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 The traditional white LED product established with a single chip and a single 

phosphor results in a low color rendering index (CRI). The upgrade of LED 

package is comprised of two chips and one phosphor material and gives  

the higher CRI while keeping high luminous efficiency. Based on previous 

findings, the research paper performs the application of the two chips and 

two phosphors to enhance the color tunability of LEDs with different 

amounts and intensities of the two employed phosphors. Additionally, a color 

design model is built to serve the purpose of bettering the color fine-tuning of 

the white-light LED module. The maximum value of the difference between 

the measured CIE 1931 color coordinates and that of the simulated model is 

approximately 0.0063 around the 6600 K correlated color temperature 

(CCT). From the results, this study offers a quick approach to achieve  

the color fine tuning of a white-light LED module with a high CRI and 

luminous efficiency. 
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1. INTRODUCTION 

With outstanding properties of long lifespan, high reliability and endurance, eco-friendly and  

power-saving characteristics, and small size, white light-emitting diodes (LEDs) have a worldwide usage in 

illuminating applications, particularly in aspects of automatic, billboard, and low-temperature lightings [1-3]. 

Remarkably, their recent advances in fast switching properties have got them widely used in smart lighting 

which is another auto control technology. In fact, there have been a variety of methods that combine the LED 

chips and the phosphor to attain white light. The very first and cheapest package applying that combination 

consists of a single blue chip and a single yellow phosphor, but the resulted CRI is very low. Therefore, 

focusing on improving the CRI, the package was built with the participation of a red and a blue chip as well 

as a single layer of yellow phosphor. The color rendering index CRI is a quantitative measure of light quality 

compared to the natural light or black-body radiation. Thus, when CRI has a high value this means  

the applied phosphor has a broad emission spectrum which helps to better the light quality for LEDs light, 

similar to the continuous spectrum of the black-body radiation [4-6]. With the goal of customizing  

the chromaticity and CRI for LED lamps, many reports with the topics of combining phosphors with  
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LED chips to accomplish the optimization and prediction of the spectrum have been given. Specifically, 

these reports focus on the application of the empirical and mathematical models for the analysis and 

decomposition of the spectrum of LED chip [7-10]. Nevertheless, constructing a white LED package with 

tunable correlated color temperatures (CCTs), high efficiency, and superior CRI is a real challenging task to 

accomplish [11, 12]. Previously, the structure of a blue chip combined with two phosphor materials was 

applied to reach a high value of CRI, but the efficacy is poor because of the Stokes shift [13-16]. Then,  

the implement of the two red and blue chips together with one phosphor resulted in an increase in CRI and 

efficacy but was unable to tune the color, in comparison with the structure consisting of two phosphors. For 

those drawbacks, another white LED package comprised of the two different LED chips and two phosphors 

has been proposed to achieve high CRI and luminous output as well as be able to keep a tunable color. In this 

article, we suggest a color structure that is designed based on Beer’s law and linear conversion for  

the demand of producing white LEDs with subtle color difference [17-21]. In addition, this W-LED module 

was manufactured by applying yttrium aluminum garnet (YAG) and nitride-based phosphors in blue and red 

LEDs with high CRI and luminous efficiency. For the WLED production, the phosphors that are mixed in 

silicone glues with different proportions and densities are combined with the red and blue LED chips. 

From the results of the article, it is possible to construct and apply this proposed color design model easily. 

 

 

2. PREPARATION AND SIMULATION 

2.1. Preparation 

Mg8Ge2O11F2:Mn4+ is a composition of the four other chemical materials, including MgO, MgF2, 

MgCO3, GeO2 with the mole and weight expressed in Table 1. The preparation process of 

MgSr3Si2O8:Eu2+,Mn2+  includes two main stages of firing that need to be followed in a strict order to get 

the best final composition for the research. Before the first firing, four aforementioned materials must be 

mixed by ball-milling. Then, the attain mixture is fired in capped quartz tubes in with air at 12000C within 

two hours. Next, the fried material will be powderized by using dry ball-milling method. Finally, the powder 

goes through the second firing in open quartz boats overnight for about 16 hours at 12000C. The attain 

product has deep red emission color with the emission peak of 1.88 eV and the excitation efficiency of over 

3.40 eV, which is beneficial enough to be applied in the simulation process. 

