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 In forensic anthropology, age estimation is used to ease the process of 

identifying the age of a living being or the body of a deceased person. 

Nonetheless, the specialty of the estimation models is solely suitable to 

a specific people. Commonly, the models are inter and intra-observer 

variability as the qualitative set of data is being used which results 

the estimation of age to rely on forensic experts. This study proposes an age 

estimation model by using length of bone in left hand of Asian subjects range 

from newborn up to 18-year-old. One soft computing model, which is 

Random Forest (RF) is used to develop the estimation model and the results 

are compared with Artificial Neural Network (ANN) and Support Vector 

Machine (SVM), developed in the previous case studies. The performance 

measurement used in this study and the previous case study are R-square and 

Mean Square Error (MSE) value. Based on the results produced, the RF 

model shows comparable results with the ANN and SVM model. For male 

subjects, the performance of the RF model is better than ANN, however less 

ideal than SVM model. As for female subjects, the RF model overperfoms 

both ANN and SVM model. Overall, the RF model is the most suitable 

model in estimating age for female subjects compared to ANN and SVM 

model, however for male subjects, RF model is the second best model 

compared to the both models. Yet, the application of this model is restricted 

only to experimental purpose or forensic practice.  
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1. INTRODUCTION 

Age estimation serves a vital role in identifying the individual’s details due to the increase of human 

trafficking, asylum seekers, refugee, criminal responsibility, child pornography, and the falsification of age. 

The traditional age estimation model using left hand bone as input such as Tanner Whitehouse (TW) [1] and 

Greulich and Pyle (GP) [2], are based on qualitative data which is the observation of bone morphology from 

a radiograph of left hand by forensic anthropologist. These models have disadvantages in which the models 

are considerable intra and inter-observer variability where the estimated age definitely relies on the forensic 
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expert. Therefore, different experts with different experience levels will most likely produce a greater 

variety of intra-observer, which is different predicted age will be produced by the different experts. 

Thus, the accuracy of bone age assessment is very important. 

There are several case studies that used measurement of hand bone (quantitative data) as input for 

age estimation [3-7]. All the case studies have proved that the measurement of the hand bone is able to be 

utilized as indicator for age estimation. This study chooses the length of hand bone as an alternative 

parameter for age estimation. On the other hand, Soft computing models such as ANN, SVM and RF are 

proved reliable to be used on quantitative data especially for prediction, classification and optimization 

problem [6-13]. Thus, this study adopts and implements the RF model on the length of hand bone data to 

perform age estimation.  In order to evaluate the performance of the proposed model, this work compares 

the accuracy results from the experiments with existing ANN model and SVM model that used the same 

dataset introduced in [6]. 

 

 

2. RESEARCH METHOD  

2.1.   Research materials  

A sum of three hundred and thirty three X-ray scans of Asians’ left-hand bones, 166 of them are 

male and 167 are female, were taken from the online dataset [14]. The ages range between newborn to 18 

years old. Age distribution for these subjects is illustrated in Table 1. This online dataset consists of four 

populations which are Asian, Hispanic, African American and Caucasian and has been used for many case 

studies such as in [15-18]. The dataset comprises of individuals below 20 years old without any record of 

bone problem or bone disease, for instance fractures, osteoarthritis, rheumatoid arthritis, bone cancer or other 

problems associated with genetic. Due to the fact that bones with such problems have higher tendency to be 

weak, bristled, misshaped and broken easily that could lead to inaccurate measurements, those bones were 

excluded in the study. The source of these x-ray scans was from Children’s Hospital Los Angeles together 

with demographic data of patients and reading by radiologists, assigned into 19 groups (new-born,  

1 to 18 years old) for both male and female. The details of each subject; the image name, the race, the gender, 

the chronological age, the date of birth (DOB), the exam date, the height (cm), the weight (kg), the trunk 

(cm), the reading 1, and the reading 2, were perfectly documented for reference and validation purpose.  

For the record, several previous case studies also have used this dataset to develop age estimation 

model [6, 7, 17, 18]. 

