 100 100 92.86 98.57 94.90 100 100 100 100 100 100 100 100
GTUC {1} 78.57 81.43 87.14 95.71 90 85.71 85.71 86.33 97.73 95.45 95.45 93.18 100 100 97.73 97.08

IBGC1 82.86 88.57 90 100 95.71 91.43 97.14 92.24 100 97.73 97.73 100 100 100 97.73 99.03
ILBP 87.14 94.29 90 100 100 92.86 95.71 94.29 100 95.45 100 100 97.73 100 100 99.03

ILTP {1} 62.86 75.71 75.71 97.14 90 80 91.43 81.84 100 100 100 100 97.73 100 100 99.68

LBP 88.57 94.29 91.43 100 100 94.29 98.57 95.31 97.73 95.45 97.73 100 97.73 100 100 98.73

nLBPd {1} 81.43 90 91.43 100 98.57 92.86 95.71 92.86 100 100 100 100 97.73 100 100 99.68

LCCMSP 82.86 87.14 87.14 98.57 97.14 92.86 98.57 92.04 100 100 100 100 97.73 100 100 99.68
LDBP 81.43 88.57 87.14 100 98.57 91.43 98.57 92.24 100 97.73 100 97.73 100 100 97.73 99.03
LDENP 90 90 87.14 100 100 91.43 97.14 93.67 100 100 100 100 100 100 100 100
LDN 87.14 88.57 90 98.57 97.14 92.86 95.71 92.86 97.73 95.45 100 100 100 100 100 99.03

LDP {1} 88.57 90 91.43 97.14 97.14 91.43 94.29 92.86 100 97.73 100 100 100 100 100 99.68

LESTP {10} 64.29 78.57 77.14 97.14 91.43 80 91.43 82.86 100 100 100 100 100 100 97.73 99.68

LGCP 88.57 92.86 84.29 100 100 92.86 95.71 93.47 100 100 100 100 100 100 100 100
LGS 90 95.71 92.86 100 100 94.29 98.57 95.92 100 95.45 100 100 97.73 100 100 99.03
LMEBP 75.71 77.14 90 94.29 84.29 81.43 91.43 84.90 81.82 95.45 88.64 93.18 90.91 90.91 88.64 89.94
LNDP 77.14 87.14 90 100 97.14 91.43 97.14 91.43 100 100 100 100 100 100 100 100
LTP {10} 65.71 80 77.14 95.71 94.29 81.43 90 83.47 100 100 100 100 100 100 100 100
LQPAT 84.29 88.57 95.71 100 98.57 94.29 97.14 94.08 100 100 100 100 100 100 100 100
MMEPOP 74.29 87.14 90 98.57 95.71 91.43 94.29 90.20 100 100 100 100 97.73 100 100 99.68
MOW SLGS 84.29 94.29 87.14 100 95.71 94.29 95.71 93.06 100 97.73 97.73 100 100 100 100 99.35

OS LTP {1} 91.43 91.43 87.14 100 98.57 91.43 94.29 93.47 100 97.73 100 100 100 100 100 99.68

QBP {1} 91.43 90 88.57 97.14 97.14 92.86 87.14 92.04 100 95.45 100 100 100 100 100 99.35

SLGS 87.14 94.29 92.86 100 98.57 95.71 98.57 95.31 100 97.73 97.73 100 97.73 100 100 99.03
SMEPOP 87.14 94.29 90 100 97.14 94.29 94.29 93.88 100 100 100 100 100 100 100 100
STU+ {1} 88.57 88.57 92.86 98.57 98.57 94.29 90 93.06 100 100 100 93.18 100 100 100 99.03

XCS LBP 82.86 84.29 80 98.57 94.29 78.57 87.14 86.53 100 93.18 95.45 93.18 100 100 100 97.40
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4.4. Comparison with state-of-the-art methods
In this section, we compare the performance of the best performing descriptors on each database with

those of existing state-of-the-art methods. We should note that the performance evaluation with other state-
of-the-art approaches may not be directly comparable due to the differences in partitioning the dataset into
training and testing sets, number of classes, number of subjects and features used. However, distinctive results
of every approach still can be indicated. The extracted results from the reviewed state-of-the-art papers as well
as the recognition rates reached by the best performing evaluated LBP-variants on each database are arranged
in Table 4.