 

 

Table 1. The ingredients of Mg8Ge2O11F2:Mn4+ composition 
Ingredient Mole % By weight (g) 

MgO 700 282 

MgF2 100 62 

MgCO3 8 9.2 

GeO2 192 201 

 

 

2.2. Simulation 

The applications of the Light Tools program and Mie-theory play a crucial role in carrying out this 

work, as it is easier to simulate the dual-layer phosphor structure of WLED, based on the analysis of 

phosphor scattering phenomenon and the investigation in the impacts of MgSr3Si2O8:Eu2+,Mn2+ phosphor on 

the WLEDs’ performance at the 6600 K correlated temperature. Before structuring the in-cup phosphor 

configuration of WLEDs, it is necessary to prepare the required phosphor layer by mixing the chemical 

compounding of the MgSr3Si2O8:Eu2+,Mn2+ phosphor and the yellow YAG:Ce3+ with the silicon glue, 

as demonstrated in Figure 1. The simulated model of WLEDs includes the following constituents: nine blue 

chips, a reflector cup, a phosphor layer, and a silicone layer. Additionally, the parameters of each part are 

expressed as follows. 

-  A reflector with 2.07 mm depth, 8 mm bottom length and 9.85 mm top length is attached to the blue chips 

-  Each blue chip is designed with 1.16 W radiant power and 453 nm peak wavelength 

-  The refractive indexes of phosphor particles MgSr3Si2O8:Eu2+,Mn2+ and YAG: Ce3+ are set at 1.85 and 

1.83 respectively 

Besides, in terms of maintaining the ACCTs (average correlated color temperatures),  

the concentration of YAG: Ce3+ needs to be adjusted appropriately to the change of MgSr3Si2O8:Eu2+,Mn2+ 
concentration. 
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(d) 

 

Figure 1. Illustration of WLEDs structure: (a) 3D modelling, (b) bonding diagram,  

(c) illustration of pc-WLEDs model, (d) simulation of WLEDs using lighttools commercial software 

 

 

3. RESULTS AND DISCUSSION 

As can be seen from Figure 2, the change in the concentration of red phosphor 

MgSr3Si2O8:Eu2+,Mn2+ is opposite to that of the YAG:Ce3+ yellow phosphor. This opposite change 

demonstrates two aspects, the first one is to maintain the ACCTs and the second one is its influence in  

the scattering and absorption processes of phosphor layers inside the WLEDs, which does have a great effect 

on the color quality and lumen output of WLEDs. Hence, selecting the appropriate MgSr3Si2O8:Eu2+,Mn2+ 

concentration is very important as it is the factor determining the WLEDs’ color quality. Vividly from  

the chart, when there is an increase in MgSr3Si2O8:Eu2+,Mn2+ concentration from 2% to 24% wt.,  

the concentration of yellow phosphor YAG:Ce3+ declines to retain the ACCTs, which is similar to  

the WLEDs structure with the ACCT of 6600 K. 

Figure 3 presents the emission spectra of the WLED package with 6600 K ACCT where the impacts 

of different concentrations of MgSr3Si2O8:Eu2+, Mn2+ are demonstrated obviously. Besides, the synthesis  

of the spectral regions as shown in Figure 3 actually forms the white light. As can be seen, when  

the MgSr3Si2O8:Eu2+,Mn2+ concentration rises from 2% to 22%, the emission spectrum increases significantly 

in the wavelength range of 680 nm – 738 nm. However, this change will be insignificant if there is no 

spectral increase in the two range of 420 nm - 480 nm and 500 nm - 640 nm. Moreover, the growth of  

the spectrum in the wavelength range of 420 nm - 480 nm raises the luminous flux of blue light (blue-light 

scattering). Thus, it can be addressed that a higher color temperature will lead to a higher spectral emission. 