 

 

Table 1. Six age’ groups with its particular subject’s age distribution 
Age’ group (year) 16 - 18 4 - 6 13 - 15 7 - 9 4 - 6 Newborn - 3 Total 

Female 16 19 23 41 38 30 167 

Male 17 20 18 44 37 30 166 

 

 

According to the structure of a hand bone, it is categorized into four parts, to be specific, proximal 

phalanx, the distal phalanx, metacarpal and middle phalanx. Three out of four groups consist of five bones 

each while another group, middle phalanx group has four bones. Therefore, the sum of bones found in a hand 

is 19. Throughout childhood and adolescence phases, the left hand’s bone development can be partitioned 

into six important stages. The first stage would be the infancy (newborn to 10 months for female, newborn to 

14 months for male), followed by the second stage which is the toddler (10 months to 2 years for female, 

14 months to 3 years for male), and the third stage which is pre-puberty (2–7 years for female, 3–9 years for 

male), and the fourth stage which is the early and mid-puberty (7–13 years for female, 9–14 years for male), 

then the fifth stage which is the late puberty (13–15 years for female, 14–16 years for male) and, lastly 

the sixth stage which is the post-puberty (15–17 years for female, 16–19 years for male).  

To gauge every length of bone in each stage, software of photo manager was utilized to quantify all 

the nineteen bones by making a line in each bone, beginning from the base-center point to the end-center 

point of the bone on every X-ray image, and it consequently created the length of the line in centimetre (cm). 

The line was made by disregarding the epiphyseal (if it happened) in the bone for infancy stage. The lines 

were made for other phrases by incorporating the epiphyseal regardless of just a small epiphyseal illustrated 

in the pictures. Figure 1 demonstrates a case of measuring the length of the bone which belongs to a male 

subject for each stage from his X-ray image with the help of the software. For experiment and analysis 

purposes, every single measured data from the images was then organized in a spread sheet. 
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Figure 1. The created lines with its particular measurement in centimeter, for every bone in the left hand for 

each phase of bone development 

 

 

Before the proposed model developed, the normalization of data need to be done. The details of 

the data normalization are described in the next section. Data normalization is frequently conducted prior to 

the process of testing and training starts. It is feasible to standardize the input and output to a standard range, 

for example, -1 to 1 or 0 to 1. Fundamentally, while nonlinear transfer functions, for instance, the logistic 

sigmoid function are utilized at the output nodes, the desired output values need to be changed into the scope 

of the initial output of the system. Regardless of the possibility that a linear output transfer function is 

utilized, it is yet beneficial to normalize the outputs and additionally the inputs to prevent computational 

issues. To standardize the gathered length of the bone, the normalization equation from previous studies 

[19, 20] was used which is illustrated in Equation 1, where    refers to the ith input/output data,      

refers to the minimum value of the input/output data and      refers to the maximum value of the input/ 

output data. 

 

    
   

         
(       )      (1) 

 

Table 2 illustrates an instance of the measured data gathered from the late puberty x-ray scans in 

Figure 1 after normalization. In this study, the sum total of X-ray scans for both male and female is 333, 

it means each X-ray scan has 333 distinctive tables, like the one appeared in Table 2. Small data sets are 

insufficient for investigations. To overcome this circumstance, it comes to the use of k-fold cross-validation 

algorithm on RF model. The use of this algorithm aims to separate the entire experiments into two sections 

which are the training and testing sets. The previous one is utilized to construct the model whereas the latter 

is to validate the model. The two parts need to traverse in progressive iterations. Ten similarly (roughly) 

sized sets were divided from the entire sample information in each group, in which every group confirmed 

a few impact places in every division. For every iteration, only one set was selected for testing whereas 

the rest were chosen for training. The MSE values were delivered from the testing data in each iteration, and 

the average of MSE was then figured as the performance for each of the soft computing model. The MSEs 

from each model were then presented in a table for summarization. After that, comparison was made to 

determine the best model that can be used for age estimation. The MSE value is chosen because the previous 

case study that used ANN and SVM also applied MSE as performance function in his work [6]. 
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Table 2. Measurement of x-ray image from late puberty phase in Figure 2 after normalization of data 
Finger 1st 2nd 3rd 4th 5th 

Metacarpal 0.8566 0.7847 0.7512 0.7717 0.7587 

Proximal Phalanx 0.8364 0.8247 0.7638 0.7859 0.8173 
Distal Phalanx 0.8037 0.7801 0.8399 0.8155 0.7702 

Middle Phalanx - 0.8446 0.7734 0.7130 0.7315 

 

 

2.2.  Random forest  

 Random Forest (RF) model is developed by Leo Breiman [21] where the RF has turned into 

a standard information analysis device in bioinformatics. It has demonstrated outstanding performance in 

settings where the quantity of observations is much smaller than the number of variables in which 

complicated interaction structures can be coped well with as well as immensely correlated variables and 

returns measures of variable importance [22]. RF is a regression and classification model in accordance with 

the collection of an extensive quantity of decision trees. In particular, it is an aggregation of trees built from 

a training data set and internally verified to produce a forecast of the reaction provided the predictors for 

future observations. 