It can be observed from Table 4 that, except for both JAFFE and KDEF databases, where the number
of the used samples is relatively the same for almost all the existing systems, the used number of samples on
CK and MUG databases varies from one existing approach to another. Given two different systems to compare
on a given database, two cases are possible to provide a fair and accurate comparison of their results. In the
first one, the used number of samples and the configuration into train/test sets should be the same, whereas in
the second case, the system using a less number of samples, must at least be tested with a delicate configuration
into train/test sets compared to the other which uses a higher number of samples. We used the second case
in our evaluation for comparing the state-of-the-art methods with the adopted system, which uses the most
difficult configuration in terms of train/test sets. Indeed, almost all the existing state-of-the-art systems use a
partition where the number of training images is superior to that of test images (e.g., 10-fold), while in this
study, the half-half configuration is adopted.

Table 4. Comparison with state-of-the-art methods
Database Ref (Year) Method Samples Classifier (Measure train-test) Classes Accuracy

KDEF
[54] (2016) Local dominant binary pattern 1168 SVM (10-fold) 7 class 83.51
[55] (2017) Facial landmarks + Center of Gravity (COG) 980 SVM (70%-30%) 6 class 90.82
[56] (2017) LBP + HOG - K-means + self-organizing map 6 class 85.8
[57] (2017) Low-Rank Sparse Error dictionary (LRSE) 980 CRC (leave one-subject-out 10-fold) 7 class 79.39
[58] (2017) LTP+HOG 280 SVM (10-fold) 7 class 93.34
This paper LGS 980 SVM (half-half) 7 class 95.92

MUG
[59] (2013) Local Fisher Discriminant Analysis 567 1NN (leave-one-out) 7 class 95.24
[60] (2014) ASM 1260 LDA (2/3-1/3) 7 class 99.71
[61] (2015) Geometric features 324 SVM (five-fold) 6 class 95.50
[62] (2017) MRDTP+GSDRS 567 ELM (10-fold) 7 class 95.7
[63] (2017) GLBP - Random Forest (10-fold) 7 class 92.60
This paper Several LBP variants including ELGS, LDTP, LDENP 924 SVM (half-half) 7 class 100

JAFFE
[59] (2013) Local Fisher Discriminant Analysis 213 1NN (leave-one-out) 7 class 94.37
[64] (2016) Curvelet transform 213 OSELM-SC 7 class 94.65
[65] (2017) HOG 182 SVM (70%-30%) 7 class 92.75
[66] (2017) DDL + CRC LBP 213 CRC (10-fold) 7 class 97.3
[62] (2017) MRDTP+GSDRS 213 ELM (10-fold) 7 class 94.3
[67] (2017) HOG + U-LTP 213 SVM (64%-36%) 7 class 97.14
This paper DSLGS, ELGS and SLGS 213 SVM (half-half) 7 class 98.57

Ck
[68] (2015) IMF1 + KLFDA 404 SVM (10-fold) 7 class 99.75
[69] (2015) LGBP 150 SVM (57.2%-42.8%) 7 class 97.4
[65] (2017) HOG 1478 SVM (70%-30%) 7 class 98.37
[58] (2017) LTP+HOG 610 SVM (10-fold) 7 class 96.06
[66] (2017) DDL + CRC LBP - CRC (10-fold) 7 class 98.8
This paper 27 LBP variants including RALBGC, ELGS, DSLGS 280 SVM (half-half) 7 class 100%

Examining Table 4, we could make the following findings :
(a) KDEF database: It can be easily observed that the LGS operator is the best performing method which

achieved the higher performance over the recent state-of-the-art systems with a recognition rate reaching
95.92%.

(b) JAFFE database: It is easily found that the accuracy recorded by three LBP-like variants outperformed
those obtained by the state-of-the-art approaches. Indeed, it emerges from Table 4that the top ranked
method on JAFFE database is that presented in [66] as it reached a score of 97.3% which is lower than
that obtained by DSLGS, ELGS and SLGS operators (98.57%).

(c) CK database: It is apparent from Table 4 that the highest score achieved on CK database is 99.75%
obtained by the method presented in [68] while Table 2indicates that 27 LBP variants reached a score of
100%.

(d) MUG database: As for CK database, several evaluated LBP variants like ELGS, LDTP, LDENP, LGCP,
LNDP LQP and SMEPOP descriptors reached a score of 100% outperforming the best performing state-
of-the-art approach presented in [60] which reached a score of 99.71%.

The LGS, DSLGS and ELGS descriptors, which are based on the graph concept, manage to achieve
remarkable accuracies over all the tested benchmarks. This fact is clearly highlighted on KDEF experiment
where we find that few descriptors succeeded to record above 94% average accuracy. Then, the dominant graph

Int J Elec & Comp Eng, Vol. 10, No. 4, August 2020 : 4080 – 4092



Int J Elec & Comp Eng ISSN: 2088-8708 r 4089

encoding process justifies the robustness and effectiveness of LGS, DSLGS and ELGS descriptors. On the other
hand, we remark that CSALTP descriptor suffers on KEDF experiment reaching just 59.39% also on JAFFE
and MUG experiments, on which the results were very high by the majority of the tested descriptors, the reason
behind is the user specified threshold used in this operator, which needs to be identified on each experiment
based on testing many values requiring many computations. Rather than this, all the other descriptors record
good performances proving the discriminative power of the local description concept.