This result is very important to the application of MgSr3Si2O8:Eu2+,Mn2+ for the color quality management of 

the WLEDs with high color temperature. Furthermore, with these findings, the research paper could  

assure the ability of MgSr3Si2O8:Eu2+,Mn2+ in enhancing the chromatic quality of WLED packages with  

both low color temperature (6600 K) and high color temperature (7700 K). Therefore, the suitable 

MgSr3Si2O8:Eu2+,Mn2+ concentration is decided according to the requirements from manufacturers.  

If the goal is to achieve a high color quality for WLED products, a small reduction in luminous flux  

is acceptable. 
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Figure 2. The change in phosphor concentration 

for maintaining the ACCT of WLEDs 

 

Figure 3. Emission spectra of 6600 K WLEDs with 

different MgSr3Si2O8:Eu2+,Mn2+ concentration 

 

 

Demonstrated in Figure 4 is the upward trend in the color rendering index following the increase of 

MgSr3Si2O8:Eu2+, Mn2+ phosphor concentration. This trend can be explained by the absorption process of  

the red MgSr3Si2O8:Eu2+,Mn2+ phosphor layer. Specifically, as soon as the red phosphors  

MgSr3Si2O8:Eu2+,Mn2+ absorb the blue light emitted from the blue chips, they will turn these blue lights into 

red lights. Moreover, besides the blue light, this red phosphor MgSr3Si2O8:Eu2+,Mn2+ also absorbs the yellow 

light. However, when drawing a comparison between these two absorption processes, it has turned out that 

the blue light from LED chips is absorbed more strongly than the yellow light because of the absorption 

properties of the material, which certainly leads to the larger amount of red light components inside  

the WLEDs when MgSr3Si2O8:Eu2+,Mn2+ is added. Consequently, the color rendering index (CRI) reaches  

a higher value. CRI is an important factor that needs to be focused on when choosing a modern model of 

WLEDs, so the higher the CRI is, the more expensive the LED products become. Nonetheless, CRI cannot 

fully evaluate the WLEDs’ color quality since it is just one of the measurement factors. Therefore, a new 

index called color quality scale (CQS) is introduced to be an alternative because it covers three different 

factors, including the CRI, the viewers’ preference and the color coordinates. The CQS shows a considerable 

improvement with the concentration of the red phosphor MgSr3Si2O8:Eu2+,Mn2+, as illustrated in Figure 5.  

It is obvious to admit that the red phosphor MgSr3Si2O8:Eu2+,Mn2+ can enhance the color quality of white 

light LEDs with dual-layer phosphor structure. Thus, this result plays an important role in accomplishing  

the goal of color quality enhancement. In addition, another advantage of this type of phosphor is its low cost 

which is beneficial to mass production, and thus, that MgSr3Si2O8:Eu2+,Mn2+ is widely used in this industry 

can be easily understood. However, the downside when utilizing this phosphor material is that it can cause  

a decrease in the lumen output of WLEDs. 

 

 

 
 

Figure 4. The color rendering index of WLEDs as a 

function of MgSr3Si2O8:Eu2+,Mn2+ concentration 

 
 

Figure 5. The color quality scale of WLEDs as a 

function of MgSr3Si2O8:Eu2+,Mn2+ concentration 

 

 

In this part, we will show and explain the mathematical model of the transmitted blue light and 

converted yellow light in the double-layer phosphor structure to obtain a significant enhancement of the LED 

efficacy. The asymmetrical SPD of monochrome LED is typically modeled with Gaussian function [22, 23]: 
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where σ depends on peak wavelength λpeak and FWHM Δλ can be expressed as; 
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The SPD of a white LED utilizing yellow YAG phosphor and blue LED chip can hypothetically be 

viewed as the aggregate of the blue and yellow spectra. However, in fact, the supposed yellow phosphor 

radiates light in both of the yellow and green spectra as demonstrated from the deliberate spectra in Figure 3. 

In the event that a blue and a yellow range are picked, the contrast between the essentially estimated SPD and 

twofold shading (blue and yellow shading) range model can be spoken for a green range. In this way, 

considering the practical circumstance, a green range can be added to the twofold range model to form  

the accompanying investigative tri-spectrum (B–G–Y) model represented by (3) and subsequently  

altered as (4). 
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in which: 

- Pλ Spectral power distribution (SPD) (mW/nm).  