 The flow of the development of RF model for age estimation is shown in Figure 2. RF model needs 

selecting parameter m, the number of variables (a subset of available P predictor variables) which is utilized 

to identify the decision at a node of the tree. Several studies [23, 24] have used the square root of the number 

of input variables to determine the value of m, as suggested by Breiman. Breiman also suggested the value of 

m to be the first integer less than         , where P is the number of input variables. The optimal value for 

m can also be identified by the tuneRF function of the R-software. R-software is a free software that offers 

a wide assortment of statistical linear and nonlinear modelling, classification, time-series analysis, clustering, 

graphical techniques and classical statistical tests, and is very extendable. TuneRF function starts with 

the default value of m, and then searches for the optimal value (with respect to out-of-bag error estimate) of 

m for RF model. In this study, the m value was chosen using the three methods above.  
  

 

 
 

Figure 2. The development of RF model 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Random forest age estimation model based on length of left hand bone for … (Mohd Faaizie Darmawan) 

553 

The second parameter required by RF is the number of trees, t. This study uses four values for t, 

which are 100, 200, 500, and 1000. The combination of these parameters will develop RF’s structure used to 

estimate age. So, the combinations of the parameters used will produce twelve RF’s structure which is shown 

in Table 3. Then, each RF’s structure will produce R-square value and MSE value for both male and female. 

All these values also are shown in the same table. The best RF’s structures according to the R-square and 

MSE values were then selected by comparing each RF’s structure and then compiled into Table 4 for 

comparison purpose with the ANN and SVM produced by the previous case study in [6]. 
 

 

Table 3. R-square and MSE values for different number of trees (t) 

and number of variables (m) using RF for newborn to 18 years old 
Number of trees (t) Number of Variables (m) Male Female 

R-square MSE R-square MSE 

100 

4 0.911 2.022 0.840 3.551 

5 0.911 2.027 0.842 3.524 
12 0.913 1.977 0.844 3.481 

200 

4 0.914 1.958 0.843 3.497 

5 0.912 2.000 0.844 3.470 
12 0.909 2.064 0.841 3.539 

500 

4 0.911 2.013 0.844 3.475 

5 0.912 1.995 0.842 3.507 
12 0.911 2.027 0.843 3.498 

1000 

4 0.913 1.988 0.846 3.438 

5 0.912 2.002 0.844 3.477 
12 0.912 1.994 0.845 3.455 

 

 

3. RESULTS AND ANALYSIS 

Table 3 illustrates the results of age estimation in the form of R-square values and MSE values for 

both male and female, for each RF’s structure. The table reveals that RF’s structure with number of tree 200 

and number of variable 4 is the best RF’s structure which produced the greatest R-square value of 0.914 and 

lowest MSE value of 1.958 for male, while for female, RF’s structure with number of tree 1000 and number 

of variable 4 is the best structure which produced R-square value of 0.846 and MSE value of 3.438. Figure 3 

shows the graph of predicted age produced by RF model and the real age for both genders. The graphs show 

good relationship between the predicted age and the real age. Table 4 shows the results of the best RF’s 

structure selected before, together with the ANN and SVM’s results taken from the previous case study. 

The table shows that the SVM produced the greatest R-square value of 0.916 and the lowest MSE value of 

1.917, for male, while for female, the RF model shows the greatest R-square value of 0.846 and the lowest 

MSE value of 3.438. 
 
 

Table 4. The best R-square and MSE values chosen from the RF model 

and the ANN and SVM model from previous case study 
Models Male  Female  

R-square MSE R-square MSE 

ANN [6]  0.904 2.193 0.824 3.919 

SVM [6] 0.916 1.917 0.832 3.775 

RF 0.914 1.958 0.846 3.438 

 

 

Forensic anthropologists are ceaselessly endeavouring to enhance the approaches of assessing age 

through skeletal identification [25]. In a study on sexual dimorphism in carpal bones conducted by  

Sulzmann et al. [26], the authors claimed that right-hand dominance is a very common occurrence among 

human populations. Additionally, more prominent practical loading on the dominant hand leads to bigger 

bone. Therefore, the left hand’s bone was utilized in this study since it is relatively less used, which results 

the growth of these bones to be almost similar among every participants. Participants who are under 19 years 

old were also investigated in this study. This is because a few research have demonstrated that the methods of 

age estimation are undependable with an error of more or less twelve years after the 30 years old [27]. 