5. CONCLUSION AND FUTURE WORKS
We reported in this present work a comprehensive comparative experimental analysis of a great num-

ber of recent state-of-the-art LBP-like descriptors on facial expression recognition. It is noteworthy that the
choice of an appropriate descriptor is crucial and generally depends on the intended application and many fac-
tors, such as computational efficiency, discriminative power, robustness to illumination and imaging system
used. The experiments presented herein significantly constitute a good reference model when trying to find
an appropriate method for a given application. Our experiments on facial expression recognition included a
detailed and comprehensive performance study of 46 texture descriptors of the literature covering numerous
application areas like texture classification, image retrieval, finger vein recognition, medical image analysis,
face recognition, face expression analysis, etc. To show descriptors performance over several challenging situ-
ations, the tested descriptors were applied on four famous and widely used datasets such as JAFFE, CK, KDEF
and MUG databases. The main finding that can be drawn from the analysis of the overall performance from the
experiments is that although some LBP-like features have been originally conceived and proposed for texture
classification, they show considerable performance in facial expression recognition. Indeed, even though they
were not specifically designed for facial expression recognition, some LBP variants outperform all state-of-
the-art approaches over the tested databases. It is of great importance to note that the descriptors based on
dominating set and graph present a significant performance stability against the other evaluated state-of-the-art
descriptors as they are often found among the best performing LBP variants on the four tested databases. For
KDEF database, LGS operator, which is based on dominating set and graph theory, is the best performing de-
scriptor reaching a score of 95.92% outperforming the recent state-of-the-art systems. For JAFEE database, the
better recognition rate which was 98.57% has been achieved by three descriptors based also on dominating set
and graph theory such as DSLGS, ELGS and SLGS. 27 LBP variants including again those based on dominat-
ing set and graph theory reached a score of 100% on CK database. Finally, many evaluated LBP variants like
LDTP, LDENP, LGCP, LNDP LQP and SMEPOP descriptors as well as the ELGS operator reached a score of
100% over MUG database. As future works, we look forward to extend this study to include the evaluation
of deep features and deep classifiers. Furthermore, we wish to further explore the power of texture descriptors
in other applications such as compound emotion recognition, gender classification, face recognition, texture
classification, etc., in order to assess their ability to work with various classification problems.
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[8] M. Heikkilä, M. Pietikäinen et al., “Description of interest regions with center-symmetric local binary
patterns,” in ICVGIP, vol. 6. Springer, 2006, pp. 58–69.

[9] F. J. Madrid-Cuevas, R. M. Carnicer et al., “Simplified texture unit: a new descriptor of the local texture
in gray-level images,” Lecture notes in computer science, pp. 470–477, 2003.

[10] C.-I. Chang and Y. Chen, “Gradient texture unit coding for texture analysis,” Optical Engineering, vol. 43,
no. 8, pp. 1891–1903, 2004.

[11] S. Dong, J. Yang et al., “A new finger vein recognition method based on the difference symmetric lo-
cal graph structure (dslgs),” International Journal of Signal Processing, Image Processing and Pattern
Recognition, vol. 8, no. 10, pp. 71–80, 2015.

[12] X. Fu and W. Wei, “Centralized binary patterns embedded with image euclidean distance for facial ex-
pression recognition,” in Fourth International Conference on Natural Computation, vol. 4. Springer,
2008, pp. 115–119.

[13] X. Tan and B. Triggs, “Enhanced local texture feature sets for face recognition under difficult lighting
conditions,” IEEE transactions on image processing, vol. 19, no. 6, pp. 1635–1650, 2010.

[14] B. Zhang, L. Zhang et al., “Directional binary code with application to polyu near-infrared face database,”
Pattern Recognition Letters, vol. 31, no. 14, pp. 2337–2344, 2010.

[15] L. Nanni, S. Brahnam et al., “A local approach based on a local binary patterns variant texture descriptor
for classifying pain states,” Expert Systems with Applications, vol. 37, no. 12, pp. 7888–7894, 2010.

[16] T. Jabid, M. Kabir et al., “Local directional pattern (ldp) for face recognition,” in Digest of Technical
Papers International Conference on Consumer Electronics (ICCE). IEEE, 2010, pp. 329–330.
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