- h Planck’s constant (J.s).  

- c Speed of light (m · s−1).  

- λ Wavelength (nm).  

- Popt Optical power (W).  

- λpeak Peak wavelength (nm).  

- Δλ Full-width at half-maximum (FWHM) (nm).  

- η Ratio of specific spectra to white spectrum, dimensionless.  

- Popt_b, Popt_g, Popt_y, and Popt_total Optical power (W) for the blue, green, yellow, and white spectra, 

respectively.  

- λpeak_b, λpeak_g, and λpeak_y Peak wavelengths (nm) for the blue, green, and yellow spectra, respectively.  

- σb, σg, and σy FWHM-related coefficients (nm) for the blue, green, and yellow spectra, respectively.  

- ηb, ηg, and ηy Ratios of blue–green–yellow (B–G–Y) spectra to white spectrum, respectively, dimensionless.  

- λ1, λ2 Wavelengths at half of the peak intensity. 
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Therefore, the SPD modeling for the phosphor-coated white LED can be expressed as a tricolor 

spectrum, which can be considered as an extended Gaussian model. The scattering of MgSr3Si2O8:Eu2+,Mn2+ 

phosphor particle was analyzed by using the Mie-theory. In addition, the scattering cross section Csca for 

spherical particles can be computed by the following expression by applying the Mie theory [24].  

The transmitted light power can be calculated by the Lambert-Beer law [25]: 

 

𝑰 = 𝑰𝟎𝐞𝐱𝐩⁡(−𝝁𝒆𝒙𝒕𝑳) (5) 

 

where I0, L, and µext represent the incident light power the thickness of phosphor layer (mm), and 

the extinction coefficient, respectively. Moreover, the extinction coefficient can be demonstrated as  

the following formula: µext = Nr.Cext, in which Nr indicates the number density distribution of particles  

(mm-3), while Cext (mm2) is known as the extinction cross-section of phosphor particles. 

It can be implied from (5) that the dual-layer remote phosphor results in the larger luminous 

efficiency for the LED packages than the single-layer phosphor. Hence, the benefit of using dual-layer 

remote phosphor layer in yielding better lumen output is successfully demonstrated in this study. 

On the other hand, the concentration of red phosphor MgSr3Si2O8:Eu2+,Mn2+ greatly affects the optical path 

of this dual-layer remote phosphor structure. Vividly, the reduction factor µext has a direct proportion to  

the MgSr3Si2O8:Eu2+,Mn2+ concentration, but an inverse ratio to the light transmission power. 

Thus, as the thickness of the two phosphor layers are fixed, a decrease in luminous flux can occur with 

the growth of MgSr3Si2O8:Eu2+,Mn2+ concentration, leading to the decline in all five CCTs, as shown in 

Figure 6. Obviously, when the concentration of MgSr3Si2O8:Eu2+,Mn2+ reaches 24% wt, the luminous flux 

decreases dramatically. However, this drawback in lumen output can be accepted due to the great benefits 

that the red phosphor MgSr3Si2O8:Eu2+,Mn2+ brings to the WLEDs, including the better CRI and CQS. 

In addition, dual-layer remote phosphor can yield higher luminous flux than the single-layer phosphor 

without the presence of red phosphors. Therefore, the only issue here is the purpose of manufactures for 

determining the most appropriate phosphor concentrations of MgSr3Si2O8:Eu2+,Mn2+ when mass producing 

WLEDs products.  

 

 

 
 

Figure 6. The luminous flux of WLEDs as a function of MgSr3Si2O8:Eu2+,Mn2+ concentration 

 

 

4. CONCLUSION 

From this article, a simple method for better performance of adjusting the color with white-light 

LED modules while retaining the high CRI and luminous efficacy is proposed. Depending on 

the manufacturers' requirements, a color design model is built based on the applications of Beer’s law and 

linear conversion which can support the different white-light LEDs. The simulated and experimental spectra 

show positive overlapped results. Moreover, the biggest difference between the measured and simulated CIE 

1931 color coordinates is identified by approximately 0.0063 with the 6600 K CCT. Hence, it is possible to 

structure the proposed color design model and get it applied easily. 
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