For routine forensic application, Rösing and Kvaal [28] expressed that a model that produce 

standard error of regression of more than 5 or 7 years cannot be accepted for age estimation. 95% confidence 

intervals of around 14 years and above need to be taken into account in estimating age, given that there is 

a standard error of seven years. Selecting the less reliable methods can be troublesome as the estimation of an 

―apparent age‖ usually conducted by the investigating teams may not be enhanced by the results, for instance 

in living human and fresh corpse. Therefore, it will be a waste of money and time. 
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There are many reported methods that used bones for age estimation and they are subdivided into 

three main categories: image processing [29-31], by comparing with bone age atlas [32-34], and statistical 

regression analysis [35-38]. As being compared with the atlas, as the name proposes, X-ray image of 

the subjects are being made comparison with an atlas which contains a set of radiographs of identified gender 

and age. Different bone features are reliably extricated in the image processing method. It is being accounted 

that this model is fit for accomplishing more solid information for age estimation. In comparison with 

the other two methods, regression analysis is a well-known decision because of its comparative and simplistic 

accuracy. The primary purpose is to find out the relationship between one or more independent variables and 

a dependent variable through the R-square value produced by the models used. The independent variables are 

also known as explanatory or predictor variables.  

Soft computing models such as RF model can be utilized as option model because it provides 

advantages such as knowledge of internal system variables is not required, factual calculation and simpler 

solutions for multiple variable problems. Soft computing is a creative approach in developing 

computationally savvy frameworks. According to Zadeh [39], soft computing is a developing strategy 

towards computing which corresponds to the important capacity of the human intelligence to comprehend in 

a domain of imprecision and vulnerability. In this study, measurement was made on a total number of 19 

bones in the left hand and RF soft computing models were conducted on all the bones to estimate age.  

For comparison purpose, for male, the best soft computing age estimation model according to 

the performance measurement produced is SVM model where the R-square and MSE value produced is 

0.916 and 1.917, respectively. For female, RF is the best soft computing model where the R-square and MSE 

value produced is 8.46 and 3.438, respectively as compared with the other models.  

 

 

 

 
 

Figure 3. Graph of the predicted age produced by RF model, and the actual age, for both male  

(the first row) and female (the second row) 
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Figure 3 shows the graphs of the predicted output produced by the RF model and the actual age, 

of both male and female. The graphs show that for male aged from new-born up to 16 years old, the predicted 

ages of all both models were consistent with the actual age. However, for male above 16 years old, 

the predicted age seemed to deviate from the actual age, showing inconsistency in output from the both 

models (see the black line between age 15 years old and 17 years old). For female, the predicted age from 

the both models showed consistency with the actual age, but after 15 years old, the predicted age also seemed 

to have deviated from the actual age, same as the male (see the black line between age 14 years old and 16 

years old). These findings were similar with the previous case study chosen where the graph produced by 

ANN and SVM also the show the similar case. Ritz-Timme et al. [40] stated that the validation of age 

estimation of most morphological methods is the least accurate in adulthood. Santos et al. [41] in their study 

on age estimation using the Sempé method built for computer – Maturos 4.0 (MT) program showed that 

the MT program only produced reliable results for age under 16 years old. Molinari et al. [42] in his study 

also stated that the growth of the skeleton has practically stopped for the skeletal development at the bone age 

of 16.5 years and 15 years for boys and girls respectively. After that age, the evaluation of age tend to be 

inaccurate, resulting to a vast deviation between the real and the estimated age. From these supported 

literatures, we can say that the best range of age for age estimation is between new-born to 16 years old for 

male, and new-born to 15-16 years old for female. In addition, based on our graphs, our RF model can 

predict well for both male and female in that range of age.  

Generally, different contributing variables such as different methodology approaches, diverse racial 

backgrounds, or dissimilar environmental conditions, could clarify the contrasts between multiracial 

investigations of skeletal development [43]. Furthermore, a lot of factors such as nutrition, occupation, 

endocrine factors, genetic, overall lifestyle and health,  growth, and activity significantly influence these 

indicators in an unforeseeable way [44, 45]. Due to these reasons, the limitation of technical application need 

to be done to the targeted population from which the bones were gathered. Estimating age from a particular 

population should be exceptionally analyzed in which the applied regression models or mathematical 

functions may differ because of these differences. 

 

 

4. CONCLUSION 

According to this study, the number of X-ray of the left hand from a set of data of Asian children 

were used for age estimation is 333. One soft computing model was used which is RF model to be compared 

with the ANN and SVM model developed in the previous case study. Based on the findings, RF model is 

comparable with the ANN and SVM model especially for female where RF model produced better results 

than ANN and SVM in term of the performance measurement used. However, for male, the RF model is less 

efficient than SVM model but better than ANN model.  

According to the graph produced by the RF model and the supported literature, RF model can 

estimate well the age for range of age between newborn to 16 years old and between newborn to 15 years 

old, for male and female, respectively. This finding also proves that the length of bone is reliable to be used 

as age indicator for age estimation. To conclude, the RF model is still comparable with the other models and 

suitable to be used for age estimation. However, further study will limit the subject age from new-born to 16 

years old for male and new-born to 15 years old for female, for age estimation, according to the supported 

literatures and the findings. The future study will improve the results of the age estimation by studying other 

algorithms used by various other case studies available such as by Lenin, Reddy, and Kalavathi [46], 

Ismail et al. [45], Ismail et al. [46], Khaleel et al. [47] and all other classification methods [48-57]. 

 

 

ACKNOWLEDGEMENTS 

This study thanked to Ministry of Higher Education (MOHE) for Fundamental Research Grant 

Scheme (FRGS) with grant number RDU190190 and UMP internal grant with grant number RDU1703127, 

for thier support. 

 

 

 

 

 

 

 

 

 

javascript:void(window.open('../../cms/smpu/index2.jsp?ProjectID=RDU190190&flag=true','Classification','height=700,width=1024,menubar=yes,toolbar=yes,scrollbars=yes'))


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 :  549 - 558 

556 

REFERENCES 
[1] J. M. Tanner, M. J. R. Healy, H. Goldstein, and N. Cameron, ―Skeletal Maturity and Prediction of Adult Height 

(TW3 Method),‖ 3 edition. Saunders Ltd, 2001. 

[2] W. Greulich and S. Pyle, ―Radiographic Atlas of Skeletal Development of the Hand and Wrist,‖ Palo Alto, CA: 

Stanford Univ. Press, 1971. 

[3] R. Cameriere, S. De Luca, R. Biagi, M. Cingolani, G. Farronato, and L. Ferrante, ―Accuracy of three age estimation 

methods in children by measurements of developing teeth and carpals and epiphyses of the ulna and radius.,‖  

J. Forensic Sci., vol. 57, no. 5, pp. 1263–70, Sep. 2012. 

[4] A. a. El-Bakary et al., ―Age estimation in Egyptian children by measurements of carpals and epiphyses of the ulna 

and radius,‖ J. Forensic Radiol. Imaging, vol. 2, no. 3, pp. 121–125, 2014. 

[5] M. F. Darmawan, S. M. Yusuf, M. R. Abdul Kadir, and H. Haron, ―Age estimation based on bone length using 12 

regression models of left hand X-ray images for Asian children below 19 years old,‖ Leg. Med., vol. 17, no. 2,  

pp. 71–78, 2015. 

[6] M. F. Darmawan, M. Z. Osman, and K. Moorthy, ―Age Estimation of Asian Using Soft Computing Model Based 

on Bone Length of Left Hand,‖ Adv. Sci. Lett., vol. 24, no. 10, pp. 7559–7565, 2018. 

[7] M. Darmawan, H. Hasan, S. Sadimon, S. Yusuf, and H. Haron, ―A Hybrid Artificial Intelligent System for Age 

Estimation Based on Length of Left Hand Bone,‖ Adv. Sci. Lett., vol. 24, no. 2, pp. 1047–1051, 2018. 

[8] K. Moorthy, M. S. Mohamad, and S. Deris, ―Multiple Gene Sets for Cancer Classification Using Gene Range 

Selection Based on Random Forest,‖ Asian Conf. Intell. Inf. Database Syst., pp. 385–393, 2013. 

[9] D. Navega, C. Coelho, R. Vicente, M. T. Ferreira, S. Wasterlain, and E. Cunha, ―AncesTrees: ancestry estimation 

with randomized decision trees,‖ Int. J. Legal Med., vol. 129, no. 5, pp. 1145–1153, 2015. 

[10] D. Navega, R. Vicente, D. N. Vieira, A. H. Ross, and E. Cunha, ―Sex estimation from the tarsal bones in 

a Portuguese sample: a machine learning approach,‖ Int. J. Legal Med., vol. 129, no. 3, pp. 651–659, 2015. 

[11] Š. Bejdová, J. Dupej, V. Krajíček, J. Velemínská, and P. Velemínský, ―Stability of upper face sexual dimorphism in 

central European populations (Czech Republic) during the modern age,‖ Int. J. Legal Med., vol. 132, no. 1,  

pp. 321–330, 2018. 

[12] K. Zhang et al., ―The role of multislice computed tomography of the costal cartilage in adult age estimation,‖  

Int. J. Legal Med., pp. 791–798, 2017. 

[13] F. Cavalli, L. Lusnig, and E. Trentin, ―Use of pattern recognition and neural networks for non-metric sex diagnosis 

from lateral shape of calvarium: an innovative model for computer-aided diagnosis in forensic and physical 

anthropology,‖ Int. J. Legal Med., vol. 131, no. 3, pp. 1–11, 2017. 

[14] ―https://ipilab.usc.edu/computer-aided-bone-age-assessment-of-children-using-a-digital-hand-atlas-2/.‖ 

[15] E. Pietka, A. Gertych, S. Pospiech, F. Cao, H. K. Huang, and V. Gilsanz, ―Computer-assisted bone age assessment: 

Image preprocessing and epiphyseal/metaphyseal ROI extraction,‖ IEEE Trans. Med. Imaging, vol. 20, no. 8,  

pp. 715–729, 2001. 

[16] H. K. Huang et al., ―Data grid for large-scale medical image archive and analysis,‖ in Proceedings of the 13th ACM 

International Conference on Multimedia, pp. 1005–1013, 2005. 

[17] A. Zhang, A. Gertych, B. J. Liu, and H. K. Huang, ―Bone Age Assessment for Young Children from Newborn to 

7- Year-Old Using Carpal Bones,‖ Comput. Med. Imaging Graph., vol. 6516, no. 18, pp. 1–11, Mar. 2007. 

[18] A. Gertych, A. Zhang, J. Sayre, S. Pospiech-Kurkowska, and H. . Huang, ―Bone Age Assessment of Children using 

a Digital Hand Atlas,‖ Comput Med Imaging Graph, vol. 31, pp. 322–331, 2007. 

[19] A. M. Zain, H. Haron, and S. Sharif, ―Prediction of surface roughness in the end milling machining using Artificial 

Neural Network,‖ Expert Syst. Appl., vol. 37, no. 2, pp. 1755–68, Mar. 2010. 

[20] M. F. Darmawan, S. M. Yusuf, M. R. Abdul Kadir, and H. Haron, ―Comparison on three classification techniques 

for sex estimation from the bone length of Asian children below 19 years old: An analysis using different group of 

ages,‖ Forensic Sci. Int., vol. 247, p. 130.e1-130.e11, 2015. 

[21] L. Breiman, ―Random forests,‖ Mach. Learn., pp. 5–32, 2001. 

[22] A. L. Boulesteix, S. Janitza, J. Kruppa, and I. R. König, ―Overview of random forest methodology and practical 

guidance with emphasis on computational biology and bioinformatics,‖ Wiley Interdiscip. Rev. Data Min. Knowl. 

Discov., vol. 2, no. 129, pp. 493–507, 2012. 

[23] P. F. Smith, S. Ganesh, and P. Liu, ―A comparison of random forest regression and multiple linear regression for 

prediction in neuroscience,‖ J. Neurosci. Methods, vol. 220, no. 1, pp. 85–91, 2013. 

[24] P. Vezza, R. Muñoz-Mas, F. Martinez-Capel, and  a. Mouton, ―Random forests to evaluate biotic interactions in 

fish distribution models,‖ Environ. Model. Softw., vol. 67, pp. 173–183, 2015. 

[25] M. Steyn and M. Y. Işcan, ―Metric sex determination from the pelvis in modern Greeks.,‖ Forensic Sci. Int.,  

vol. 179, no. 1, p. 86.e1-6, Jul. 2008. 

[26] C. E. Sulzmann, J. L. Buckberry, and R. F. Pastor, ―The Utility of Carpals for Sex Assessment : A Preliminary 

Study,‖ Am. J. Phys. Anthropol., vol. 135, pp. 252–262, 2008. 

[27] J. M. Suchey, ―Problems in the aging of females using the Os pubis,‖ Am. J. Phys. Anthropol., vol. 51,  

pp. 467–470, 1979. 

[28] F. W. Rösing and S. I. Kvaal, ―Dental Age in Adults — A Review of Estimation Methods,‖ Dent. Anthropol.,  

pp. 443–468, 1998. 

[29] S. Kucheryavski, I. Belyaev, and S. Fominykh, ―Estimation of age in forensic medicine using multivariate approach 

to image analysis,‖ Chemom. Intell. Lab. Syst., vol. 97, no. 1, pp. 39–45, May 2009. 

[30] O. Ekizoglu et al., ―Computed tomography evaluation of the iliac crest apophysis: age estimation in living 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Random forest age estimation model based on length of left hand bone for … (Mohd Faaizie Darmawan) 

557 

individuals,‖ Int. J. Legal Med., vol. 130, no. 4, pp. 1101–1107, 2016. 

[31] T. Lucas and M. Henneberg, ―Estimating a child’s age from an image using whole body proportions,‖ Int. J. Legal 

Med., vol. 131, no. 5, pp. 1385–1390, 2017. 

[32] A. De Donno, V. Santoro, S. Lubelli, M. Marrone, P. Lozito, and F. Introna, ―Age assessment using the Greulich 

and Pyle method on a heterogeneous sample of 300 Italian healthy and pathologic subjects.,‖ Forensic Sci. Int.,  

vol. 229, no. 1–3, p. 157.e1-6, Jun. 2013. 

[33] M. Schaefer, L. Hackman, and J. Gallagher, ―Variability in developmental timings of the knee in young American 

children as assessed through Pyle and Hoerr’s radiographic atlas,‖ Int. J. Legal Med., vol. 130, no. 2,  

pp. 501–509, 2016. 

[34] M. Alcina, A. Lucea, M. Salicrú, and D. Turbón, ―Reliability of the Greulich and Pyle method for chronological 

age estimation and age majority prediction in a Spanish sample,‖ Int. J. Legal Med., vol. 132, no. 4, pp. 1139–1149, 

2018. 

[35] J. E. O’Connor, J. Coyle, C. Bogue, L. D. Spence, and J. Last, ―Age prediction formulae from radiographic 

assessment of skeletal maturation at the knee in an Irish population.,‖ Forensic Sci. Int., vol. 234, p. 188.e1-8,  

Jan. 2014. 

[36] J. Irurita Olivares and I. Alemán Aguilera, ―Proposal of new regression formulae for the estimation of age in infant 

skeletal remains from the metric study of the pars basilaris,‖ Int. J. Legal Med., vol. 131, no. 3, pp. 1–8, 2017. 

[37] K. Zhang, X. Dong, F. Fan, and Z. Deng, ―Age estimation based on pelvic ossification using regression models 

from conventional radiography,‖ Int. J. Legal Med., vol. 130, no. 4, pp. 1143–1148, 2016. 

[38] A. B. Márquez-Ruiz, L. González-Herrera, and A. Valenzuela, ―Usefulness of telomere length in DNA from human 

teeth for age estimation,‖ Int. J. Legal Med., vol. 132, no. 2, pp. 353–359, 2018. 

[39] L. a Zadeh, ―Fuzzy logic, neural networks, and soft computing,‖ Fuzzy Syst., vol. 37, pp. 77–84, 1994. 

[40] S. Ritz-Timme et al., ―Age estimation: the state of the art in relation to the specific demands of forensic practise.,‖ 

Int. J. Legal Med., vol. 113, no. 3, pp. 129–36, Jan. 2000. 

[41] C. Santos, M. Ferreira, F. C. Alves, and E. Cunha, ―Comparative study of Greulich and Pyle Atlas and Maturos 4.0 

program for age estimation in a Portuguese sample.,‖ Forensic Sci. Int., vol. 212, no. 1–3, p. 276.e1-7, Oct. 2011. 

[42] L. Molinari, T. Gasser, and R. Largo, ―A comparison of skeletal maturity and growth.,‖ Ann. Hum. Biol., vol. 40, 

no. 4, pp. 333–40, Jul. 2013. 

[43] A. Al-Hadlaq, M. Al-Qarni, A. Al-Kahtani, and A. Al-Obaid, ―Comparative study between hand-wrist method and 

cervical vertebral maturation method for evaluation of skeletal maturity in Saudi boys,‖ Pakistan Oral Dent. J., vol. 

27, no. 2, pp. 187–192, 2007. 

[44] R. Malina, ―Physical activity and training: effects on stature and adolescent growth spurt,‖ Med Sci Sport. Exerc, 

vol. 26, pp. 759–66, 1994. 

[45] E. Bénéfice, D. Garnier, and G. Ndiaye, ―High levels of habitual physical activity in west African adolescent girls 

and relationship to maturation, growth, and nutritional status: results from a 3-year prospective study.,‖  

Am. J. Hum. Biol., vol. 13, no. 6, pp. 808–20, 2001. 

[46] K. Lenin, B. R. Reddy, and M. S. Kalavathi, ―Progressive Particle Swarm Optimization Algorithm for Solving 

Reactive Power Problem,‖ Int. J. Adv. Intell. Informatics, vol. 1, no. 3, pp. 125–131, 2015. 

[47] M. A. Ismail, V. Mezhuyev, K. Moorthy, S. Kasim, and A. O. Ibrahim, ―Optimisation of biochemical systems 

production using hybrid of newton method, differential evolution algorithm and cooperative coevolution 

algorithm,‖ Indones. J. Electr. Eng. Comput. Sci., vol. 8, no. 1, pp. 27–35, 2017. 

[48] M. A. Ismail, V. Mezhuyev, S. Deris, M. S. Mohamad, S. Kasim, and R. Saedudin, ―Multi-objective Optimization 

of Biochemical System Production Using an Improve Newton Competitive Differential Evolution Method,‖ Int. J. 

Adv. Sci. Eng. Inf. Technol., vol. 7, no. 4–2, pp. 1535–1542, 2017. 

[49] M. K. Khaleel, M. A. Ismail, U. Yunan, and S. Kasim, ―Review on Intrusion Detection System Based on The Goal 

of The Detection System,‖ International Journal of Integrated Engineering, vol. 10, no. 6, 2018. 

[50] Zunaidi, W. H. A. W., Saedudin, R. R., Shah, Z. A., Kasim, S., Seah, C. S., & Abdurohman, M. ―Performances 

Analysis of Heart Disease Dataset using Different Data Mining Classifications,‖ International Journal on 

Advanced Science, Engineering and Information Technology, 8(6), 2677-2682, 2018. 

[51] Kusairi, R. M., Moorthy, K., Haron, H., Mohamad, M. S., Napis, S., & Kasim, S. ―An Improved Parallelized 

mRMR for Gene Subset Selection in Cancer Classification,‖ International Journal on Advanced Science, 

Engineering and Information Technology, 7(4-2), 1595-1600, 2017. 

[52] Nasrudin, N. A., Chan, W. H., Mohamad, M. S., Deris, S., Napis, S., & Kasim, S. ―Pathway-based Analysis with 

Support Vector Machine (SVM-LASSO) for Gene Selection and Classification,‖ International Journal on 

Advanced Science, Engineering and Information Technology, 7(4-2), 1609-1614, 2017. 

[53] Nawi, N. M., Zaidi, N. M., Hamid, N. A., Rehman, M. Z., Ramli, A. A., & Kasim, S. ―Optimal Parameter Selection 

Using Three-term Back Propagation Algorithm for Data Classification,‖ International Journal on Advanced 

Science, Engineering and Information Technology, 7(4-2), 1528-1534, 2017. 

[54] Hasri, N. M., Wen, N. H., Howe, C. W., Mohamad, M. S., Deris, S., & Kasim, S, ―Improved support vector 

machine using multiple SVM-RFE for cancer classification,‖ International Journal on Advanced Science, 

Engineering and Information Technology, 7(4-2), 1589-1594, 2017. 

[55] Nies, H. W., Daud, K. M., Remli, M. A., Mohamad, M. S., Deris, S., Omatu, S., ... & Sulong, G. ―Classification of 

Colorectal Cancer Using Clustering and Feature Selection Approaches,” In International Conference on Practical 

Applications of Computational Biology & Bioinformatics (pp. 58-65). Springer, Cham, June, 2017. 

[56] Remli, M. A., Daud, K. M., Nies, H. W., Mohamad, M. S., Deris, S., Omatu, S., ... & Sulong, G. “K-means 

clustering with infinite feature selection for classification tasks in gene expression data,” In International 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 :  549 - 558 

558 

Conference on Practical Applications of Computational Biology & Bioinformatics (pp. 50-57). Springer, Cham, 

June , 2017. 

[57] Siang, T. C., Soon, T. W., Kasim, S., Mohamad, M. S., Howe, C. W., Deris, S., ... & Ibrahim, Z. ―A review of 

cancer classification software for gene expression data,‖ International Journal of Bio-Science and Bio-

Technology, 7(4), 89-108, 2015. 

 


